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Abstract—The performance of object detection systems in
automotive solutions must be as high as possible, with minimal
response time and, due to the often battery-powered operation,
low energy consumption. When designing such solutions, we
therefore face challenges typical for embedded vision systems: the
problem of fitting algorithms of high memory and computational
complexity into small low-power devices. In this paper we propose
PowerYOLO – a mixed precision solution, which targets three
essential elements of such application. First, we propose a system
based on a Dynamic Vision Sensor (DVS), a novel sensor, that
offers low power requirements and operates well in conditions
with variable illumination. It is these features that may make
event cameras a preferential choice over frame cameras in
some applications. Second, to ensure high accuracy and low
memory and computational complexity, we propose to use 4-bit
width Powers-of-Two (PoT) quantisation for convolution weights
of the YOLO detector, with all other parameters quantised
linearly. Finally, we embrace from PoT scheme and replace
multiplication with bit-shifting to increase the efficiency of hard-
ware acceleration of such solution, with a special convolution-
batch normalisation fusion scheme. The use of specific sensor
with PoT quantisation and special batch normalisation fusion
leads to a unique system with almost 8x reduction in memory
complexity and vast computational simplifications, with relation
to a standard approach. This efficient system achieves high
accuracy of mAP 0.301 on the GEN1 DVS dataset, marking
the new state-of-the-art for such compressed model.

Index Terms—embedded vision systems, dynamic vision sen-
sor, hardware-aware algorithm desing, logarithmic quantization,
mixed precision, pedestrian detection, power-of-two quantization,
vehicle detection,

I. INTRODUCTION

Vision systems based on machine learning algorithms are
already becoming a standard in many areas of our lives: in
applications and devices that provide entertainment (intelligent
photo and video processing, augmented/virtual reality), in
surveillance and security systems and autonomous vehicles,
or advanced driver assistance systems.

Naturally, in most applications we consider devices with
limited energy budget – mobile and battery-powered – which
means that the use of power-hungry algorithms based on neural
networks requires careful design of such solutions, generally
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with some reduction in memory-computational complexity
relative to standard approaches.

Such a reduction generally means changing the precision
of computations from 32-bit floating-point numbers to 16-bit
floating-point, 8-bit fixed-point or even, in special cases, 6-
bit and 4-bit fixed-point numbers, but above all to 8-bit or
even lower-width integers, including binary and ternary. With
the right hardware platform, such simplifications can lead
to increased performance (GPU, CPU), often also allowing
a reduction in energy requirements with the right design of
custom processor (FPGA, ASIC). In addition, they allow to
address to problem of memory bandwidth gap and reduce the
size of the model. It is a standard practice to use quantisation
to 8-bit integers, which only slightly affects the effectiveness
of the neural network, especially if appropriate quantisation
aware training (QAT) is used.

The use of lower precision while retaining the accuracy
of the full precision model may require specific quantisation
schemes, such as the logarithmic quantisation benchmarked
earlier for the classification task in [1], [2], [3].

Pedestrian and vehicle detection are tasks present in a
wide range of applications: from driver assistance systems
and autonomous vehicles, to security and surveillance systems.
All those applications have similar requirements – high per-
formance, real-time data processing, and rather low energy
budget. Therefore, the design of such a solution must be
approached comprehensively: by choosing the right algorithm,
hardware platform and even sensor. A standard digital camera
is a natural choice, while an event camera (dynamic vision
sensor, neuromorphic camera) [4] is recently becoming an
interesting alternative.

In their operation, event cameras mimic the characteristics
of the human visual system, noticing only changes in bright-
ness per pixel (and therefore events per pixel). As a result,
they record and transmit data with lower latency than standard
cameras and also have a higher dynamic range, making them
work well in a wide variety of lighting conditions, including
unevenly and poorly illuminated scenes. The latter can be
particularly important in changing road conditions.

