
Efflex: Efficient and Flexible Pipeline for Spatio-Temporal Trajectory Graph
Modeling and Representation Learning

Ming Cheng1∗, Ziyi Zhou1∗, Bowen Zhang2*, Ziyu Wang3, Jiaqi Gan1, Ziang Ren1,
Weiqi Feng4, Yi Lyu5, Hefan Zhang1, Xingjian Diao1†

1Dartmouth College 2Shanghai Jiao Tong University 3University of California, Irvine
4Harvard University 5Independent Researcher

{ming.cheng.gr, ziyi.zhou.gr, xingjian.diao.gr}@dartmouth.edu

Abstract

In the landscape of spatio-temporal data analytics, ef-
fective trajectory representation learning is paramount. To
bridge the gap of learning accurate representations with
efficient and flexible mechanisms, we introduce Efflex, a
comprehensive pipeline for transformative graph model-
ing and representation learning of the large-volume spatio-
temporal trajectories. Efflex pioneers the incorporation of a
multi-scale k-nearest neighbors (KNN) algorithm with fea-
ture fusion for graph construction, marking a leap in di-
mensionality reduction techniques by preserving essential
data features. Moreover, the groundbreaking graph con-
struction mechanism and the high-performance lightweight
GCN increase embedding extraction speed by up to 36 times
faster. We further offer Efflex in two versions, Efflex-L for
scenarios demanding high accuracy, and Efflex-B for envi-
ronments requiring swift data processing. Comprehensive
experimentation with the Porto and Geolife datasets vali-
dates our approach, positioning Efflex as the state-of-the-
art in the domain. Such enhancements in speed and ac-
curacy highlight the versatility of Efflex, underscoring its
wide-ranging potential for deployment in time-sensitive and
computationally constrained applications.

1. Introduction
The analysis of high-volume spatio-temporal data, which
captures both the location of human activities and their
movement over time [34], is becoming increasingly essen-
tial across various fields including cloud computing [45, 49,
50], recommender systems [18, 46], network management
[41], smart healthcare [5, 35] and monitoring [36, 48, 52],
social policy analysis [26], and localization-based services
[16, 53]. However, spatio-temporal data generated from

*Equal contribution.
†Corresponding author.

Graph Modeling

Graph
Representation

Learning

Applications

Applications

High-volume
Trajectory Data

Efflex Pipeline

Embeddings
(Efflex-B)

Embeddings
(Efflex-L)

Figure 1. The proposed Efflex pipeline. We offer two models,
Efflex-B and Efflex-L, to learn accurate embeddings from the orig-
inal high-volume trajectory data. Efflex-B specializes in improv-
ing the speed while Efflex-L focuses on obtaining state-of-the-art
performance, indicating different applications for each model.

real-world human activities often come in large volumes,
diverse formats, and with a lot of non-useful information,
leading to significant storage and analysis expenses [6].
These issues limit the data’s practical use. Consequently,
deriving meaningful insights from raw spatio-temporal data
to create dense and informative representations has become
a critical focus in the field of computer science. The essence
of utilizing this data effectively lies in transforming it into
embeddings – simplified representations that highlight un-
derlying patterns, facilitating easier analysis and prediction
by computational models.

While traditional approaches to spatio-temporal data
analysis have largely relied on dimensionality reduction
techniques [21, 33, 37] and neural network-based method-
ologies [4, 10, 28], these methods often grapple with lim-
itation in processing speed, generalization to unseen data,
and complex pre-processing overhead [2, 4]. To be spe-

ar
X

iv
:2

40
4.

12
40

0v
1

 [
cs

.L
G

]
 1

5
A

pr
 2

02
4

cific, owing to the time-ordered characteristics of spatio-
temporal data, many current techniques utilize neural archi-
tectures capable of sequence processing (including LSTM
and RNN) for feature extraction and data representation
learning [9, 23, 39]. Yet, these approaches often necessitate
extensive preliminary data processing, which involves orga-
nizing spatial data into grids and using pre-arranged spatio-
temporal datasets. Furthermore, the intricate design of these
sequential neural networks contributes to significant train-
ing demands. Graph neural networks (GNNs) have emerged
as a promising alternative, offering a powerful means of
spatio-temporal representation learning [6, 15, 43]. How-
ever, there remains a significant gap: a specialized end-
to-end pipeline that addresses the unique characteristics
of spatio-temporal graph modeling with a focus on flexi-
ble and efficient learning mechanisms.

In response to this gap, we introduce Efflex, an effi-
cient and flexible pipeline designed specifically for spatio-
temporal trajectory graph modeling and representation
learning, as shown in Figure 1. Efflex leverages innovative
techniques to construct graphs directly from raw trajectory
data and learn from them efficiently, marking a significant
departure from conventional methods. Our contributions
through the development of Efflex are threefold:
• Multi-scale graph construction. To the best of our

knowledge, we are the first to apply a multi-scale k-
nearest neighbors (KNN) algorithm with feature fusion
for graph construction, achieving nuanced dimensionality
reduction while retaining essential trajectory data. Our in-
novation sets a new standard for capturing the complexity
of spatio-temporal information.

• State-of-the-art performance. We develop a custom-
built lightweight Graph Convolutional Network (GCN)
that significantly enhances the model’s efficiency. Com-
pared to existing methodologies, our lightweight GCN
improves embedding extraction speed up to 36 times
faster while maintaining competitive accuracy.

• Generalized and flexible framework. Efflex offers two
versions tailored to diverse application needs. Efflex-L
prioritizes precision with node2vec [13], while Efflex-B
focuses on speed with our GCN, proving the framework’s
adaptability and broad real-world applicability.

