
Open-World Multi-Task Control Through
Goal-Aware Representation Learning and Adaptive Horizon Prediction

Shaofei Cai1,2, Zihao Wang1,2, Xiaojian Ma3, Anji Liu3, Yitao Liang1,4

Team CraftJarvis
1Institute for Artificial Intelligence, Peking University

2School of Intelligence Science and Technology, Peking University
3Computer Science Department, University of California, Los Angeles

4Beijing Institute for General Artificial Intelligence (BIGAI)
{caishaofei,zhwang}@stu.pku.edu.cn,xiaojian.ma@ucla.edu

liuanji@cs.ucla.edu,yitaol@pku.edu.cn

Abstract

We study the problem of learning goal-conditioned poli-
cies in Minecraft, a popular, widely accessible yet challeng-
ing open-ended environment for developing human-level
multi-task agents. We first identify two main challenges of
learning such policies: 1) the indistinguishability of tasks
from the state distribution, due to the vast scene diversity,
and 2) the non-stationary nature of environment dynamics
caused by partial observability. To tackle the first challenge,
we propose Goal-Sensitive Backbone (GSB) for the policy
to encourage the emergence of goal-relevant visual state
representations. To tackle the second challenge, the pol-
icy is further fueled by an adaptive horizon prediction mod-
ule that helps alleviate the learning uncertainty brought by
the non-stationary dynamics. Experiments on 20 Minecraft
tasks show that our method significantly outperforms the
best baseline so far; in many of them, we double the perfor-
mance. Our ablation and exploratory studies then explain
how our approach beat the counterparts and also unveil the
surprising bonus of zero-shot generalization to new scenes
(biomes). We hope our agent could help shed some light on
learning goal-conditioned, multi-task agents in challeng-
ing, open-ended environments like Minecraft. The code is
released at https://github.com/CraftJarvis/
MC-Controller.

1. Introduction
Building agents that can accomplish a vast and diverse

suite of tasks in an open-ended world is considered a key
challenge towards devising generally capable artificial in-
telligence [2, 3, 6, 35]. In recent years, environments like
Minecraft have drawn much attention from the related re-

combat pig harvest poppy

harvest woodcombat sheep

pick-place

window-open

box-close

stick-push

MinecraftMeta-world

Figure 1. Comparison of states between Meta-world [49] (left) and
Minecraft [24] (right) based on t-SNE visualization. The points
with the same color represent states from the trajectories that com-
plete the same task. It can be seen that the states are much more
distinguishable in terms of tasks in Meta-world than in Minecraft,
implying the higher diversity of states and tasks in open worlds
like Minecraft over traditional multi-task agent learning environ-
ments like Meta-world.

search communities [16, 18–20, 26], since they are not only
popular, and widely accessible, but also offer an open-
ended universe with myriad of tasks, making them great
platforms for developing human-level multi-task agents.
Although groundbreaking successes have been observed
in many challenging sequential decision-making problems
such as Atari [32], Go [39], and MOBA games [13, 44, 45],
such successes have not been transferred to those open
worlds. To understand the gap and design corresponding so-
lutions, we need to first understand the distinct challenges

1

ar
X

iv
:2

30
1.

10
03

4v
3

 [
cs

.A
I]

 1
2

O
ct

 2
02

3

https://github.com/CraftJarvis/MC-Controller
https://github.com/CraftJarvis/MC-Controller

brought by these environments. Let’s take Minecraft [24]
as an example: there are over twenty types of landscapes
ranging from flat lands like Savannah and desert to rough
mountains with forests and caves. These diverse land-
scapes also enable countless tasks that could be achieved by
the agents: mining, harvesting, farming, combating, con-
structing, etc. Compared to canonical agent learning en-
vironments like Go [39], Atari [32], and robotic control
suite [41, 43, 48], Minecraft provides a substantially more
diverse distribution of states thanks to the rich scenes and
tasks built with the game, making it exceptionally diffi-
cult to extract the pivotal task-relevant visual state repre-
sentations for goal-conditioned policies. To help our read-
ers understand the significance of this challenge, we visual-
ize the states from trajectories that complete some tasks in
Minecraft and Meta-world [48] (a popular multi-task learn-
ing environment but with fewer states and tasks) in Fig. 1.
States of different tasks are annotated with different colors.
Clearly, the states in Minecraft are much less distinguish-
able in terms of tasks than in Meta-world. Therefore goal-
conditioned policies are more likely to struggle in mapping
those states and tasks (served as goals) to actions.

Another grand challenge in an open-ended environment
like Minecraft hails from the setting of such games, where
an agent can only have very limited observations of the
world. For example, in MineDoJo [16] (a recent agent
benchmark built on Minecraft), the observation space com-
prises a first-person view image and a list of possessed
items. However, many more aspects of the surroundings re-
main hidden from the agents. That is, the agent now has to
work with a partially observable environment. A plague
embedded with such an environment is non-stationary dy-
namics, which makes it almost impossible to predict what
will happen next. Therefore, the distances from states to the
current goal become much less clear due to the world un-
certainty, leading to less distinguishable states in terms of
goal completeness and more faulty decisions emitted by the
goal-conditioned policies.

This paper aims at mitigating both aforementioned chal-
lenges that emerge from most open-world environments.
First, we observe that the architecture of the policy network
is crucial to learning goal-relevant visual state representa-
tions that allow goal-conditioned actions in domains with
low inter-goal state diversity (cf. Fig. 1). To this end, we
propose Goal-Sensitive Backbone (GSB), which enables ef-
fective learning goal-conditioned policies over 20 tasks in
the Minecraft domain. Next, to mitigate the challenge posed
by the partially observed and non-stationary environment,
we introduce horizon as an extra condition for the policy
and a corresponding horizon prediction module. Specifi-
cally, the policy is also explicitly conditioned on the remain-
ing time steps till achieving certain goals (i.e., distance-to-
goal). We find it significantly boosts the performance of

our agents in open-world multi-task domains. However, the
ground-truth distance-to-goal is unavailable during evalu-
ation. To fix this problem, we train a horizon prediction
module and feed the estimated distance-to-goal to the hori-
zon commanding policy in evaluation. This leads to a 27%
gain in average success rate under the multi-task settings.

We evaluate the proposed approaches based on the sim-
ple yet effective behavior cloning algorithm [10]. The ex-
periments are conducted in three common biomes. In multi-
task settings, our proposed method outperforms the base-
line in terms of success rate and precision by a large mar-
gin. It also achieves consistent improvement in single-task
settings. Our ablation and exploratory studies then explain
how our approach beat the counterparts and also unveil the
surprising bonus of zero-shot generalization to new scenes
(biomes).

To summarize, targeting two identified challenges dis-
tinct to open worlds, our contributions are threefold:
• We propose Goal-Sensitive Backbone (GSB), a neural

network that enables effective learning goal-relevant vi-
sual state representations at multiple levels for goal-
conditioned policies, aiming at addressing the challenge
of diverse state distribution in open-ended environments.