In this paper we propose to use logarithmic quantisation
for a task complex and commonly considered in the context
of low-power devices – pedestrian and vehicle detection. In
addition to designing an algorithm with low memory and
computational complexity, it was also decided to use an event
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Fig. 1. Overview of the proposed system: event camera data is gathered
over a predetermined time window (10 ms), and represented in the form of a
pseudo-image (event frame). Pedestrians are detected using a mixed precision
YOLO network, with convolution layer weights quantised logarithmically to
PoT values, and the rest of parameters and activations quantised linearly.

camera which characteristics are perfectly suited to the real-
time and high accuracy requirements of embedded perception
systems. A schematic of the system is presented in Fig. 1:
the data received from the event camera is represented by
a pseudo-image (i.e. event frame), which is then processed
by the PowerYOLO mixed-precision network. Due to the
PoT weights, a hardware implementation of the PowerYOLO
network can introduce significant energy gains, resulting from
the simplification of multiplication operations and therefore
reducing the number of required electronic components needed
to implement the corresponding accelerator. Thus, the main
contribution of this work can be summarised as follows:

1) we propose a highly efficient INT8/LOG4 mixed preci-
sion PowerYOLO network for pedestrian and vehicle
detection for GEN1 event dataset. Our model stands
out for having the best ratio of efficiency to memory-
computation complexity achieving mAP 0.301.

2) we propose a method for convolution and batch normal-
isation layers fusion in a way that takes into account
the special form of the neural network weights when
quantised to powers of two.

The reminder of this paper is organised as follows: Section
II presents basic information about event cameras. Section III
discusses previous work related to the optimisation of neural
network architectures and an overview of object detection
methods based on event data stream. Section IV presents the
PowerYOLO network, which uses a mixed integer and power-
of-two quantisation scheme. Its evaluation is then provided is
Section V. The article concludes with a brief summary and
suggestions for further research.

II. EVENT CAMERAS

Event cameras record changes in light intensity individually
(asynchronously) for each pixel. A single event is represented
by a vector e = {t, x, y, p}, where t is the occurrence time
of the event (timestamp), x and y are the spatial coordinates
of the recorded pixel, and p, called polarisation, takes the

value −1 or 1 (sometimes also 0 and 1) depending on the
direction of brightness change. Therefore, data acquisition
only takes place when the brightness of the pixel changes,
which enables high-resolution with low-latency data flow. In
addition, this results in a significant reduction in blur in the
event of fast movement of objects or the camera. Moreover,
the high dynamic range resolution allows events to be recorded
in both bright and dark regions. This is especially important
for outdoor solutions, where lighting is highly variable (e.g. in
automotive: tunnel crossings, under overpasses, etc.). From the
perspective of designing energy-efficient solutions, these sen-
sors seem particularly interesting: due to their asynchronous
and sparse operation (recording only changes in brightness),
they are on average more energy-efficient than typical digital
cameras (frame cameras).

However, the format of event data (spatio-temporal sparse
cloud) makes it impossible to use explicitly standard digital
image processing algorithms, including those based on neural
networks, for their analysis. Therefore four possibilities are
considered: designing a solution dedicated to event data (e.g.
spiking neural networks – SNN) [5], processing a point cloud
e.g. using graph neural networks (which can be challenging
due to the different density of such a cloud in successive time
segments) [6], projecting (aggregating) events onto a plane and
creating so-called pseudo-images [7], or image reconstruction
from such a cloud (which is computationally very complex)
[8].

The use of pseudo-images best cooperates with the typical
neural networks developed for images registered with frame
cameras. A number of such approaches have been proposed in
the literature - they differ in the way they take into account the
time dimension, in particular the change in signal over time. In
this work, we use the event frame method, which transforms
events from a specific time slice (in our case 10ms) τ accord-
ing to f(u, t) = Pe(u) for t− σe(u) ∈ (0; τ) and f(u, t) = 0
otherwise, where σe denotes the time of the event u(x, y) and
Pe its polarity. This choice is dictated by two factors: firstly,
the chosen object detection algorithm is dedicated to classical
images, so the input format must be similar to them; secondly,
due to the necessary limitations of memory and computational
complexity for low-power devices, the method of converting
the event cloud to a pseudo-image should not be too complex.
Other pseudo-image representations worth mentioning are:
simple binary frame [9], exponentially decaying time surface
[10] and event frequency [11].