2. Related Work
2.1. Matrix Factorization-Based Methods

Matrix factorization approaches are key in representation
learning, typically reducing high-dimensional data into a
more practical form while striving to maintain the in-
tegrity of the original data through matrix transformation
[10, 27, 29].

As a prior work, PCA reduces dimension by projecting
data onto a hyperplane structured to capture maximum vari-

ance, thus ensuring a robust representation of the data’s
original structure [4, 37]. SVD follows a similar reduc-
tion principle but factorizes the data matrix into orthogo-
nal components, which help isolate independent informa-
tion sources within the data [1, 33]. Meanwhile, MDS fo-
cuses on dimensional reduction by striving to conserve the
pairwise distances between data points, aiming to uphold
the spatial relationships post-reduction [21, 32].

Although these methods are cornerstones of data analy-
sis, their rigid mathematical underpinnings can lead to sub-
optimal performance on sizable or intricate datasets[20].
They often struggle to adapt to novel, unseen data, espe-
cially within the ever-changing contexts of real-world ap-
plications [2, 4].

2.2. Learning-Based Methods

In recent years, learning-based methods using neural net-
works such as LSTM and RNN have been pivotal for effi-
ciently learning representations from spatio-temporal data,
capitalizing on their sequential dynamics [17, 23, 42]. Pei
et al. [31] proposed Siamese Recurrent Networks (SRNs)
to model time series similarities through recurrent neural
networks, offering a fresh perspective on embedding learn-
ing. Similarly, NEUTRAJ [42] introduces a seed-guided
neural metric learning method to efficiently compute tra-
jectory similarities, leveraging RNNs for scalable and ef-
fective analysis. T3S [40] combines RNNs with attention
mechanisms for nuanced representation learning of trajec-
tory data, enhancing the accuracy of similarity computa-
tions. These approaches highlight the adaptability and effi-
ciency of learning-based models in capturing the complex-
ities of data through advanced neural network techniques.
However, while these approaches are effective in identi-
fying temporal characteristics, their extensive resource re-
quirements for training pose challenges for widespread ap-
plication and generalization in real-world settings.

Meanwhile, the field of graph representation learning
has also seen significant innovations [13, 14, 24]. GGSNN
merges gated recurrent units and graph neural networks
to dynamically refine node representations, thus improving
the detection of complex relationships [24]. Concurrently,
node2vec [13] utilizes sophisticated random walk strategies
to define and explore node neighborhoods, thereby enhanc-
ing feature learning. Further, Hamilton et al. [14] proposed
GraphSAGE, which creates node embeddings by aggregat-
ing features from local neighborhoods, facilitating learn-
ing from large-scale graphs. These methods represent cru-
cial advancements in graph analysis, however, they mainly
focus on static structures, leaving a gap in capturing the
spatio-temporal dynamics inherent to many real-world sce-
narios, highlighting the ongoing need for models that effec-
tively integrate the spatio-temporal aspects of data.

3. Method
The overview of the Efflex pipeline is shown in Figure 2,
which involves two parts. The Multi-Scale Graph Con-
struction Module specializes in constructing adjacent ma-
trices representing edge connections within the graph, and
the Graph Representation Learning Module learns accurate
graph embeddings.

3.1. Multi-Scale Graph Construction

3.1.1 Graph Construction From Trajectories

To bridge the gap between trajectory similarity and graph
topology, and convert the trajectory representation learning
problem into the task of graph embedding learning, each
trajectory is represented as a vertex in the graph G(V,E, S),
where V , E, and S represent the vertex set, edge set, and
weighted adjacent matrix, respectively.

Formally, assume T = {T1, T2, ..., Tn} as the set of n
trajectories, each vertex vi ∈ V represents each trajectory
Ti ∈ T . Inspired by [42], the connection between vertex
is determined through the k-nearest neighbors (KNN) algo-
rithm: If Ti and Tj are k-nearest neighbors, an edge eij ∈ E
exists. S = (sij)|V |×|V |, as the weighted adjacent matrix,
quantitatively reflexes the edge connection between vertex,
which is computed through the equation below:

sij =
edist(Ti,Tj)∑

Tk∈K edist(Ti,Tk)
(1)

where K indicates the set of k-nearest neighbors of tra-
jectory Ti, and dist(·, ·) represents the distance function
(Fréchet [11], Hausdorff [3], and DTW [12]). In Equation
1, sij measures the weight of connections between vertex i
and i in the graph, and the adjacent matrix S of graph G is
computed for the certain k.

3.1.2 Multi-Scale Graph Construction and Fusion

Considering that different values of k significantly affect
the measure of trajectory similarity, we compute multiple
adjacent matrices based on different k values. Specifically,
larger k values capture more global information and lead to
a comprehensive understanding of the overall graph, while
smaller k provide a detailed view of local connections, po-
tentially revealing finer and localized patterns within the
graph. Formally, for specific km, the corresponding adja-
cent matrix Sm is obtained following the process above.
Therefore, for K = {k1, k2, ..., km}, we can get:

S = {S1, S2, ..., Sm} (2)

which represents a set of weighted adjacent matrices in
multi-scale. S will then be fused together for the Graph
Representation Learning Module to extract graph embed-
dings.