• We further introduce adaptive horizon prediction to ex-
plicitly condition the policy on the distance from the cur-
rent state to the goal, yielding much better performances
in a partially observable open-ended environment with
non-stationary dynamics.

• We conduct extensive studies on the popular yet challeng-
ing Minecraft domain with baselines and our proposed
method. The results demonstrate superior advantages of
our approach over the counterparts in terms of both suc-
cess rate and precision of task completion.

2. Preliminaries
Goal-conditioned policy, as its name suggests, is a type of
agent’s policy π for decision-making that is conditioned on
goals besides states. Specifically, we denote π(a|s, g) as
a goal-conditioned policy that maps the current state s and
goal g to an action a. Compared to the canonical formula-
tion of policy where the goal is absent, the goal-conditioned
policy offers flexibility of learning multi-task agent as it al-
lows different behaviors for different tasks by simply alter-
ing the goal. There are multiple ways to specify the goal,
e.g., natural language instructions [2] and goal images [36].
Goal-conditioned imitation learning is a simple yet ef-
fective way to learn goal-conditioned policies. Specifically,
π(a|s, g) is optimized by imitating the demonstrations D,
where D = {τ1, τ2, τ3, . . . } is a collection of trajectories
τ i. A trajectory is a sequence of states, actions, and goals,
defined as τ i = {(sit, ait, gi)}Tt=0, where T is the trajectory
length. The imitation learning objective is to maximize the

2

Cross-biome
Environment Single-biome

Environment

kill sheep in Snowy Plains chop tree in Plains kill sheep in Plains

Figure 2. Demonstrations of the cross-biome environment and
the more challenging single-biome environment. The challenge
comes from the fact that the agent needs to learn diverse behaviors
in similar states conditioned on different goals.

likelihood of the action in demonstrations when attempting
to reach the desired goal

JIL(π) = Eτ∼D
[∑T

t=0
log π(at|st, g)

]
. (1)

Notation. At each timestep, our architecture takes in a tu-
ple (st,at, ht, g,at−1) as the input, where st = {oI

t ,o
E
t },

oI
t is the raw image observation, oE

t is the extra observation
provides by the environments. ht comes from the demon-
stration. h̃t and ãt are the predicted horizon and action,
respectively. For simplicity, we also use the same symbols
(oE

t , g,at−1) to represent their embeddings.

3. Method

In this section, we describe the proposed algorithm for
learning goal-conditioned policies that are capable of com-
pleting various preliminary tasks in open-world domains.
First, we revisit and provide a detailed illustration of the
identified challenges in open-world domains (§3.1). Aim-
ing at solving these challenges, we proceed to introduce
the proposed goal-sensitive backbone (§3.2) and adaptive
horizon prediction module (§3.3). Finally, we provide an
overview of the proposed method in Section 3.4.

3.1. Challenges

As demonstrated in Section 1, the first major challenge
of open-world environments is the indistinguishability of
states in terms of different goals (cf. Fig. 1). That is, it is
often hard to identify the task/goal by looking at individual
states. Compared to environments with clear goal indicators

in their states, agents in open-world domains need to learn
goal-conditioned diverse behaviors under similar states.

This challenge can be reflected by the illustrative exper-
iment in Fig. 2. Two multi-task environments are created
based on the Minecraft domain. Both environments consist
of two preliminary tasks: collect logs and hunt sheep, where
the former can be done by chopping trees and the latter re-
quires the agent to slaughter sheep. Both tasks require the
agent to first locate and approach the corresponding target.
As shown in Fig. 2 (center), in the single-biome environ-
ment (blue blob in Fig. 2), the agent is tasked to collect
logs and hunt sheep both inside a randomly generated plain
area with grass, trees, and various mobs. In contrast, in
the cross-biome environment (red blob in Fig. 2), whenever
the agent is tasked to hunt sheep, it is spawned randomly
in a snowy plain. Although different in visual appearance,
snowy plains and plains have very similar terrains, so the
difficulty of each task in the cross-biome environment is
similar to its counterpart in the single-biome environment.
The main consequence of this change is that the agent can
determine its goal by solely looking at the current state,
which mimics the setting of Meta-World in Fig. 1(left).

We collect demonstrations by filtering successful trajec-
tories played by VPT [4] (see §4.1 for more details) and use
behavior cloning to train multi-task policies on both envi-
ronments. Perhaps surprisingly, as shown in Fig. 2, despite
the minor difference, performance in the single-biome envi-
ronment is significantly weaker than in the cross-biome one.
This clearly demonstrates that the common practice of di-
rectly concatenating observation features and goal features
suffer from learning diverse actions (e.g., locate trees, find
sheep) given similar observations. In contrast, in the cross-
biome environment, the difficulty of the two tasks funda-
mentally remains the same, yet the agent only needs to learn
a consistent behavior in each biome (i.e., plains and snow
fields). This alleviates the need to learn goal-conditioned
diverse behaviors in similar states and leads to a better suc-
cess rate.

The second key challenge comes from the partial ob-
servability of the game and non-stationary environment dy-
namics. Specifically, in Minecraft, the biome and mobs
surrounding the agent are generated procedurally and ran-
domly after each reset. Further, only a small fraction of the
whole terrain is visible to the agent in one observation, lead-
ing to more uncertainty of the world. From the perspective
of learning goal-conditioned policies, the distances from
states to the current goal will become much less clear com-
pared to canonical learning environments like Atari [12].
We refer to Appendix B for more discussion on this. Since
the goal-conditioned policies also rely on distinguishable
states in terms of goal completeness, they’re more likely to
make wrong decisions as a result of world uncertainty.

3

Goal Space
Hunt a cow

Shear a sheep
…

Chop Trees

Action Space

Extra Observation

Move Cam Attack Use

Image Observation

Compass GPS Biome Voxels

𝒐!"

𝒈

𝒐!#

𝒂!$%

Embed

Embed

Embed

ℎ%! ℎ!

Em
be
d

𝒂&!

𝒂!
ℒ!

ℒ"

GSB
𝑰!
&

𝒇!

Training

𝜇 𝜋!

Co
nc
an
te
na
te

Horizon Loss

𝒐!"

𝒈

𝒐!#

𝒂!$%

Embed

Embed

Embed

ℎ%! ℎ)!

Em
be
d

𝒂!

GSB
𝑰!
&

𝒇!

Evaluation

𝜇 𝜋!
Co
nc
an
te
na
te Adjust

Adaptive Horizon
Prediction

Goal-Sensitive Backbone (GSB)

𝒙(() 𝒈

FC

ReLU

FC

Conv

ReLU

Conv

𝒙((*%)

ReLU Sigmoid

×

𝒐!"𝒈

Conv

Max

G-Conv
Block

G-Conv
Block

×𝟑 +

Figure 3. Our Goal-conditioned Policy Architecture. Our contributions are in red and purple. Right: The goal-sensitive backbone
(GSB) is a key component to incentivize goal-condition behaviors. It consists of a stack of g-conv blocks. It takes the image observation
oI
t and the goal embedding g as input, and outputs the goal-attended visual representation Ig

t . The multimodal joint representation f t is
the concatenation of visual representation Ig

t , goal embedding g, extra observation embedding oE
t and previous action embedding at−1.