In this research we used the Gen1 event dataset consisting
of over 39 hours of recordings of urban, highway, suburbs and
countryside scenes with a Prophesee Gen1 sensor attached to
a car. The collection was manually tagged based on greyscale
images recorded simultaneously with the events, ultimately
highlighting nearly 230000 of cars and nearly 28000 of
pedestrians. For the generation of pseudo-images, we used the
tools provided by the authors of the database [7].



III. RELATED WORK

In this section we present previous work on two topics
closely related to our research.

A. Reducing the memory and computational complexity of
neural networks

Standard methods for reducing the memory-computation
complexity of neural networks include quantisation, pruning,
and appropriate transformations in the form of layer fusion
that do not change the inference result. The first two methods
lead to a reduction in the number of bits needed for parameter
storage and the number of parameters, respectively. In its
simplest form, pruning, i.e. zeroing the connections or neurons
with low impact on the final result, leads to a sparse network in
which the number of arithmetic operations performed can be
considerably reduced. However, this introduces the overhead
of having to remember which weights or neurons have been ze-
roed (i.e. which calculations should be omitted). An alternative
is to train sparse networks, i.e. networks in which the structure
of the removed connections is predetermined. Since neural
networks are generally redundant, appropriately performed
pruning, or sparse network training, allows to achieve the
performance of a dense network.

For the same reason, a reduction in computational precision
(quantisation) may also not result in a significant drop in
performance relative to a floating-point network, while at the
same time reducing memory complexity by several times. A
certain standard available in many tools, both software tools
(e.g. tensorflow [12], OpenVino [13], brevitas [14]) but also
in hardware implementations (e.g. FINN [15], VitisAI [16],
nncf [17]) is linear quantisation, in particular to 8-bit integer
values.

This method reduces the model by a factor of four (in terms
of number of bytes) and significantly simplifies the implemen-
tation of arithmetic operations, which is particularly important
for low-power hardware implementations. Linear quantisation
to lower bit-widths can significantly affect the accuracy of
the solution, therefore logarithmic quantisation methods, first
proposed in [18], are an interesting alternative. This scheme
allows to preserve the accuracy of the full-precision network
for parameters 4-bit and smaller (after appropriate training
of the quantised network) [1], [2]. In addition, this approach
allows to replace the multiplication with a bit-shift, which,
using the appropriate computing platform (GPU, eGPU, and
especially reconfigurable platforms like FPGAs), results in
reduced latency and reduced power consumption [2], [3], [19].
Obviously, the most radical form of reduction in computational
precision is binary quantisation, however it is not without an
impact on the accuracy of the network [20], causing losses of
several tens of per cent.

Extremely low-precision networks, or rather new quantisa-
tion methods, are most often benchmarked for classification
tasks, so it is difficult to say unequivocally whether the impact
of different precision reduction methods is same for each
task solved by a neural network, in particular for object
detection. However, it seems that due to the higher complexity

and the need for higher precision information at the output,
quantisation to very low bit-widths for detection task may have
a greater impact on performance: especially if we consider the
coordinates of the bounding box, rather than a class probability
score. In principle, the latter should simply be higher for
true class objects than for others, rather than with some
specific value. Several experiments with very low-precision
quantisation of YOLO networks have been described in the
literature.

In [21], the authors note that quantisation of YOLO net-
works is challenging due to the problem of oscillation of
weights between quantisation thresholds when learning low-
precision networks, even at final epochs. The use of two
additional methods EMA (Exponentially Moving Average) and
QC (Quantisation Correction) have been proposed to minimise
these oscillations ,in combination with quantised training. In
the Quantisation Aware Training (QAT) version, EMA works
similarly as in full precision network training, storing a history
of both the weights and the scaling factors of the weights
and activations. With the introduction of EMA into QAT,
the training is finitely smoother. In addition, Quantisation
Correction has been introduced after the training process, to
minimise oscillations errors by linearly transforming the acti-
vations based on some pre-trained parameters. The YOLOv5s
network trained with such 4-bit quantisation on the COCO
dataset achieves a mAP of 0.34, with a baseline (full-precision
network) mAP of 0.374 – thus a decrease of about 11% (for
more results for different architectures, we refer to the article).
In [22], the authors proposed a Post-Training Quantisation
method that achieved a mAP of 0.196 for YOLOv5s and a
COCO dataset for 4-bit weights.