We employ a lightweight linear transformation-based
attention mechanism, inspired by [7, 8], to facilitate the
extraction of intricate patterns and dependencies among
the adjacent matrix set S. Formally, assume S =
{S1, S2, ..., Sm} in Equation 2 as the set of adjacency ma-
trix, the stacked matrix is applied to a sequence of learn-
able linear transformations followed by non-linear activa-
tion functions to compute the attention weights W , as ex-
pressed below:

W = Attn(Stack(S)), Attn(·) = Seq[LT (·)f(·)] (3)

where Stack(·) indicates the stack operation among all ma-
trices, Seq[·] represents the sequential blocks, LT (·) and
f(·) refer to the linear transformation and non-linear acti-
vation function (LeakyReLU), respectively. Afterward, the
fused adjacent matrix S′ can be expressed by:

S′ = Norm(MatMul(W,Stack(S))) (4)

where MatMul is the matrix multiplication, and Norm(·)
indicates the normalization operation to map the connection
weights in the adjacent matrix within [0, 1].

Since the initial adjacent matrices are constructed with
different k values, where larger values aim to capture broad
and global relationships of the graph while smaller val-
ues focus on extracting localized patterns among nearby
nodes, this fusion procedure instructs the model to selec-
tively leverage features in multi-scale by dynamically as-
signing weights to each adjacency matrix. The qualitative
visualization of edge connection weights is shown in Fig-
ure 3. Section 4.6 further proves the effectiveness of this
design.

3.2. Graph Representation Learning Module

The Graph Representation Learning Module is mainly de-
signed as a sequential lightweight Graph Convolutional
Network (GCN) [19, 38], aiming to generate accurate graph
embeddings based on input adjacent matrix and node fea-
tures. Formally, given FV and S′ as the node features and
adjacent matrix, the sequential GCN model M(θ, S′, FV)
with trainable parameters θ can be represented as:

M(θ, S′, FV) = Seq[MatMul(S′,

MatMul(FV ,W (θ))) + δ(θ)]
(5)

where Seq[·] represents the sequential blocks, MatMul in-
dicates the matrix multiplication, W (θ) and δ(θ) refer to
the learnable weights and bias parameters within the GCN.
Node features FV for pipeline training are obtained through
the adjacent matrix S′ with normalization operation and
self-loops (1 on the diagonal). The output of the model
(Em(θ) ∈ RN×d) with parameters θ is the learned em-
bedding of N trajectories, each as a 1×d embedding vector
(d is the preset embedding dimension).

A
ttention

Single-KNN (k=10)

Single-KNN (k=20)

Single-KNN (k=50)

Dataset: N Trajectories

N×N Similarity Matrix

To
p

3
Si

m
ila

r T
ra

je
ct

or
ie

s R
et

rie
ve

d Query

N×1024 EmbeddingPredict

Trajectory #1

Trajectory #2

Trajectory #N

...

Normalize

Input Graph

Multi-Scale KNN

Node Features

Efflex-B Backbone

Efflex-L BackbonePipeline Test

Multi-Scale Graph Construction Module Graph Representation Learning Module

Information Screening:
Extracting the Most Crucial Data

Ground Truth

Model Output
Cosine Similarity

Ground
Truth

Predicted
Value

Embedding
XXXT

Loss Layer Fully Connected Layer Graph Convolution Layer

Deep Walk

...

Skip-Gram

Input LayerHidden Layer

Figure 2. Overview of the Efflex pipeline. Pipeline Train: We build the graph from original trajectory data using multi-scale KNN
algorithms with feature fusion by an attention module. The adjacent matrix and node features are then input into a lightweight GCN
(Efflex-B) / node2vec [13] (Efflex-L) for accurate embedding learning. Efflex-B specializes in improving the speed significantly while
Efflex-L embraces state-of-the-art performance. Pipeline Test: We conduct the top-k trajectory search experiment where given a query
trajectory, the model outputs the top-k similar ones. The precise search results indicate Efflex’s ability to learn high-quality representations
of the original data.

To instruct the model to generate accurate graph embed-
dings, we employ cosine similarity distance [22, 44] as the
loss function and AdamW [25] as the optimizer:

θ = argminθ(Cosine(GT,Em(θ)Em(θ)T)) (6)

where Em(θ) = M(θ, S′, FV) is the embedding generated
by the model, and GT indicates the ground truth by com-
puting Euclidean distance (actual distance) between every
two trajectories in the dataset. The learnable parameters θ
will be optimized for each epoch. Ablation studies on other
loss functions are shown in Section 4.6.

The designed lightweight structure allows our model to
converge remarkably fast, which significantly reduces the
training time compared to other existing graph representa-
tion learning models [13] while guaranteeing the generation
of accurate embedding, as shown in Section 4.4.2.

3.3. Efflex with Flexibility

Benefiting from the generalized and flexible pipeline frame-
work, Efflex offers two versions, Efflex-B and Efflex-L,
with different models employed in the Graph Representa-
tion Learning Module. Specifically, Efflex-B uses the pro-

posed lightweight GCN for representation learning, which
achieves accurate and competitive accuracy while improv-
ing the training speed significantly (× 36 faster). Mean-
while, we replace the lightweight GCN with the deepwalk-
based node2vec [13] model with massive parameters to
learn graph embeddings, and regard the new version as
Efflex-L. As shown in Section 4, Efflex-L reaches state-of-
the-art performance under various evaluation metrics.

The two versions offered by the Efflex pipeline (Efflex-
B/L) focus on diverse application needs. The base version
specializes in applications requiring real-time modeling in-
cluding wearable devices and embedded systems, while the
large version can be used for environmental monitoring and
smart city infrastructure management. Section 4.4.2 ana-
lyzes the performance of these two versions.

4. Experiments
4.1. Dataset

We conduct extensive experiments on commonly used tra-
jectory datasets collected from real-world data points –
Porto [30] and Geolife [51].