The horizon prediction module µ uses it to predict the horizon h̃t while the horizon commanding policy πθ uses it to predict the action ãt.
Top: During the training, the predicted horizon h̃t is only used to compute the horizon loss Lh. The policy is conditioned on ht that comes
from the demonstration. Bottom: During the evaluation, the policy is conditioned on the predicted horizon h̃t which needs to be adjusted.

3.2. Incentivize Goal-Conditioned Behavior with
Stacked Goal-Sensitive Backbone

As elaborated in Section 3.1, learning goal-conditioned
policies becomes extremely hard when states collected from
trajectories that accomplish different tasks are indistin-
guishable. While certain algorithmic design choices could
improve multi-task performance in such open-world envi-
ronments, we find that the structure of the policy network
is a key factor towards higher episode reward. Specifi-
cally, we observe that existing CNN-based backbones can
excel at completing many single tasks (e.g., hunt cow, col-
lect stone), but struggle to learn goal-conditioned behavior
when training on the tasks in a goal-conditioned manner.
This motivates the need to properly fuse goal information
into the network. Despite the existence of various feature
fusion approaches such as concatenation and Bilinear lay-
ers [27], they all perform poorly even with a moderate num-
ber of tasks. This motivates the need to carry goal informa-
tion into multiple layers of the network. Specifically, we
propose goal-sensitive backbone (GSB), which effectively
blends goal information to the state features at multiple lev-
els. As shown in Fig. 3 (right), GSB is composed with mul-
tiple goal convolution blocks (g-conv block), which are ob-
tained by augmenting the vanilla convolution block with a
goal branch. Functionally, it can provide deep feature fu-
sion between multi-level visual features and the goal infor-
mation. As we will proceed to show in Section 4.3, adding
GSB can lead to significant performance boost in multi-task
environments. The g-conv block processes its input visual

features x(l) ∈ RC×H×W with two convolution layers

x̂(l) = ReLU(Conv(ReLU(Conv(x(l))))). (2)

Meanwhile, it maps the goal embedding g to the same fea-
ture space as the intermediate features x̂(l) with two fully-
connected layers, decribed as

ĝ(l) = FC(ReLU(FC(g))). (3)

The goal feature ĝ(l) is then used to modulate the interme-
diate features x̂(l) channel-wise. By adding a residual con-
nection [21], the output feature x(l+1) is expressed by

x(l+1) = σ(ĝ(l))⊙ x̂(l) + x(l), (4)

where σ(·) is the sigmoid function and ⊙ is the element-
wise product. This channel-wise modulation encourages
the module to focus on goal-specific regions and discard the
background information by adaptively weighing the chan-
nel importance. We highlight that the g-conv block can
be plugged into any convolution backbone to improve its
capability of extracting goal-aware visual features. The
proposed goal-sensitive backbone is constructed by replac-
ing 6 convolution blocks of the widely-adopted Impala
CNN [14] to g-conv blocks. In our experiments, a GSB
is used to compute goal-conditioned state features Ig

t =
GSB(oI

t , g). Such an idea of fusing condition information
into the backbone layer by layer was also used by some
prior works [5, 22, 33, 34]. Here, we demonstrate that it
works in a critical role for open-world multi-task control.

4

3.3. Combat World Uncertainty with Adaptive
Horizon Prediction

To address the challenge brought by the uncertainty of
the world, we need to ensure the goal-conditioned policies
to be more aware of goal-completeness given the current
state. We observe that conditioning the policy addition-
ally on the number of remaining steps toward achieving a
goal, i.e., distance-to-goal, or horizon, can significantly im-
prove the accuracy of predicted actions on held-out offline
datasets [17, 37]. Here, we define the horizon ht := T − t,
where T is the trajectory length, as the remaining time steps
to complete the given goal. This motivates the design of a
horizon commanding policy πθ : S × G × H → A that
takes a state s, a goal g, and a horizon h as inputs and out-
puts an action a. A key problem of the horizon commanding
policy is that it cannot be directly used for evaluation: dur-
ing gameplay, horizon is unknown as it requires completing
the whole trajectory. To fix this problem, we introduce an
additional horizon prediction module, which estimates the
horizon given a state s and a goal g. Combining the two
modules together, we can apply the fruitful horizon com-
manding policy during gameplay.

Both modules can be trained efficiently with dense su-
pervision. Specifically, the horizon commanding policy πθ

can be learned by any policy loss specified by RL algo-
rithms. For example, when behavior cloning is used, πθ

can be optimized by minimizing the loss

La = −log πθ(at|ht,f t), (5)

where f t is the joint representation of the state and goal
embedded by a neural network (see §3.4). The horizon pre-
diction module is trained by a supervised learning loss

Lh = −log µ(ht|f t), (6)

where µ is a network that predicts the horizon.
During the evaluation, after computing the embedding

f t for st and g, the horizon prediction module µ is first in-
voked to compute an estimated horizon h̃t = µ(f t). This
predicted horizon can then be fed to the horizon command-
ing policy to compute the action distribution πθ(at|h̃t,f t).
In practice, we observe that feeding an adaptive version of
h̃t, defined as ĥt := max(h̃t − c, 0) (c is a hyperparame-
ter), to πθ leads to better performance. We hypothesize that
this advantageous behavior comes from the fact that by sup-
plying the adaptive horizon ĥt, the agent is encouraged to
choose actions that lead to speedy completion of the goal.
The effectiveness of the adaptive horizon will be demon-
strated in Section 4.3.

3.4. Model Summary

As shown in Fig. 3, our model sequentially connects the
proposed goal-sensitive backbone, horizon prediction mod-
ule, and horizon commanding policy. At each time step

(a) Flat (b) Plains (c) Forest
Figure 4. Snapshots of the RGB camera view in three biomes.

t, the image observation and goal information are first fed
forward into the goal-sensitive backbone to compute goal-
aware visual feature Ig

t . The visual feature is then fused
with additional input information including the extra obser-
vation embedding oE

t , the goal embedding g, and the pre-
vious action embedding at−1 by concatenation and a feed-
forward network:

f t = FFN(
[
Ig
t ∥ oE

t ∥ g ∥ at−1

]
). (7)

Then, f t is input to the horizon prediction module to predict
horizon h̃t = µ(f t). And the horizon commanding policy
takes in the horizon and features f t to compute the action.
When trained with behavior cloning, the overall objective
function is L = La + Lh. During the evaluation, the adap-
tive horizon ĥt is fed to the horizon commanding policy in
replacement of h̃t.