It is worth noting that both of these methods propose the use
of a linear quantisation scheme with additional mechanisms to
prevent significant drops in efficiency, as achieved in [21]. In
this paper, we propose a mixed precision solution, with the
network weights quantised logarithmically to powers-of-two,
and the rest of the activation and parameters quantised linearly.

Such a method allows a significant reduction in computa-
tional complexity due, firstly, to the possibility of changing
the multiplication operation to a bit shift and, secondly,
performing the remaining computations as integer operations.

The gains from converting multiplication operations to bit
shifting have been described in several papers. In [1], the au-
thors implemented GPU kernels for PoT-weighted computing
and showed gains over standard filtering with multiplication,
shortening the inference time for ResNet18 by 25%. In [23]
the authors show gains in energy and logic resources used
for 5-bit logarithmic quantisation relative to standard 16-bit
multiplier for UMC 55nm Low Power Process. The paper
[24] presents dynamic power consumption for a hardware
implementation of matrix multiplication for uniformly and
PoT quantised values. At 3 bits, one can assume a decrease in
power requirements of about 20%, at 5 bits – 35%, in favour of
PoT weights. As was previously shown in [19], the hardware
convolution layer accelerator on the Zynq UltraScale+ MPSoC
ZCU104 development board with a SoC FPGA chip, with 4-bit



PoT weights can be at least 1.4x more power efficient than
the linearly quantised version, and the difference in power
efficiency increases at higher chip clock frequencies.

In this paper, we propose a mixed-precision detector that op-
timises all parameters of a neural network: to our knowledge,
all previous work on logarithmic quantisation has referred to
bit-width reduction mainly of weights and, less often, also
of activation, neglecting the issue of the batch normalisation
layer. Although this layer is not a necessary part of build-
ing neural network architectures, it is a certain standard in
most classical solutions. It is therefore important to propose
a method that is usable for virtually any ready-made full-
precision model.

B. Object detection based on event data

Work on pedestrian and vehicle detection on the GEN1
event dataset [25] can be found in the literature. The dataset
itself was created from more than 39 hours of recordings
using the GEN1 event sensor from the Prophesee company,
collecting data at a resolution of 304x240.

In [26] authors proposed general methods for converting
models trained on image-like event representations to models
that operate asynchronously. Event data are represented by a
Sparse Recursive Representation, which can be updated as new
events arrive in a sparse manner (i.e. only where a change has
occurred). This form of input allows the use of so-called sparse
convolutions, recalculating only those activations which value
may have changed. Using such a model, a mAP of 0.129 was
obtained for the GEN1 set and event histogram representation
(0.145 using a standard convolutional neural network).

The paper [27] proposes a directly trained spiking network
– EMS-YOLO. The first convolution layer is trained by
converting the input to spikes, the subsequent layers consist
of EMS-Modules, which are fully spiking residual blocks with
LIF (Leaky Integrate and Fire) activation function. The input
of the network is an image-based 2D representation of events
within a specific time window. On the GEN1 set, mAP of
0.267 was achieved, for inference over 4 time steps, with a
Firing Rate of 21.15% neurons, and a network with 6.20M
parameters.

A spiking feature pyramid network (SpikeFPN), consisting
of an encoder backbone spiking neural network, a spiking
feature pyramid building network and a spiking multi-head-
detection module, was presented in [5]. Event data are rep-
resented using Stacking Based on Time (SBT), which, with
standard compression of the event stream into a frame, allows
some temporal information to be retained. A mAP of 0.223
was achieved for the GEN1 dataset.

The Group Event Transformer architecture is proposed in
[28], which is dedicated to process event data directly and
thus without the need to convert events to a 2D represen-
tation, which results in the loss of some timing or polarity
information. Events are embedded into Group Tokens based
on timing and polarity information, and then processed by
a transformer-based architecture using self-attention mecha-
nisms. On the GEN1 dataset, the proposed model achieves

mAP of 0.406, and with additional memory mechanisms to
support the challenges of capturing only moving objects by
the event camera, 0.484.