Methods Dataset Hausdorff Fréchet DTW

HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

PCA [37]

Porto

0.4850 0.5439 0.8454 0.4203 0.4909 0.8038 0.4751 0.5746 0.8534
SVD [33] 0.4839 0.5436 0.8445 0.4294 0.4977 0.8106 0.4689 0.5591 0.8362
MDS [21] 0.4839 0.6065 0.8770 0.4661 0.5874 0.8607 0.4762 0.5865 0.8673

Siamese [31] 0.3834 0.4999 0.7760 0.4740 0.5802 0.7970 0.3832 0.4804 0.7602
NEUTRAJ [42] 0.4372 0.5714 0.8089 0.5225 0.6351 0.8292 0.4370 0.5613 0.8396

T3S [40] 0.4672 0.5977 0.8344 0.5518 0.6560 0.8550 0.4345 0.5809 0.8350

Efflex-B (Ours) 0.5510 0.6492 0.9817 0.5564 0.6273 0.9750 0.5760 0.5892 0.9080
Efflex-L (Ours) 0.5651 0.7126 0.9984 0.5705 0.7139 0.9984 0.6412 0.7195 0.9965

PCA [37]

Geolife

0.4110 0.5562 0.8243 0.4336 0.5880 0.8446 0.4331 0.5481 0.8190
SVD [33] 0.4081 0.5563 0.8248 0.4438 0.6041 0.8448 0.4481 0.5285 0.8133
MDS [21] 0.3602 0.5472 0.8535 0.4793 0.6187 0.8716 0.4656 0.5347 0.8354

Siamese [31] 0.3120 0.4236 0.6640 0.4631 0.6032 0.8121 0.2680 0.4582 0.6172
NEUTRAJ [42] 0.3691 0.4870 0.7416 0.4947 0.6786 0.8403 0.3067 0.4832 0.6513

T3S [40] 0.3807 0.5463 0.7690 0.5231 0.6732 0.8667 0.3208 0.4316 0.6601

Efflex-B (Ours) 0.5621 0.6464 0.9694 0.5828 0.6439 0.9601 0.6034 0.6271 0.9165
Efflex-L (Ours) 0.6030 0.7303 0.9929 0.6163 0.7425 0.9947 0.6975 0.7706 0.9970

Table 1. Quantitative performance compared with state-of-the-art models on graph representation learning. We evaluate under three
distance functions (Fréchet, Hausdorff, and DTW) with multiple evaluation metrics (hitting ratio: HR@10, HR@50, recall: R10@50)
employed for each distance under two datasets: Porto and Geolife. Red / Blue numbers: Highest/Second highest among all methods.

Methods Dataset Hausdorff Fréchet DTW

Recall Time / s Recall Time / s Recall Time / s

Efflex-L
Porto

0.9984 1913.48 0.9984 1819.01 0.9965 1382.78
Efflex-B 0.9817 51.61 0.9750 51.60 0.9080 52.76

Diff (B vs. L) ↓1.67% ↑ ×36 ↓2.34% ↑ ×34 ↓8.85% ↑ ×25

Efflex-L
Geolife

0.9929 1309.80 0.9947 1307.65 0.9970 1263.46
Efflex-B 0.9694 78.89 0.9601 77.94 0.9165 69.28

Diff (B vs. L) ↓2.35% ↑ ×16 ↓3.46% ↑ ×16 ↓8.05% ↑ ×17

Table 2. Efficiency analysis. We compare the recall and time cost (CPU) for pipeline training between Efflex-B/L under three distance
functions on Porto and Geolife datasets. Efflex-B (with GCN) significantly improves the speed (up to ×36 faster) while maintaining a
competitive accuracy against Efflex-L (with node2vec [13]).

Porto [30] contains 1,704,759 taxi trajectories gath-
ered between 2013 and 2014 within Porto, Portugal. The
recorded data encompass longitude coordinates ranging
from −8.74 to −8.16 and latitude coordinates spanning
from 40.95 to 41.31. Similarly, the Geolife dataset [51]
offers a rich collection of GPS trajectories, capturing the
movements of 182 users over five years (from April 2007
to August 2012). This dataset includes over 24,876 trajec-
tories, which amounts to more than 1.2 million kilometers
and a cumulative duration exceeding 48,000 hours. The ge-
ographical scope of this data spans several cities in China,
with a longitude ranging from 115.9 to 117.1 and a latitude
ranging from 39.6 to 40.7.

Considering the complexity and variability observed in
real-world traffic trajectories, the Porto and Geolife datasets

are ideal for evaluating model performance.

4.2. Implementation Details

The datasets are preprocessed by excluding trajectories with
fewer than 50 data points. Then we partition the dataset
into 50m×50m grids, following the standard operation [42].
We set the initial learning rate as 0.001, and use StepLR as
the learning rate scheduler, which decreases by a factor of
0.1 every 5 epochs. The total training epochs are 50. The
model’s parameters are updated through the AdamW op-
timizer. Our experiments are conducted on AMD EPYC
7313 16-Core CPU and NVIDIA RTX A6000 GPU. To en-
sure a comprehensive assessment of runtime efficiency, we
benchmark the performance of all compared algorithms us-
ing a CPU in single-threaded mode.

(a) Single-scale KNN (k=10) (b) Single-scale KNN (k=20)

(c) Single-scale KNN (k=50) (d) Multi-scale KNN with attention

Figure 3. Visualization of edge connection weights. Figure (a) -
(c): Edge connection weights obtained by single-scale KNN (k =
10, 20, 50). Figure (d): Connection weights fused by multi-scale
KNN with the attention mechanism.