4. Experiments
This section analyzes and evaluates the proposed goal-

sensitive backbone and the adaptive horizon prediction
module in the open-world domain Minecraft. To minimize
performance variation caused by the design choices in RL
algorithms, we build the proposed method on top of the sim-
ple yet effective behavior cloning algorithm. In Section 4.1,
we first introduce three suites of tasks; the agent is asked
to collect and combat various target objects/mobs with in-
distinguishable states conditioned on different goals (chal-
lenge #1) and non-stationary environment dynamics (chal-
lenge #2). Single-task and multi-task performance on the
benchmarks is evaluated and analyzed in Section 4.2, and
ablation studies are conducted in Section 4.3. Finally, we
unveil the surprising bonus of zero-shot generalization to
new scenes and tasks in Section 4.4.

4.1. Experimental Setup

Environment and task. To best expose the challenges de-
scribed in Sections 1 and 3.1, a key design principle of our
benchmark environments is to task the agent to complete
multiple preliminary tasks in similar yet highly random-
ized scenes. By specifying the biome that surrounds the
agent, Minecraft provides a perfect way to create such en-
vironments. Specifically, as shown in Fig. 4, every biome
has unique and consistent observations; randomness comes
from the fact that the terrain is generated randomly in each
episode. To evaluate the scalability of the proposed method
in terms of the number of tasks, we choose Plains and

5

Forest, the two most common biomes that contain a large
number of resources and mobs.

In addition to the two challenges, Plains and Forest
also add unique difficulties to learning goal-conditioned
policies. Specifically, although we have better views in
Plains, the resources/targets are located further away
from the agent and require more exploration. In contrast,
there exist more occlusions and obstacles in Forest.

The Plains benchmark consists of four tasks: har-
vest oak wood (), and Combat sheep (), cow (),
pig (). In the Forest benchmark, the agent is
tasked to complete thirteen tasks: combat sheep (),
cow (), pig (), harvest dirt (), sand (),
oak wood (), birch wood (), oak leaves (),
birch leaves (), wool (), grass (),
poppy (), orange tulip ().

In addition to the above two benchmarks, we also
test the agent on a “hunt animals” benchmark based
on the Flat biome, which contains a flattened world.
Specifically, the agent needs to combat sheep (),
cow (), pig (), spider (), polar bear (),
chicken (), donkey (), horse (), wolf (),
llama (), mushroom cow () in the Flat environ-
ment. Compared to other benchmarks, the challenge of
Flat comes from the fact that the mobs are constantly
wondering around, which makes it hard to locate and ap-
proach the correct target.

We adopt the original observation space provided by
MineDoJo [16], which includes a RGB camera-view,
yaw/pitch angle, GPS location, and the type of 3× 3 blocks
surrounding the agent. We discretize the original multi-
discrete action space provided by MineDojo into 42 discrete
actions. Details are included in Appendix A.1.
Data collection pipeline. One significant downside of
behavior cloning algorithms is the need for high-quality
and densely-labeled trajectories, which often requires enor-
mous human effort to collect. To mitigate this problem,
we collect goal-conditioned demonstrations by filtering suc-
cessful trajectories from gameplays by pretrained non-goal-
conditioned policies. Specifically, we adopt Video Pre-
Training (VPT) [4], which is trained on tremendous amount
of non-goal-conditioned gameplays. We rollout the VPT
policy in the three benchmarks and record all episodes that
accomplishes any of the defined goals. These trajecto-
ries are then converted to a goal-conditioned demonstration
dataset. Please refer to Appendix A.2 for detailed settings
and efficiency analysis of our data collection pipeline.
Evaluation. During the evaluation, the maximum episode
length is set to 600, 600, and 300 on the Flat, Plains
and Forest benchmarks, respectively. Plains and
Forest are given more time steps since, in these environ-
ments, the agent needs more time to locate and approach the
target. We use Success Rate and Precision as our evaluation

metrics. A gameplay is successful if the agent completes the
goal within the episode. Precision is defined as the number
of times the specified goal is achieved divided by the total
number of goals completed in an episode. It measures how
well the agent can be aware of the specified goal, instead of
simply accomplishing any goal during gameplay.

4.2. Experimental Results

We first focus on the simpler single-task learning set-
ting in order to isolate the challenge introduced by non-
stationary dynamics and partial observability (§4.2.1). We
then examine whether the proposed method can better ad-
dress both challenges by examining its multi-task perfor-
mance (§4.2.2).

4.2.1 Single task experiments

We select three typical tasks, i.e., harvest log, hunt cow,
and hunt sheep, from the Plains benchmark for single-
task training. We compare the proposed method against
the following baselines. First, MineAgent [16] is an online
RL algorithm that leverages pretrained state representations
and dense reward functions to boost training. BC (VPT) [4],
BC (CLIP) [16], and BC (I-CNN) [14] are variants of the be-
havior cloning algorithm that use different backbone mod-
els (indicated in the corresponding brackets) for state fea-
ture extraction. The backbones are finetuned with the BC
loss (see Appendix A.3 for more details).

Results are reported in Table 1. First, we observe that
even the individual tasks are extremely challenging for on-
line RL algorithms such as MineAgent, even its networks
are pretrained on Minecraft data. We attribute this fail-
ure to its inconsistent dense reward when facing a hard-
exploration task (e.g., the additional provided reward is not
consistently higher when the agent is moving closer to a
target object). Next, compared to BC (I-CNN) that uses
a randomly initialized impala CNN model, the Minecraft-
pretrained backbones in BC (VPT) and BC (CLIP) do not
bring any benefit. This could be caused by the lack of plas-
ticity, i.e., the ability to learn in these well-trained models,
echoing similar findings in computer vision and RL [11].
Finally, our approach outperforms all baseline methods, es-
pecially in terms of precision. This demonstrates that our
method is more robust against non-stationary dynamics and
partially observable observations.

4.2.2 Multi-task experiments

We move on to evaluate the proposed method on the three
multi-task benchmarks introduced in Section 4.1. The base-
line includes three behavior cloning methods (we use “MT-
BC” as an abbreviation of multi-task behavior cloning). We
also include two variations of our method: one without the
goal-sensitive backbone, and the other without the adaptive

6

Table 1. Results of single-goal tasks (§4.2.1) on Plains.

Method
Success Rate (%) Precision (%)

MineAgent [16] 00±00 01±00 01±00 – – –
BC (CLIP) [16] 18±06 26±05 25±06 51±08 43±08 44±05

BC (VPT) [4] 22±08 27±06 22±06 58±09 46±05 42±05

BC (I-CNN) [14] 45±05 46±04 48±07 86±05 55±12 45±07

Ours 50±07 58±10 60±08 83±10 75±10 75±06

Table 2. Results of multi-goal tasks (§4.2.2) on three biomes.