Similarly, in [29] the authors also propose to analyse events
directly, in the form of a structured (in terms of spatial
dimensions) point cloud. At each time step, the model based
on the Vision Transformer architecture processes a new data
stream together with previous states from recursive layers. The
recursive layers help to solve the problem of slow-moving
objects not captured by the event camera at each time step.
The described model achieves mAP of 0.472 on the GEN1
dataset, for the largest of the proposed architectures (for the
4x smaller model mAP 0.441).

A recursive architecture consisting of standard convolution
layers and LSTM blocks is presented in [7]. The model
directly processes the event data stream as a tensor with fixed
spatial dimensions. The proposed method achieves mAP of
0.4 for GEN1 dataset, with 24.1M parameters. In [30] the
authors proposed to use the YOLO (You Only Look Once)
model, together with an adaptive conversion of the events
to Hyper Histogram form, which allows the preservation of
both temporal and polarity information. In addition, a corre-
sponding modification of one of the key data augmentation
methods for YOLO detectors in the form of Shadow Mosaic
was also proposed. The model trained in such a way achieves
mAP of 0.47, while the analogous solution without Hyper
Histogram and Shadow Mosaic 0.394 (treated by the authors
as a baseline). In [31] the authors proposed another way of
representing event data - Temporal Active Focus (TAF) - along
with a small Agile Event Detector (AED) neural network
model with a corresponding event encoder extracting semantic
information from temporal to flat vector input. The architecture
of the detector itself is based on Darknet21 and head like for
YOLOX. Ultimately, the model achieves mAP of 0.454, with
14.8M of parameters and a baseline (YOLOX architecture and
Event Volume representation) of 0.35.

Table I summarises the discussed previous work on object
detection on the GEN1 dataset. It is worth noting that these
solutions are classical in the sense of computational precision,
i.e. they operate on 32- or 16-bit floating point numbers,
and mostly require GPU acceleration. For solutions based on
spiking neural networks ( [26], [27], [5]), the firing rate can
be as low as 20%, which of course translates into lower com-
putational complexity, but these solutions have much lower
accuracy (and the memory complexity remains constant).
Independently, due to their size, efficient use of the mentioned
models in low-power devices directly is virtually impossible.

For this article, the last two methods proposed by [30] and
[31] are particularly relevant: the former because of the used
YOLO architecture, and the latter because of the small size
of the network. To the authors’ best knowledge, these models
determine the current SoTA (in the sense of highest detection
accuracy) on the GEN1 dataset, and it is to these models
that we will compare our proposed mixed precision network.
The analysis shows that, besides the choice of architecture
(spiking network, classical deep detectors or transformers), the



TABLE I
OVERVIEW OF EXISTING OBJECT DETECTORS FOR THE GEN1 DATASET,

DISTINGUISHING MAP AND NUMBER OF MODEL PARAMETERS.

Method mAP Model size

ASCNN [26] 0.129 133M
EMS-ResNet [27] 0.267 6.2M

SpikeFPN [5] 0.223 11M
GET [28] 0.479 21.9M

RVT-S [29] 0.465 9.9M
RVT-T [29] 0.441 4.4M

Gray-RetinaNet [7] 0.44 32.8M
YOLOv5l [30] 0.47 46.5M

AED [31] 0.454 14.8M

representation of the input data itself (multidimensional tensor
or 2D image), but also its augmentation, is important.

In addition, object detection on event frames faces the
problem of continuity of information in case of objects moving
at variable speeds (in particular low or even static). This is an
issue not encountered in such form for algorithms designed
for standard images. However, this paper does not aim to
make further improvements in these areas, but to propose a
method with the lowest possible memory-computational com-
plexity, while maintaining the highest performance. Reducing
memory-computational complexity promotes efficient infor-
mation processing in embedded devices, particularly those
with the potential for significant parallelisation of computa-
tion: it can provide low latency while requiring little energy.

IV. POWERYOLO NETWORK

One of the most popular algorithms for object detection
are networks based on the YOLO (You Only Look Once)
architecture [32]. However, due to their memory and computa-
tional complexity, proper optimisation is required for efficient
inference of such architectures on low-power devices. In this
section, we first discuss the complexity of the YOLO network
and then present the proposed mixed-precision quantisation –
power-of-two and linear.