4.3. Evaluation Metrics

To conduct objective evaluation, we evaluate the model’s
performance on the top-N similarity search task problem,
following the state-of-the-art models [40, 42]. Specifically,
given a query trajectory, the model outputs its top-N similar
trajectories based on the trajectory embeddings it learns un-
der certain distance measurement function. The higher sim-
ilarity search accuracy indicates the more accurate learned
embeddings of the original trajectory dataset by the model.

Following the standard evaluation procedure [40, 42],
two evaluation metrics are involved: hitting ratio (HR@10,
HR@50) and recall (R10@50). We compare the results
with both non-learning-based methods (PCA [37], SVD
[33], MDS [21]) and state-of-the-art machine learning mod-
els (Siamese [31], NEUTRAJ [42], T3S [40]).

4.4. Quantitative Results

4.4.1 Representation Learning Performance

Table 1 shows the graph representation learning perfor-
mance, where both our two solutions (base and large ver-
sion) outperform all existing models and achieve the state-
of-the-art. As mentioned previously, Efflex-B utilizes the
lightweight GCN for graph representation learning, while
Efflex-L employs node2vec [13] with massive trainable pa-
rameters for extracting graph embeddings.

Specifically, under Hausdorff distance, Efflex-B reaches
the hitting ratio and recall of 55.10%, 64.92%, and 98.17%,
while Efflex-L achieves a more accurate result: 56.51%,
71.26%, and 99.84%. In terms of the comparison with ma-

trix factorization-based methods, Efflex-B/L demonstrates
significant improvement over PCA (+10.53/16.87%), SVD
(+10.56/16.90%), and MDS (+4.27/10.61%) of HR@50.
Similar results can be observed for other metrics (HR@10,
R10@50). Similar results can be observed from Geolife.

Moreover, when compared with learning-based meth-
ods, Efflex-B/L consistently showcases its effective-
ness, with a remarkable lead (HR@50 as an example)
of +14.93/21.27%, +7.78/14.12%, and +5.15/11.49%
against Siamese [31], NEUTRAJ [42], and T3S [40], re-
spectively. Similar observations can be found in Geolife.
Benefiting from the design of multi-scale KNN graph con-
struction and fusion mentioned in Section 3.1, our model
can selectively preserve the important global and local fea-
tures when transforming the original trajectory dataset into
the relatively low-dimension graph. In addition, the utiliza-
tion of GCN allows our model to eventually converge for
learning graph structures and capturing graph-level repre-
sentations, leading to significant improvements compared
with RNN [31] / LSTM [40, 42] based methods.

Similar observations can be concluded from Table 1 un-
der either Fréchet or DTW measurement, proving the con-
sistent effectiveness and robustness of our model across dif-
ferent evaluation metrics.

4.4.2 Efficiency Analysis

We compare the efficiency of the two versions of our model,
Efflex-B/L, on Porto and Geolife datasets, as shown in Ta-
ble 2, where both models are evaluated under the same CPU
environment. We utilize recall (R10@50) as the embed-
ding learning accuracy metric and compute the time cost
under three distance functions. From Table 2, it is evi-
dently observed that Efflex-B can reach a competitive ac-
curacy while significantly reducing the time cost. Specifi-
cally, under Hausdorff distance, although Efflex-B slightly
reduces the accuracy by 1.67%, it reaches the speed that is
36 times faster. For Fréchet distance, Efflex-B consistently
showcases its effectiveness and efficiency, with an accuracy
deducted by 2.34%, it also improves an extraction speed by
34 times faster. Similar results can be observed from DTW
distance and in the Geolife dataset.

Benefiting from our lightweight but effective design of
GCN, Efflex-B can effectively capture graph structure pat-
terns for accurate representation learning while noticeably
improving the training speed, compared with Efflex-L with
node2vec [13] as the representation learning backbone.
Since Efflex-B is a solely innovative design (without in-
volving existing architecture [13] as Efflex-L), it strongly
showcases our contributions to effectively learning graph
representations on spatio-temporal data.

Moreover, the substantial improvement in modeling ac-
curacy demonstrates the potential of Efflex-B for future ap-

Query Trajectory

(a) Top-3 Trajectories Ground Truth obtained based on actual distance

(b) Top-3 Trajectories output by Efflex-B

Rank #1 Rank #2 Rank #3

Rank #1 Rank #2 Rank #3

Figure 4. Qualitative visualization of the trajectory similarity search task. Left: Query trajectory. Right (a): Top-3 similar ground
truth trajectories. Right (b): Top-3 similar retrieval results of our model (Efflex-B). Our retrieval results are consistent with ground truth.

(a) Hausdorff distance (b) Fréchet distance (c) DTW distance

Figure 5. Ablation study on different structures and embedding dimensions under three distances on Porto. We compare the results
of single-scale KNN (k=10,20,50), multi-scale KNN (with different fusion strategies), and different output embedding dimensions.

plications on lightweight platforms such as mobile phones
and wearable devices, and autonomous driving. As for
application scenarios that do not require real-time model-
ing including basic environmental monitoring, our Efflex-L
version can be widely used, considering its state-of-the-art
learning accuracy.

4.5. Qualitative Results

The qualitative demonstration is illustrated in Figure 4,
which shows the trajectory query results (Porto as an exam-
ple). Specifically, given a query trajectory, the model will
find the top-3 similar trajectories based on the learned em-
beddings. The corresponding ground truth is retrieved by
computing the actual distance in the dataset. From Figure
4, we can observe that the retrieval results of Efflex closely
match the ground truth (i.e., Rank #1 in Ground Truth vs.