Method
Avg. Success Rate (%) Avg. Precision (%)

Plains Flat Forest Plains Flat Forest

MT-BC (VPT) [4] 25±06 17±05 15±04 22±05 17±03 14±04

MT-BC (CLIP) [16] 22±05 14±03 14±03 23±04 15±03 13±03

MT-BC (I-CNN) [14] 25±02 18±02 15±03 23±04 14±02 13±03

MT-BC (w/ GSB) 32±05 36±03 19±05 43±06 36±02 17±03

Ours (I-CNN) 31±06 31±04 18±02 22±03 28±04 15±04

Ours (w/ GSB) 55±09 57±09 30±06 70±09 50±06 29±06

horizon prediction module. Results on the Plains, Flat,
and Forest environments are reported in Table 2, respec-
tively. First, we observe that our method significantly out-
performs all baselines in terms of both success rate and pre-
cision in all three benchmarks. Moreover, scaling up the
number of tasks does not necessarily deteriorate the per-
formance of our method. Specifically, we compare the av-
erage success rate on the Plains and Flat benchmark,
which contain 4 and 9 tasks, respectively. While the base-
lines struggle to maintain their success rate on the Flat
environment, our approach is capable of maintaining high
performance despite the increased number of tasks. Putting
together, results on multi-task benchmarks clearly demon-
strate the superiority of our method when facing open-world
environments with the two elaborated challenges (cf. §3.1).

4.3. Ablation Study

Ablation study on goal-sensitive backbone. To examine
the effectiveness of our proposed goal-sensitive backbone,
we compare the following two groups of architectures: 1)
Ours (I-CNN) v.s. Ours (w/ GSB), 2) MT-BC (I-CNN) v.s.
MT-BC (w/ GSB). The key distinction between the groups is
whether the backbone employs a standard Impala CNN or
a goal-sensitive backbone. As depicted in Table 2, our find-
ings indicate that the goal-sensitive backbone consistently
enhances performance in terms of both success rate and pre-
cision across all environments. Remarkably, in the Flat
biome, our approach with the goal-sensitive backbone at-
tains a 26% and 22% performance improvement in success
rate and precision, respectively. This demonstrates that the
goal-sensitive backbone effectively fuses the goal informa-
tion into visual features and leads to goal-aware behavior.

Table 3. Additional ablation experiments on Plains biome.

Method Avg. SR (%) Avg. P (%)

1 Ours (GSB + horizon pred) 55±09 70±09

2 Ours + RNN 65±07 67±08

3 Ours − horizon pred + RNN 39±08 51±08

4 Ours − horizon pred 35±08 45±15

5 w/o horizon loss 47±06 54±08

6 w/o extra obs 50±07 69±07

7 w/o language condition 25±03 26±05

Table 4. The success rate (SR) under condition-free policy.

Goal Avg.

Success Rate (%) 44±19 24±06 23±11 11±07 25±03

Parameter sensitivity on horizon prediction. To investi-
gate the sensitivity of the horizon-based control policy to
the constant c (outlined in §3.3), we perform experiments
with c values ranging from 0 to 14. We train and evaluate
the model using the multi-task setting on the Flat bench-
mark, shown in Figure 5. Our findings indicate that within
the 0 to 10 range, decreasing c enhances performance, while
further reduction leads to decline. This implies that sub-
tracting a small constant from the predicted horizon-to-goal
yields a more effective policy. However, subtracting a larger
value results in performance deterioration, as attaining the
goal within such a limited horizon may be unfeasible.
Comparision with recurrent architecture. We built two
recurrent variants (“Ours + RNN”, “Ours − horizon pred +
RNN”) by using a GRU module to fuse the joint representa-
tion ft and optionally also removing the horizon prediction
module. During training, the batch size, frame number, and
skipping frame are set to 8, 16, and 5, respectively. Ta-
ble 3 (exp1 vs. exp3) shows that “Ours − horizon pred +
RNN” becomes significantly worse, likely due to the par-
tial observability issue (−26% SR). However, when com-
bining RNN and horizon module (exp2), the performance
gains significantly more than our original method (+10%
SR). To sum up, while RNNs can aid in addressing partial
observability, our findings indicate that in our open-world
scenario, they are considerably more effective when com-
bined with our horizon prediction module.
Ablation on horizon loss, extra observation, and lan-
guage condition. Table 3 demonstrates that excluding
horizon loss (exp5) and extra observation (exp6) can result
in a decrease of success rate by 8% and 5%, respectively.
Furthermore, as depicted in Table 4, when the language con-
dition is removed from the input (exp7), the policy primar-
ily accomplishes the “chopping tree” task (44% SR) while
scarcely completing the “hunting pig” task (11% SR). The
tasks “hunting sheep” and “hunting cow” are executed fairly
evenly (around 24% SR). This is likely due to trees appear-
ing more frequently than animals in the environment.

7

0 2 4 6 8 10 12 14
Subtract Constant

0.40

0.45

0.50

0.55

0.60
Success Rate

0 2 4 6 8 10 12 14
Subtract Constant

0.55

0.60

0.65

0.70

0.75

Precision

Figure 5. Multi-task performance as a function of subtracting the
horizon constant c. Results show that setting c to a small constant
lead to better overall performance as it incentivizes the agent to
exhibit behaviors that lead to faster task completion.

4.4. Generalization Performance

In the open-ended Minecraft environment, which fea-
tures a variety of biomes with distinct appearances, a de-
cent agent should be capable of generalizing across these
diverse biomes. To evaluate the agent’s zero-shot gener-
alization ability in a new biome, we initially train the agent
using data exclusively from the Plains biome. Subsequently,
we test it in the Flat biome, where it faces the challenge
of combatting sheep, cows, and pigs. Complicating
the task, numerous distracting mobs, such as wolves and
mushroom cows, appear in the testing biome but not in
the training biome. The results are presented in Table 5.
Our zero-shot agent demonstrates success rates comparable
to those of an agent trained directly on the Flat biome. The
high precision of our zero-shot agent also indicates its ro-
bust performance, even amidst numerous novel distracting
mobs in the new testing biome. Therefore, we believe that
our agent displays a degree of zero-shot generalization to
new environments, achieved through goal-aware represen-
tation learning and adaptive horizon prediction.

5. Related Works

Open-ended Environments. A variety of environments
have been developed for open-ended agent training, such
as grid worlds [8, 9], maze worlds [25, 42, 46], and indoor
worlds [1, 15, 38, 40]. Although these benchmarks have ad-
vanced agent development, they generally lack complexity
in perception and task domains. This paper concentrates on
Minecraft, a voxel-based 3D, first-person, open-world game
centered around survival and creation. Microsoft introduced
the first Gym-style API platform called Malmo [24] for
Minecraft, which has spawned numerous secondary devel-
opment variants. Building on Malmo, MineRL [20] of-
fers a human-interface simulator and a dataset of human
play demonstrations for the annual Diamond Challenge at
NeurIPS [18, 19, 26]. MineDoJo [16], an extension of Min-
eRL, broadens the APIs for customizing tasks and provides
thousands of pre-defined compositional tasks aimed at de-
veloping a generally capable embodied agent, which we use
to evaluate our method.