A. YOLO computational and memory complexity

The neural networks from the YOLO “family” consist of
three main blocks: backbone for image feature extraction, neck
for feature pyramid extraction (by combining features from
different levels of the backbone) and head as the final stage
determining bounding boxes, class labels, probabilities and
objectness scores. The architecture of the YOLO network has
evolved over the years, and the latest version widely accepted
by the community as SoTA is YOLOv8, available open source
at [32]. Depending on the number of backbone layers, the
network comes in several sizes (by convention: n, s, m, l, x),
and for the purpose of this paper the commonly used (due
to its good ratio of memory and computational complexity to
achieved accuracy) YOLOv8s version was chosen.

The entire network has 7.2 M parameters (and thus, in
the classical approach, 32- or 16-bit floating-point values),
of which almost 79% are the weights of the convolution

layers. Linear quantisation of the weights and activations to
8-bit numbers generally preserves the accuracy of the full-
precision network, while reducing the memory complexity by
4x (relative to 32-bit numbers) and increasing the throughput
of the mathematical operations by 16x [33]. If a further
reduction in the precision of the convolution layer weights
to 4-bit values is made, a very compact architecture both in
terms of memory and computation is obtained. In such a case,
according to [33], the throughput of mathematical operations
on the GPU increases up to x32. Implementing such a mixed-
precision network (with 4-bit weights and 8-bit activations)
in both eGPUs and dedicated processors therefore allows for
significant improvements in inference time, while reducing
memory complexity by almost x8. Using a logarithmic quan-
tisation scheme of weights to powers of two, we will addi-
tionally enable the conversion of multiply-accumulate (MAC
– Multiply ACcumulate) operations to shift-accumulate (BAC
– Bitshift ACcumulate) operations, ultimately introducing a
radical simplification in neural network computation.

B. Mixed Precision Quantization

In this work, we propose to use mixed quantisation, with
convolution layer weights quantised logarithmically to 4-bit
powers of two (so each weight can be represented by 2n

where n is integer) and activations quantised linearly to 8-
bit values. Bias is customarily quantised to a 32-bit number to
avoid overflow during the accumulation of convolution results.
Linear quantisation of 8-bit activations allows the network to
maintain high performance, without the need to re-train the
quantised network, but only by calibrating the values of the
scaling factors and activation offset on some representative set
of input data (customarily a subset of the training data).

Using PoT weights quantisation, which concentrates more
quantisation intervals around zero thus mimics the shape of
the distribution of weight values in the convolution layer, we
can achieve better accuracy results with lower than standard
8-bit bit widths.

PoT quantisation is used in the so-called quatisation aware
training (QAT). The weights of the quantised network are
initialised with the trained full-precision network and then
the quantised network is trained (fine-tuned) for a relatively
small number of epochs. Due to the discontinuity of the
quantisation function, the gradient method cannot be used
explicitly. The forward pass is done using quantised weights,
and during backpropagation the gradients are computed using
full precision equivalents (after the weights are updated, the
network is re-quantised).

Another method of reducing memory and computational
complexity in neural network inference is the fusion of con-
volution layers with batch normalisation layers according to
Eq.(1):

ybn =
xconv − µ√

σ2 − ϵ
γ + β =

γ√
σ2 − ϵ

xconv − µ
γ√

σ2 − ϵ
+ β (1)

where xconv is the output of the convolution layer. Thus,
the weights w and the bias b of the filters for inference are



modified accordingly: wfused = γ√
σ2−ϵ

∗ w and bfused =

b− µ γ√
σ2−ϵ

+ β.
Naturally, such a modification does not affect the accuracy

of the neural network, but it reduces the required number
of multiplication and addition operations, and the number of
parameters. Introducing exactly such a fusion to a power-of-
two network would result in the weights no longer being in
the form of powers of two, and therefore losing an important
property of the described method. In order to reduce the
number of operations, we propose a small yet powerful mod-
ification. First, since the bias is quantised linearly, it can be
successfully modified according to the standard fusion scheme
(Eq. (1)). Next, we propose to combine the multiplier usually
associated with weights not with weights, but with the scaling
factor of the quantisation operation. In this way, we reduce as
much as possible all the additional computations introduced
by batch normalisation layer, while only slightly increasing
the memory complexity relative to the model after standard
fusion - instead of one scaling factor for the whole layer,
we get scaling factors for each output feature map separately,
and the batch normalisation completes during re-quantisation
between layers.