Rank #1 in our results), proving the effectiveness of our
model on the trajectory similarity search task. Meanwhile,
the convincing results justify the theory of dimensionalizing
the original spatio-temporal trajectories for graph construc-
tion, which provides an applicable solution to represent the
massive spatio-temporal data efficiently. Additionally, the
potential real-life application scenarios (i.e., finding alter-
native trajectories when the existing path cannot be traveled
when navigating) show Efflex’s application and generaliza-
tion.

4.6. Ablation Studies

We conduct comprehensive ablation studies to verify the ef-
fectiveness of the model’s key components and parameters,
including attention for feature fusion, multi-scale graph
construction, output embedding dimension, and loss terms.

Methods Hausdorff Fréchet DTW

w/o Multi-KNN 0.9723 0.9447 0.8724
w/o Attn Fusion 0.9789 0.9733 0.9023

L1 Loss 0.9646 0.9632 0.8107
MSE Loss 0.9698 0.9658 0.8094

Efflex (Ours) 0.9817 0.9750 0.9080

Table 3. Ablation studies on model structure and different
losses under three distances on Porto. Our final design show-
cases the most accurate embedding learning of the graph.

Attention for Feature Fusion. The ablation study on the
proposed multi-scale KNN graph construction and fusion
is shown in Figure 5, where we report the hitting ratio
score against embedding dimensions under three distance
functions. Specifically, we compare the results of the fol-
lowing: multi-scale graph construction and fusion with at-
tention (final model), multi-scale construction and fusion
through simple addition operation, and single-scale graph
construction (k = 10, 20, and 50).

It is evident that our design (multi-scale KNN with at-
tention) outperforms other structures for different embed-
ding dimensions under all distance functions, with the pur-
ple line consistently superior to others. Since the proposed
lightweight attention allows the model to selectively and dy-
namically capture the important features and graph structure
information with different scales (global and local levels), it
contributes to more accurate embedding learning than other
simple fusion strategies (addition operation), with the pur-
ple line is higher than the red one. The quantitative analysis
on attention fusion is demonstrated in Table 3, where “w/o
Attn Fusion” refers to utilizing the simple addition opera-
tion to fuse features.
Multi-scale vs. Single-scale Graph Construction. In Fig-
ure 5, both purple and red lines remain at the highest levels
under different conditions, indicating the effectiveness of
multi-scale graph construction over single-scale one. The
employment of the KNN algorithm with different scales al-
lows the model to capture board relationships and localized
patterns at the same time, leading to a more comprehensive
understanding of the graph structure compared with single-
scale KNN (k = 10, 20, and 50). The quantitative result
is shown in Table 3, where “w/o Multi-KNN” indicates the
single-scale KNN algorithm (k = 20 as an example).
Output Embedding Dimension. Since the original trajec-
tory is transferred into low-level embeddings, different em-
bedding dimensions determine the representation quality.
We conduct the ablation analysis of different embedding
dimensions ranging from 16 to 1024, as shown in Figure
5. As the embedding dimension increases, the model’s per-

formance shows a significant increase followed by a gradu-
ally stable trend. Increasing the dimension of the embed-
dings allows the representation space to be closer to the
original high-dimensional space (spatio-temporal trajectory
data), assisting the model in better representing the original
data.
Loss Terms. The result of different losses for pipeline
training is shown in Table 3, where cosine similarity dis-
tance outperforms L1 Loss and MSE Loss. Considering the
ability of cosine similarity distance to ignore the effect of
data sparsity and dimensionality [44, 47], it is less sensitive
to outliers and variations in the magnitude of the spatio-
temporal graph representation learning. This indicates it to
be the ideal loss term for stable pipeline training.

5. Future Work
In the future, we plan to focus on optimizing the framework
for even greater scalability and under real-time scenario set-
tings. This would be particularly beneficial for applications
requiring immediate insights from vast amounts of spatio-
temporal data, such as traffic management systems and real-
time environmental monitoring.

Meanwhile, another interesting direction we are looking
into involves integrating Large Language Models (LLMs)
as encoders to process graph features within the Efflex
pipeline, as LLM holds the potential to conveniently cap-
ture the complex semantics of spatio-temporal data, trans-
lating it into richer, context-aware embeddings. Such an
integration could enhance the predictive accuracy and ana-
lytical depth of the Efflex framework, opening new avenues
in spatio-temporal data analytics.

6. Conclusion
In this paper, we introduce a novel framework that addresses
the challenges of effectively learning representations from
large-volume spatio-temporal trajectory data. Our compre-
hensive pipeline, Efflex, integrates a multi-scale KNN al-
gorithm with feature fusion for graph construction, achiev-
ing significant advancements in dimensionality reduction
while preserving essential data features. Furthermore, our
custom-built lightweight GCN enhances the model’s effi-
ciency, enhancing the embedding extraction speed by up to
36 times faster without compromising accuracy.

We demonstrate Efflex’s superior performance through
extensive experimens with the Porto and Geolife datasets,
establishing new benchmarks in the domain. Efflex is
presented in two versions, Efflex-B and Efflex-L, tailored
to scenarios demanding high accuracy and environments
requiring swift data processing, respectively. This dual-
version approach highlights our framework’s adaptability
and broad applicability, underscoring its potential in time-
sensitive and computationally constrained applications.