Table 5. Quantitive results on generalization to a novel biome.

Train → Eval
Success Rate (%) Precision (%)

Avg. Avg.
Flat→Flat 72 60 57 63 44 48 54 49

Plains→Flat 67 47 60 58 89 89 70 83

Embodied Agents in Minecraft. Some prior studies
have utilized a hierarchical reinforcement learning frame-
work to develop sophisticated embodied agents. For in-
stance, SEIHAI [31] divides a long-horizon task into sev-
eral subtasks, training an appropriate agent for each sub-
task and designing a scheduler to manage the execution of
these agents. Similarly, JueWu-MC [28] adopts this con-
cept but enhances the agent with action-aware representa-
tion learning capabilities. In recent times, the internet-scale
pretraining paradigm has made a significant impact on em-
bodied research in open-ended environments. VPT [4], for
example, undergoes pretraining on an extensive collection
of online gameplay videos using imitation learning. How-
ever, it lacks the ability to process any command input.
MineAgent [16] takes a different approach by pretraining a
language-conditioned reward function using online video-
transcript pairs, which is then utilized to support multi-task
reinforcement learning.
Progress Monitor. The horizon-to-goal prediction tech-
nology has already been employed as a progress moni-
tor in the Vision-Language Navigation (VLN) communi-
ties [29, 30, 47]. This technology aids in understanding the
task structure and expediting the training procedure. Gen-
erally, current progress monitors primarily function as sup-
plementary objectives. Their estimated progress is utilized
to reassess actions or execute beam search. In contrast, our
estimated horizon is explicitly incorporated into the policy
network to guide agent behaviors. During inference, the
horizon input can be adjusted for enhanced performance.

6. Conclusion
In this paper, we explore the issue of learning goal-

oriented policies in open-world environments. We pinpoint
two major challenges unique to such settings: 1) the diffi-
culty in distinguishing tasks from the state distribution due
to immense scene variety, and 2) the non-stationary nature
of environmental dynamics resulting from partial observ-
ability. We propose a goal-sensitive backbone and an adap-
tive horizon prediction module to overcome both. Our ex-
periments on challenging Minecraft confirm the advantages
of our proposed methods over baselines in terms of both
success rate and precision of task completeness.
Acknowledgement. This work was supported by the Na-
tional Key R&D Program of China 2022ZD0160301, and
in part by the NSF grants #IIS-1943641, #IIS-1956441,
#CCF-1837129, Samsung, CISCO, and a Sloan Fellowship.
We thank Hongming Xu for his engineering support.

8

References
[1] Josh Abramson, Arun Ahuja, Arthur Brussee, Federico

Carnevale, Mary Cassin, Stephen R. Clark, Andrew Dudzik,
Petko Georgiev, Aurelia Guy, Tim Harley, Felix Hill, Alden
Hung, Zachary Kenton, Jessica Landon, Timothy P. Lil-
licrap, Kory Wallace Mathewson, Alistair Muldal, Adam
Santoro, Nikolay Savinov, Vikrant Varma, Greg Wayne,
Nathaniel Wong, Chen Yan, and Rui Zhu. Imitating inter-
active intelligence. arXiv: Learning, 2020. 8

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-
otar, Omar Cortes, Byron David, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i
can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022. 1, 2

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a vi-
sual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022. 1

[4] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga,
Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampe-
dro, and Jeff Clune. Video pretraining (VPT): learn-
ing to act by watching unlabeled online videos. CoRR,
abs/2206.11795, 2022. 3, 6, 7, 8, 12

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakr-
ishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al.
Rt-1: Robotics transformer for real-world control at scale.
arXiv preprint arXiv:2212.06817, 2022. 4

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 1

[7] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl:
Reduce memory, not parameters for efficient on-device
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 11285–11297. Curran
Associates, Inc., 2020. 12

[8] Tianshi Cao, Jingkang Wang, Yining Zhang, and Sivabalan
Manivasagam. Babyai++: Towards grounded-language
learning beyond memorization. CoRR, abs/2004.07200,
2020. 8

[9] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study
the sample efficiency of grounded language learning. Learn-
ing, 2018. 8

[10] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano
Phielipp. Goal-conditioned imitation learning. Advances in
neural information processing systems, 32, 2019. 2

[11] Shibhansh Dohare, A Rupam Mahmood, and Richard S Sut-
ton. Continual backprop: Stochastic gradient descent with
persistent randomness. arXiv preprint arXiv:2108.06325,
2021. 6

[12] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. First return, then explore. Nature,
590(7847):580–586, 2021. 3

[13] Islam Elnabarawy, Kristijana Arroyo, and Donald C. Wun-
sch. Starcraft ii build order optimization using deep re-
inforcement learning and monte-carlo tree search. arXiv:
Learning, 2020. 1

[14] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Si-
monyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu,
Tim Harley, Iain Dunning, et al. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner ar-
chitectures. In ICML, pages 1407–1416. PMLR, 2018. 4, 6,
7

[15] Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li
Fei-Fei, Yuke Zhu, and Animashree Anandkumar. Secant:
Self-expert cloning for zero-shot generalization of visual
policies. arXiv: Learning, 2021. 8

[16] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar,
Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang,
Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge.
arXiv preprint arXiv:2206.08853, 2022. 1, 2, 6, 7, 8, 12

[17] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu,
Coline Manon Devin, Benjamin Eysenbach, and Sergey
Levine. Learning to reach goals via iterated supervised learn-
ing. In International Conference on Learning Representa-
tions, 2021. 5

[18] William H. Guss, Mario Ynocente Castro, Sam Devlin,
Brandon Houghton, Noboru Sean Kuno, Crissman Loomis,
Stephanie Milani, Sharada P. Mohanty, Keisuke Nakata,
Ruslan Salakhutdinov, John Schulman, Shinya Shiroshita,
Nicholay Topin, Avinash Ummadisingu, and Oriol Vinyals.
The minerl 2020 competition on sample efficient reinforce-
ment learning using human priors. arXiv: Learning, 2021.
1, 8

[19] William H Guss, Cayden Codel, Katja Hofmann, Brandon
Houghton, Noboru Kuno, Stephanie Milani, Sharada Mo-
hanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay
Topin, et al. Neurips 2019 competition: the minerl competi-
tion on sample efficient reinforcement learning using human
priors. arXiv preprint arXiv:1904.10079, 2019. 1, 8

[20] William H. Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and Ruslan
Salakhutdinov. Minerl: A large-scale dataset of minecraft
demonstrations. international joint conference on artificial
intelligence, 2019. 1, 8

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[22] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Fred-
erik Ebert, Corey Lynch, Sergey Levine, and Chelsea Finn.
Bc-z: Zero-shot task generalization with robotic imitation
learning. In Conference on Robot Learning, pages 991–
1002. PMLR, 2022. 4

[23] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge J. Belongie, Bharath Hariharan, and Ser-Nam Lim.