Ultimately, we obtain a mixed-precision model, efficient in
terms of memory and computational complexity, for which
the calculations in the standard convolution layer – batch
normalisation block can be written with the simplified equation
(2), where ϕ =

√
σ2 − ϵ:

yq =
γ

ϕ

sxsw
sy

(

k∑
i=0

k∑
j=0

xij
q >> wij

pot +Bq) (2)

where sw, sx, sy are the scaling factors for quantising the
weights, block inputs and block outputs, k is the dimen-
sions of the convolution filter, xqis the activation from the
previous layer quantised to INT8, Bq is the modified bias
B = γ(b−µ)

ϕ + β quantised to INT16, and wpot are weights in
the INT4 format, in powers of two.

For re-quantisation between successive layers of the neural
network during inference, for PoT quantisation the factor
γ
ϕ

sxsw
sy

is in a form of vector. In comparison, in case of linear
quantisation with standard convolution and batch normalisa-
tion fusion, it’s a scalar (with value sxsw

sy
). For simplicity, the

indices indicating the output feature map are omitted in the
equation.

Although the granularity of quantisation can be chosen in
many ways, in this paper we chose the layer-wise quantisation.
This decision is based on the following facts: firstly, the shape
of the distribution of weights in the convolution layer of the
network is logarithmic; secondly, other schemes are charac-
terised by higher computational complexity. For example in the
case of the channel-wise scheme, quantisation is performed for
each filter separately, which significantly increases the training
time. For the network in question, experiments indicated as
much as a 25 times increase in the duration of one epoch.
However, due to the proposed convolution and batch normal-
isation fusion scheme, channel-wise quantisation would not

TABLE II
OBJECT DETECTION PERFORMANCE FOR NETWORKS: FULL-PRECISION

(BASELINE), WITH UNIFORM (INT*) AND POT QUANTISATION (LOG*).

Architecture Quantisation mAP50 mAP50-95

YOLO8s

Baseline 0.586 0.340
INT8 W/A 0.582 0.330

INT4W 0.523 0.288
LOG4W 0.566 0.312

LOG4W/INT8A 0.554 0.301

introduce additional computation during inference, and the
impact on accuracy remains an open topic. Nonetheless, as
shown in section V, the layer-wise scheme allows for very
high accuracy.

V. RESULTS

In this section, we present the results of the proposed
PowerYOLO network for the task of object detection on event
camera GEN1 dataset. We present comparison both with other
solutions for the same task, and with other networks belonging
to the TinyML group. In addition, we show the applicability
of the obtained results for building a hardware accelerator.

A. Mixed Precision YOLO

Neural network training was performed based on YOLO8s
code available in [32], suitably modified to perform quantised
training. The full precision network was trained for 100 epochs
with 4 A100 NVIDIA GPUs, using the SGD method, with a
momentum of 0.9 and an initial learning rate of 0.01 reduced
linearly to 0.0001. The weights of the full precision network
were then used to initialise the quantised model. The quantised
network was trained for 20 epochs, using single A100 NVIDIA
GPU, also using SGD and with a low initial learning rate
value of 0.0001. The value of the learning rate was reduced at
epochs 5, 8 and 15 according to lr = γlr, where γ = 0.1. The
Exponentially Moving Average (EMA) model was used during
training – the final model parameters were a weighted average
of the parameters from each training iteration (this average is
quantised logarithmically, and the EMA model is quantised
after each update). In the conducted experiments, it was found
that disabling EMA in the quantised learning process results
in a decrease in the performance of the network in terms of
mAP by several percents. Table II shows the training results
of the Yolov8s network on the Gen1 dataset. The mAP50 and
mAP50-95 are averaged over the two object classes specified:
vehicles and pedestrians. In general, the metric is defined
as area under the precision-recall curve and is widely used
for evaluation of detection algorithms. Quantisation to 8-bit
integer values after custom QAT PoT training was performed
using the OpenVino library (Fig. 2 demonstrates the detector
operation).