References
[1] Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar,

Valentino Crespi, Greg Ver Steeg, and Aram Galstyan.
Implicit svd for graph representation learning. Advances
in Neural Information Processing Systems, 34:8419–8431,
2021. 2

[2] Marta Avalos, Richard Nock, Cheng Soon Ong, Julien
Rouar, and Ke Sun. Representation learning of composi-
tional data. Advances in Neural Information Processing Sys-
tems, 31, 2018. 1, 2

[3] E Belogay, C Cabrelli, U Molter, and R Shonkwiler. Cal-
culating the hausdorff distance between curves. Information
Processing Letters, 64(1), 1997. 3

[4] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-
resentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence,
35(8):1798–1828, 2013. 1, 2

[5] Ming Cheng, Xingjian Diao, Shitong Cheng, and Wenjun
Liu. Saic: Integration of speech anonymization and identity
classification. arXiv preprint arXiv:2312.15190, 2023. 1

[6] Ming Cheng, Bowen Zhang, Ziyu Wang, Ziyi Zhou, Weiqi
Feng, Yi Lyu, and Xingjian Diao. Vetrass: Vehicle trajectory
similarity search through graph modeling and representation
learning, 2024. 1, 2

[7] Xingjian Diao, Ming Cheng, Wayner Barrios, and SouYoung
Jin. Ft2tf: First-person statement text-to-talking face gener-
ation. arXiv preprint arXiv:2312.05430, 2023. 3

[8] Xingjian Diao, Ming Cheng, and Shitong Cheng. Av-
maskenhancer: Enhancing video representations through
audio-visual masked autoencoder. In 2023 IEEE 35th In-
ternational Conference on Tools with Artificial Intelligence
(ICTAI), pages 354–360. IEEE, 2023. 3

[9] Jiaxin Ding, Shichuan Xi, Kailong Wu, Pan Liu, Xinbing
Wang, and Chenghu Zhou. Analyzing sensitive information
leakage in trajectory embedding models. In Proceedings
of the 30th International Conference on Advances in Geo-
graphic Information Systems, pages 1–10, 2022. 2

[10] Gintare Karolina Dziugaite and Daniel M Roy. Neural net-
work matrix factorization. arXiv preprint arXiv:1511.06443,
2015. 1, 2

[11] Maurice Fréchet. Sur quelques points du calcul fonctionnel.
1906. 3

[12] Omer Gold and Micha Sharir. Dynamic time warping and
geometric edit distance: Breaking the quadratic barrier. ACM
Transactions on Algorithms (TALG), 14(4):1–17, 2018. 3

[13] Aditya Grover and Jure Leskovec. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016. 2, 4, 5, 6

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30, 2017. 2

[15] Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang
Zhang. A graph-based approach for trajectory similarity
computation in spatial networks. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 556–564, 2021. 2

[16] Hanjiang Hu, Zhijian Qiao, Ming Cheng, Zhe Liu, and Hes-
heng Wang. Dasgil: Domain adaptation for semantic and
geometric-aware image-based localization. IEEE Transac-
tions on Image Processing, 30:1342–1353, 2020. 1

[17] Jianying Huang, Jinhui Li, Jeill Oh, and Hoon Kang. Lstm
with spatiotemporal attention for iot-based wireless sensor
collected hydrological time-series forecasting. International
Journal of Machine Learning and Cybernetics, pages 1–16,
2023. 2

[18] Zheng Huang, Jing Ma, Yushun Dong, Natasha Zhang Foutz,
and Jundong Li. Empowering next poi recommendation with
multi-relational modeling. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 2034–2038, 2022. 1

[19] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 3

[20] Hamidreza Alikhani Koshkak, Ziyu Wang, Anil Kanduri,
Pasi Liljeberg, Amir M. Rahmani, and Nikil Dutt. SEAL:
Sensing Efficient Active Learning on Wearables through
Context-awareness. In Proceedings of the IEEE/ACM De-
sign, Automation and Test in Europe Conference, Spain,
2024. DATE’24. 2

[21] Joseph B Kruskal and Myron Wish. Multidimensional scal-
ing. Number 11. Sage, 1978. 1, 2, 5, 6

[22] Marzena Kryszkiewicz. The cosine similarity in terms of the
euclidean distance. In Encyclopedia of Business Analytics
and Optimization, pages 2498–2508. IGI Global, 2014. 4

[23] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and
Wei Wei. Deep representation learning for trajectory similar-
ity computation. In 2018 IEEE 34th international conference
on data engineering (ICDE), pages 617–628. IEEE, 2018. 2

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard
Zemel. Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493, 2015. 2

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4

[26] Jing Ma, Yushun Dong, Zheng Huang, Daniel Mietchen, and
Jundong Li. Assessing the causal impact of covid-19 related
policies on outbreak dynamics: A case study in the us. In
Proceedings of the ACM Web Conference 2022, pages 2678–
2686, 2022. 1

[27] Andrzej Maćkiewicz and Waldemar Ratajczak. Principal
components analysis (pca). Computers & Geosciences, 19
(3):303–342, 1993. 2

[28] Jens Meiler, Michael Müller, Anita Zeidler, and Felix
Schmäschke. Generation and evaluation of dimension-
reduced amino acid parameter representations by artificial
neural networks. Molecular modeling annual, 7(9):360–369,
2001. 1

[29] Andriy Mnih and Russ R Salakhutdinov. Probabilistic ma-
trix factorization. Advances in neural information processing
systems, 20, 2007. 2

[30] Luı́s Moreira-Matias, João Gama, Michel Ferreira, João
Mendes-Moreira, and Luis Damas. Time-evolving od ma-
trix estimation using high-speed gps data streams. Expert
systems with Applications, 44:275–288, 2016. 4, 5

[31] Wenjie Pei, David MJ Tax, and Laurens van der Maaten.
Modeling time series similarity with siamese recurrent net-
works. arXiv preprint arXiv:1603.04713, 2016. 2, 5, 6

[32] Joshua B Tenenbaum, Vin de Silva, and John C Langford.
A global geometric framework for nonlinear dimensionality
reduction. science, 290(5500):2319–2323, 2000. 2