9

Visual prompt tuning. In Shai Avidan, Gabriel J. Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Hass-
ner, editors, Computer Vision - ECCV 2022 - 17th European
Conference, Tel Aviv, Israel, October 23-27, 2022, Proceed-
ings, Part XXXIII, volume 13693 of Lecture Notes in Com-
puter Science, pages 709–727. Springer, 2022. 12

[24] Matthew Johnson, Katja Hofmann, Tim J. Hutton, and
David Michael Bignell. The malmo platform for artificial
intelligence experimentation. international joint conference
on artificial intelligence, 2016. 1, 2, 8

[25] Arthur Juliani, Ahmed Khalifa, Vincent Pierre Berges,
Jonathan Harper, Ervin Teng, Hunter Henry, Adam Crespi,
Julian Togelius, and Danny Lange. Obstacle tower: A gen-
eralization challenge in vision, control, and planning. inter-
national joint conference on artificial intelligence, 2019. 8

[26] Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas,
Nicholay Topin, Zichuan Lin, Junyou Li, Jianing Shi, De-
heng Ye, Qiang Fu, Wei Yang, Weijun Hong, Zhongyue
Huang, Haicheng Chen, Guangjun Zeng, Yue Lin, Vincent
Micheli, Eloi Alonso, Fran
c{c}ois Fleuret, Alexander Nikulin, Yury Belousov, Oleg
Svidchenko, and Aleksei Shpilman. Minerl diamond 2021
competition: Overview, results, and lessons learned. neural
information processing systems, 2022. 1, 8

[27] Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee
Kim, Jung-Woo Ha, and Byoung-Tak Zhang. Hadamard
product for low-rank bilinear pooling. arXiv preprint
arXiv:1610.04325, 2016. 4

[28] Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu,
and Wei Yang. Juewu-mc: Playing minecraft with sample-
efficient hierarchical reinforcement learning. arXiv preprint
arXiv:2112.04907, 2021. 8

[29] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,
Zsolt Kira, Richard Socher, and Caiming Xiong. Self-
monitoring navigation agent via auxiliary progress estima-
tion. In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. 8

[30] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming
Xiong, and Zsolt Kira. The regretful agent: Heuristic-aided
navigation through progress estimation. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pages 6732–6740, 2019. 8

[31] Hangyu Mao, Chao Wang, Xiaotian Hao, Yihuan Mao, Yim-
ing Lu, Chengjie Wu, Jianye Hao, Dong Li, and Pingzhong
Tang. Seihai: A sample-efficient hierarchical ai for the min-
erl competition. In International Conference on Distributed
Artificial Intelligence, pages 38–51. Springer, 2021. 8

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv: Learning, 2013. 1, 2

[33] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet
Kohli. Zero-shot task generalization with multi-task deep
reinforcement learning. In International Conference on Ma-
chine Learning, pages 2661–2670. PMLR, 2017. 4

[34] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018. 4

[35] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,
Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
genberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022. 1

[36] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research. inter-
national conference on computer vision, 2019. 2

[37] Juergen Schmidhuber. Reinforcement learning upside down:
Don’t predict rewards–just map them to actions. arXiv
preprint arXiv:1912.02875, 2019. 5

[38] Bokui Shen, Fei Xia, Chengshu Li, Roberto Martı́n-
Martı́n, Linxi Fan, Guanzhi Wang, Shyamal Buch, Clau-
dia D’Arpino, Sanjana Srivastava, Lyne P. Tchapmi, Micael
Tchapmi, Kent Vainio, Li Fei-Fei, and Silvio Savarese. igib-
son, a simulation environment for interactive tasks in large
realistic scenes. intelligent robots and systems, 2020. 8

[39] David Silver, Julian Schrittwieser, Karen Simonyan, Ioan-
nis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. nature,
550(7676):354–359, 2017. 1, 2

[40] Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martı́n-Martı́n, Fei Xia, Kent Vainio, Zheng
Lian, Cem Gokmen, Shyamal Buch, C. Karen Liu, Silvio
Savarese, Hyowon Gweon, Jiajun Wu, and Li Fei-Fei. Be-
havior: Benchmark for everyday household activities in vir-
tual, interactive, and ecological environments. Conference
on Robot Learning, 2021. 8

[41] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas Ab-
dolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018. 2

[42] Open Ended Learning Team, Adam Stooke, Anuj Maha-
jan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub
Sygnowski, Maja Trebacz, Max Jaderberg, Michaël Math-
ieu, Nat McAleese, Nathalie Bradley-Schmieg, Nathaniel
Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-Fitt,
Valentin Dalibard, and Wojciech Marian Czarnecki. Open-
ended learning leads to generally capable agents. CoRR,
abs/2107.12808, 2021. 8

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. intelligent robots
and systems, 2012. 2

[44] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575(7782):350–354,
2019. 1

[45] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko
Georgiev, Alexander Vezhnevets, Michelle Yeo, Alireza
Makhzani, Heinrich Küttler, John P. Agapiou, Julian Schrit-
twieser, John Quan, Stephen Gaffney, Stig Petersen, Karen

10

Simonyan, Tom Schaul, Hado van Hasselt, David Silver,
Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony
Brunasso, David Lawrence, Anders Ekermo, Jacob Repp,
and Rodney Tsing. Starcraft ii: A new challenge for rein-
forcement learning. arXiv: Learning, 2017. 1

[46] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley.
Paired open-ended trailblazer (poet): Endlessly generating
increasingly complex and diverse learning environments and
their solutions. arXiv: Neural and Evolutionary Computing,
2019. 8

[47] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans.
Auxiliary tasks and exploration enable objectnav. arXiv
preprint arXiv:2104.04112, 2021. 8

[48] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and meta
reinforcement learning. 2019. 2

[49] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on robot learning,
pages 1094–1100. PMLR, 2020. 1, 13

[50] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit:
Simple parameter-efficient fine-tuning for transformer-based
masked language-models. CoRR, abs/2106.10199, 2021. 12

11

A. Experimental Details

A.1. Observation and Action Space

The agent receives identical information as human play-
ers do. The observation space primarily comprises four
components: 1) ego-centric RGB frames, 2) voxels (sur-
rounding blocks), 3) GPS locations (the agent’s three-
dimensional coordinates), and 4) compass (pitch/yaw an-
gles). These are shaped as (3, 480, 640), (3, 3, 3), (3,), and
(2,), respectively. It is important to note that the agent does
not know the precise location of the target object. Instead,
the agent can only obtain information about the target ob-
ject by examining the pixel image. The RGB frames are
resized to a shape of (3, 128, 128) using bilinear interpola-
tion before being fed into the networks. At each step, the
agent must execute a movement action, camera action, and
functional action. A compound action space is employed,
consisting of a multi-discrete space with six dimensions:
1) forward and backward, 2) move left and right, 3) jump,
sneak and sprint, 4) camera delta pitch, 5) camera delta
yaw, and 6) functional actions (attack and use). The origi-
nal delta camera degree, which ranges from -180 to 180, is
discretized into 11 bins. As this paper’s primary focus is on
resource collection rather than item crafting, actions related
to crafting are omitted.