A decrease in detection performance is evident for both
networks quantised to INT8 and LOG4, with the former being
approximately 1% (mAP50), 3% (mAP50-95) and the latter
3.5% (mAP50), 8.3% (mAP50-95) and 5.5% (mAP50), 11.5%



Fig. 2. Example results of object detection using PowerYOLO mixed
precision network (bottom) compared to labels (top).

(mAP50-95) depending on whether other parameters and ac-
tivations are also quantised. Using the same QAT approach,
we also trained a model with 4-bit width uniformly quantised
weights. The gap to baseline model is almost 2 times higher
than in case of LOG4 model, which shows the superiority
of logarithmic quantisation. However, it’s worth noting that
there are efforts in the literature to minimise the gap between
full precision and low-bitwidth uniformly quantised models by
introducing additional mechanisms, like in [34].

The comparison with SoTA has to be done in two steps,
as to the authors’ knowledge there are no other solutions
that process event data using YOLO networks with very low
computational precision. Thus, it is first necessary to refer
to other object detectors developed on the Gen1 dataset. A
comparison with the full-precision SoTA for the Gen1 dataset
is shown in Table III. To enable the best possible comparison,
we have trained the YOLOv8l network in addition to the
YOLOv8s network. The solution proposed in [30] uses the
YOLOv5l network with a slightly different representation of
the event data. Without the additional mechanisms proposed by
the authors, and therefore with the difference only due to the
way the data are processed before and after the neural network,
and the way the event data are represented, the difference is
small, less than 2% for the mAP50-95 index in favour of [30].
On the other hand, considering a model with Hyper Histogram
event representation and with data augmentation adapted to the
event representation, the difference is more than 20%.

Secondly, low-precision YOLO networks should also be
analysed. Table IV compares our solution with other 4-bit
detectors in which all convolution layer weights except the
first and last are quantised. It is worth noting that in [22]
the solution is based on Post Training Quantisation, which,
as a rule, with such low precision computatnois, does not
allow to maintain satisfactory performance. In [34], the authors
also quantised the activations, so a direct comparison to our
model in any version is not possible – even comparing to the
mixed-precision version, for which in our case the difference
to the floating-point version is about 11.5%, it is hard to say
unequivocally which model performs better. In the case of the
mixed-precision version, we additionally quantise the bias and

the batch normalisation parameters, which has, as the results
presented in Table II indicate, a major impact.

Nevertheless, our solution is comprehensive, i.e. it reduces
computation on floating-point numbers to a minimum (actually
limiting it only to re-quantisation operations, which is unavoid-
able with any quantisation) and targets all elements (all layers)
of the information flow in the neural network. For this reason,
we believe that, in terms of ultimate efficiency with respect
to memory-computational complexity, our solution is at least
as good as [34], especially given the potential for reducing
computational complexity introduced by using quantisation for
weights with powers of two (as we show in section ??), and
thus we set a new SoTA in this category.

Moreover, as was already established in [3] and [19], the
hardware implementation of neurons and layers based on BAC
(Bitshift Accumulate) units leads to significant area and power
reductions. For a single processing element with weights of
bit width 4 and 8-bit activations, using PoT weights allows
to increase the power efficiency by a factor of 2. Using this
PE for a complete convolution layer leads to 1.6 increase of
power efficiency and allows for higher frequency operation,
as shown for ZCU 104 platform.

VI. CONCLUSION

In this work we presented an extremely efficient, mixed
precision PowerYOLO detector achieving mAP of 0.301 for
the GEN1 event dataset. By using both logarithmic quantisa-
tion of weights and linear quantisation of activations and other
parameters, we eliminated most of floating point operations in
the inference flow, allowed replacing multiplication with effi-
cient bit-shifting, and reduced the model size almost 8x while
still proposing an accurate detector. In order to close the gap
between floating point solutions, for future work we consider
extending the training flow with shadow mosaic augmentation
(proper for event data) and using other event representation
techniques, possibly allowing to deal with slowly moving
and static objects. Our initial thesis stated that for embedded
applications one should address the algorithm, hardware and
sensor (data) at once, and with our solution we show that
comprehensive analysis of all those elements leads to truly
tiny, yet powerful, machine learning solution.
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