[33] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha.
Singular value decomposition and principal component anal-
ysis. In A practical approach to microarray data analysis,
pages 91–109. Springer, 2003. 1, 2, 5, 6

[34] Senzhang Wang, Jiannong Cao, and S Yu Philip. Deep learn-
ing for spatio-temporal data mining: A survey. IEEE trans-
actions on knowledge and data engineering, 34(8):3681–
3700, 2020. 1

[35] Ziyu Wang, Nanqing Luo, and Pan Zhou. Guardhealth:
Blockchain empowered secure data management and graph
convolutional network enabled anomaly detection in smart
healthcare. Journal of Parallel and Distributed Computing,
142:1–12, 2020. 1

[36] Ziyu Wang, Zhongqi Yang, Iman Azimi, and Amir M Rah-
mani. Differential private federated transfer learning for
mental health monitoring in everyday settings: A case study
on stress detection. arXiv preprint arXiv:2402.10862, 2024.
1

[37] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent labora-
tory systems, 2(1-3):37–52, 1987. 1, 2, 5, 6

[38] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Weinberger. Simplifying graph convo-
lutional networks. In International conference on machine
learning, pages 6861–6871. PMLR, 2019. 3

[39] Chengcheng Yang, Lisi Chen, Hao Wang, and Shuo Shang.
Towards efficient selection of activity trajectories based on
diversity and coverage. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 689–696, 2021. 2

[40] Peilun Yang, Hanchen Wang, Ying Zhang, Lu Qin, Wen-
jie Zhang, and Xuemin Lin. T3s: Effective representation
learning for trajectory similarity computation. In 2021 IEEE
37th International Conference on Data Engineering (ICDE),
pages 2183–2188. IEEE, 2021. 2, 5, 6

[41] Xinyu Yang, Haoyuan Liu, Ziyu Wang, and Peng Gao. Ze-
bra: Deeply integrating system-level provenance search and
tracking for efficient attack investigation. arXiv preprint
arXiv:2211.05403, 2022. 1

[42] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. Com-
puting trajectory similarity in linear time: A generic seed-
guided neural metric learning approach. In 2019 IEEE 35th
international conference on data engineering (ICDE), pages
1358–1369. IEEE, 2019. 2, 3, 5, 6

[43] Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jing-
ping Bi. Trajgat: A graph-based long-term dependency mod-
eling approach for trajectory similarity computation. In Pro-
ceedings of the 28th ACM SIGKDD conference on knowl-
edge discovery and data mining, pages 2275–2285, 2022. 2

[44] Huaxiong Yao, Yang Huang, Jiabei Hu, and Wenqi Xie. Co-
sine similarity distance pruning algorithm based on graph at-
tention mechanism. In 2020 IEEE International Conference
on Big Data (Big Data), pages 3311–3318. IEEE, 2020. 4, 8

[45] Yuanfan Yao, Ziyu Wang, and Pan Zhou. Privacy-preserving
and energy efficient task offloading for collaborative mobile
computing in iot: An admm approach. Computers & Secu-
rity, 96:101886, 2020. 1

[46] Hongzhi Yin and Bin Cui. Spatio-temporal recommendation
in social media. Springer, 2016. 1

[47] Yue Yu, Tong Xia, Huandong Wang, Jie Feng, and Yong
Li. Semantic-aware spatio-temporal app usage representa-
tion via graph convolutional network. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies, 4(3):1–24, 2020. 8

[48] Cao Zhang, Xiaohui Zhao, Ziyi Zhou, Xingyuan Liang,
and Shuai Wang. Doseformer: Dynamic graph transformer
for postoperative pain prediction. Electronics, 12(16):3507,
2023. 1

[49] Lu Zhang, Weiqi Feng, Chao Li, Xiaofeng Hou, Pengyu
Wang, Jing Wang, and Minyi Guo. Tapping into nfv environ-
ment for opportunistic serverless edge function deployment.
IEEE Transactions on Computers, 71(10):2698–2704, 2021.
1

[50] Lu Zhang, Chao Li, Xinkai Wang, Weiqi Feng, Zheng
Yu, Quan Chen, Jingwen Leng, Minyi Guo, Pu Yang, and
Shang Yue. First: Exploiting the multi-dimensional at-
tributes of functions for power-aware serverless computing.
In 2023 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pages 864–874. IEEE, 2023.
1

[51] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. Geolife: A collab-
orative social networking service among user, location and
trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010. 4, 5

[52] Ziyi Zhou, Baoshen Guo, and Cao Zhang. Doseguide: A
graph-based dynamic time-aware prediction system for post-
operative pain. In 2021 IEEE 27th International Conference
on Parallel and Distributed Systems (ICPADS), pages 474–
481. IEEE, 2021. 1

[53] Xin Zhu, Shuai Wang, Baoshen Guo, Taiwei Ling, Ziyi
Zhou, Lai Tu, and Tian He. Sparking: A win-win data-
driven contract parking sharing system. In Adjunct Proceed-
ings of the 2020 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing and Proceedings of the
2020 ACM International Symposium on Wearable Comput-
ers, pages 596–604, 2020. 1

	. Introduction
	. Related Work
	. Matrix Factorization-Based Methods
	. Learning-Based Methods

	. Method
	. Multi-Scale Graph Construction
	Graph Construction From Trajectories
	Multi-Scale Graph Construction and Fusion

	. Graph Representation Learning Module
	. Efflex with Flexibility

	. Experiments
	. Dataset
	. Implementation Details
	. Evaluation Metrics
	. Quantitative Results
	Representation Learning Performance
	Efficiency Analysis

	. Qualitative Results
	. Ablation Studies

	. Future Work
	. Conclusion