A.2. Data Collection Pipeline

Our data collection pipeline collects high-quality goal-
conditioned demonstrations with actions. The core idea is to
train a proxy policy with non-goal demonstrations and roll
out in customized environments, then filter the demonstra-
tions according to the achievement. Generally, the pipeline
consists of six steps: 1) collect online videos, 2) clean and
label the videos, 3) train a proxy policy, 4) customize the
environments, 5) roll out the proxy policy, and 6) filter by
the accomplishments.

Video-Pretraining [4] is ideally suited for stages 1-3.
It begins by amassing a vast dataset of Minecraft videos,
sourced from the web using relevant keywords. Given that
collected videos often feature overlaid artifacts, the process
filters out videos without visual artifacts and those from sur-
vival mode. Next, an Inverse Dynamics Model (IDM) is
trained to label these videos with actions, yielding demon-
strations for proxy policy training. We directly employ the
pretrained VPT[4] as our proxy policy. In stage 4, we utilize
APIs supplied by MineDojo[16] to create environments tai-
lored to each task’s success criteria. During stage 5, we de-
ploy the proxy policy, recording successful trajectories and
their corresponding achieved goals. The environment is re-
set once the episode concludes or the goal is accomplished,
ensuring trajectory independence.

Notably, we execute the proxy policy rollout in parallel
using 16 processes on 4 A40 GPUs, generating 0.5GB of

demonstrations per minute (without leveraging video com-
pression algorithm during storing frames). This approach
minimizes human intervention and enhances data collection
efficiency. In total, we have gathered 215GB, 289GB, and
446GB of goal-conditioned demonstrations from Plains,
Flat, and Forest environments, respectively.

A.3. Implementation

Horizon discretization. As the horizon illustrates the
number of steps required to attain the desired objective, it
is infeasible to precisely determine the exact value. In prac-
tice, we suggest dividing the original horizon into 16 dis-
tinct segments: [0, 10) → 0, [10, 20) → 1, [20, 30) → 2,
· · · , [90, 100) → 9, [100, 120) → 10, [120, 140) → 11,
· · · , [180, 200) → 14, and [200,∞) → 15. In this ap-
proach, each segment inherently represents a phase that sig-
nifies the level of task completion. Consequently, the hori-
zon prediction issue can be framed as a multi-class problem.
It is important to note that the method of discretization is not
singular and merits further exploration in the future.
Training. The observation of RGB image is scaled into
128×128 where no data augmentation is adopted. We train
the policy with the AdamW optimizer and a linear learn-
ing rate decay. We use an initial learning rate of 0.0001, a
batch size of 32, and a weight decay of 0.0001. Besides,
we also use a warmup trick that the learning rate linearly
increases from 0 to 0.0001 in 10k iterations. The policy
is trained for 500k iterations on our collected dataset. It
takes one day on a single A40 GPU. To train the baseline
policies BC (VPT) and BC (CLIP), we only finetune the bias
terms of their backbones, which is widely adopted by pre-
vious works [7, 23, 50]. Also note that, to keep the archi-
tecture comparable, we only transfer model and weights of
the backbone from vpt model and MineCLIP model while
replace their transformer architecture with ours.
Evaluation. During the evaluation, the maximum episode
length is empirically set to 600, 600, and 300 for the Flat,
Plains, and Forest biomes, respectively. In most in-
stances, the agent is able to complete the assigned tasks
within these limits. Furthermore, in our adaptive horizon
prediction module, the hyperparameter c is empirically set
to 3. The model is evaluated every 10,000 gradient up-
dates. During each evaluation round, each goal is assessed
10 times to compute the Success Rate and Precision met-
rics. For the ablation study, we utilize the checkpoint after
500,000 training iterations, evaluate each goal 200 times,
and report the average metrics in Table 5 and Figure 5.

B. Horizon Distribution Analysis
To further emphasize the importance of our adaptive

horizon prediction module, we have visualized the distri-
bution of successful trajectory lengths for various tasks in
Minecraft, as shown in Figure 6. These successful trajec-

12

Harvest log Combat sheepCombat cow

Successful trajectory length

D
en
si
ty

Figure 6. Successful trajectory distribution of different tasks in open-ended Minecraft. The distribution is long-tailed, making it hard
to learn goal-conditioned policies with a fixed horizon.

tories were gathered from agents trained using single-task
behavior cloning (with a randomly initialized Impala CNN
as the backbone) in the Plains biome.

As depicted in Figure 6, the distribution of successful tra-
jectory lengths in the open-world setting exhibits a long tail,
making it challenging to train a policy with a fixed horizon.
This can be attributed to Minecraft’s extensive explorable
space, partial observation properties, and non-stationary dy-
namics, which set it apart from other popular multi-task,
closed-ended environments like Meta-World [49].

Consequently, the minimum number of steps needed for
an agent to achieve its goal varies across different environ-
ments and episodes. The episode length typically hinges
on the relative position and terrain constraints between the
target object and the agent’s initial position. An added
layer of complexity arises when no target objects are near
the agent’s starting location, necessitating large-scale explo-
ration (i.e., a larger horizon). Once the agent locates the
target object, it must track it until the relevant skill can be
executed on the object (e.g., killing or harvesting). This de-
mands that the agent remain aware of its current stage.

Our proposed adaptive horizon prediction module incor-
porates the horizon as an additional condition for the policy.
The policy explicitly takes into account the remaining time
steps needed to achieve specific goals. Our experiments in
Section 4.3 demonstrate that the adaptive horizon predic-
tion module and the horizon loss Lh effectively enhance
the success rate in open-world environments with such dis-
tributions.

C. Limitation and Future Work
In essence, our approach hinges on trajectories labeled

with goals, which enables it to generalize across various
domains, provided that such data is accessible. When only
video segments labeled with actions are available, we can

employ a goal predictor to assign goal labels to these clips.
This can also be achieved by utilizing zero-shot models,
such as CLIP. Moreover, if action labels are absent in these
clips, we can resort to training an inverse dynamics model,
as demonstrated in VPT. Undoubtedly, these present in-
triguing avenues for future exploration

13

	. Introduction
	. Preliminaries
	. Method
	. Challenges
	. Incentivize Goal-Conditioned Behavior with Stacked Goal-Sensitive Backbone
	. Combat World Uncertainty with Adaptive Horizon Prediction
	. Model Summary

	. Experiments
	. Experimental Setup
	. Experimental Results
	Single task experiments
	Multi-task experiments

	. Ablation Study
	. Generalization Performance

	. Related Works
	. Conclusion
	. Experimental Details
	. Observation and Action Space
	. Data Collection Pipeline
	. Implementation

	. Horizon Distribution Analysis
	. Limitation and Future Work

