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ABSTRACT

This paper introduces a novel retinal-inspired filter which is
applied on video streams. We mathematically prove that un-
der specific assumptions the spatiotemporal convolution turns
into a spatial convolution with a short lifespan temporal ker-
nel. As a consequence, the filter is applied on each image of
the video stream separately. We analyze how each image is
decomposed into a group of subbands, each one of which ap-
proximates the image providing different kind of information.
Afterwords, we propose an algorithm to reconstruct each im-
age by exploiting the group of subbands. Finally, we defend
our mathematical proofs by providing numerical simulations
which show the relevance of our study.

Index Terms— Retinal-inspired processing, non-separable
spatiotemporal filter, frame theory, dual frame.

1. INTRODUCTION

The research related to image and video compression algo-
rithms remains one of the most challenging scientific fields.
This is due to the fact that images and videos are widely
utilised not only for personal use but also for security rea-
sons. As a result, a big amount of data need to be transmitted
and/or saved in real time satisfying multiple constraints.
These constraints are mostly related to the network band-
width, the memory of the system, the distortion of the data
or the energy of the system. The combination of all these
constraints would give an optimal solution but, in practice,
one should seek for a relevant trade-off between them.

Closed-Circuit TeleVision systems (CCTV) are one of the
video processing applications which have been involved in the
exponential increase of data. The most important challenge in
this kind of systems is to minimize the energy consumption of
the system which is totally related to the compression rate and
the bandwidth of the real time transmision. At the same time,
whatever the bandwidth is, it is always necessary to transmit
only the most informative and meaningful data such that the
reconstruction quality will be the best possible one. As a re-
sult, it would be advantageous for CCTV system if we could
propose an algorithms which saves power.
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Trying to deal with the above problem we got inspired by
the visual system in order to propose an alternative decom-
position model for video. The retinal function has been ex-
plicitly modeled by neuroscientists and the experimental re-
sults have shown that this should be an efficient “compres-
sion” model especialy with respect to the energy minimiza-
tion [1, 2]. This is due to the fact that the retina is a layered
structure of different kinds of cells, the amount of which de-
creases while they turn to connect to the optic nerve [3].

In this paper, our goal is to study the retinal-inspired trans-
formation from the signal processing point of view in order
to save power and set it as basis for our future bio-inspired
dynamic codec. The first attempt in modeling this kind of
filter was proposed as a bio-inspired codec of natural images
by [4]. The authors tried to approximate the spatiotemporal
variations of the retinal filtering using a Difference of Gaus-
sians (DoG) pyramid based on [5] and [6], considering at the
same time that each layer appears at different moment accord-
ing to an exponential temporal function. We improve this fil-
ter by taking into account explicitly the time in the design of
our novel non-Separable sPAtioteMporal (non-SPAM) filter.
The advantage of the non-SPAM filter is the fact that when
a stimulus appears its non-SPAM transformation is based not
only on the spatial neighborhood for the given time but also
on previous times. As a result, this is a spatiotemporal trans-
formation which enables to enrich the details of the signal.

In section 2, we introduce the non-SPAM filter and ex-
plain its bio-inspired nature. Then, in section 3, we introduce
how the filter is able to decompose the input video. We prove
that the non-SPAM filter is invertible in section 4. In section
5, we propose the non-SPAM synthesis based on the frame
theory. The numerical results are given in section 6. Section
7 concludes the paper.

2. OBJECTIVE AND RETINAL MODEL

The general aim of this study is to introduce a novel codec
for videos, captured for surveillance and/or security reasons,
which need to be transmitted through the network to a client
who is going to display and analyze the scenes (Fig. 1). The
variations of the network bandwidth which depend on the lo-
cation of the captured area are combined to the complexity of
the scene. As a result, it is necessary to built a special archi-



tecture which stands as a trade-off between them. For that rea-
son, we have been inspired by the visual system which codes
the luminance of light that reaches the eyes and transubstanti-
ate them into spike trains (electrical impulses) which include
all the necessary information of the input signal. It seems that
this kind of code is efficient enough in order to be used in
the reconstruction of the signal which is necessary in image
processing.

Fig. 1: Non-SPAM compression schema. A video stream is
captured by a CCTV system. Each image is filtered by the
non-SPAM in order to be transmitted to the user where it is
decoded and displayed. The time ∆t between two images
equals the life-time of the temporal filters Rc(u) and Rs(u)
which stand for the temporal behavior of the non-SPAM and
tune the spatial changes of the filter.

Our primary goal is to mimic the anatomy of retina and
the functions of each group of the retinal cells in terms of sig-
nal processing. Based on [2, 7] we assume that the group of
cells which form the outer plexiform layer (photoreceptors,
horizontal and biopolar cells) receives the light and spatially
decomposes the signal with respect to their sensitivity into
blurred versions. Each of these blurred versions is tempo-
rally enriched in details while the signal is transmitted on the
way to ganglion cells. These are the features that our filter,
the non-Separable sPAtioteMporal (non-SPAM) filter, tries to
mimic having a spatial behavior which varies with respect to
time.

2.1. Retinal Model

We consider that a video consists ofN different images. Each
one of which is generated in specific time gi and lasts until
time gi+1 when the next image appears. Throughout the pa-
per, we consider that a video is composed of images instead of
frames in order to avoid any confusion with the frame theory
vocabulary. Let us define a video in continuous time:

V (x, t) =

N∑
i=1

fi(x)1[gi,gi+1](t), (1)

where x ∈ R2, t ∈ [0, T ], T ∈ R+ is the length of the
video, fi(x) stands for the i-th image of the video, N is the

total number of images which form the video stream and
1[gi,gi+1](t) is the indicator function which equals to 1 if
gi ≤ t ≤ gi+1, and 0 otherwise. The ideal spatiotempo-
ral convolution of the non-SPAM and the video results in
the function A(x, t) which is called the activation degree is
defined by:

A(x, t) = K(x, t)
x,t
∗ V (x, t) (2)

where
x,t
∗ is the convolution with respect to space and time.

The non-SPAM filter mimics the function of the outer plexi-
form layer of the retina. The space stands for the spatial trans-
formation of the receptors and the time for temporal improve-
ment of the initial transform by the center-suround structure
of horizontal and bipolar cells [7]. With this filter we obtain a
retinal-inspired image decomposition instead of the conven-
tial ones i.e DCT [8], DWT [9] or filter banks [5]. Based
on [2], we define the non-SPAM filter in continuous time and
space, as:

K(x, t) = C(x, t)− S(x, t), (3)

whereC(x, t) and S(x, t) are the center and the surround spa-
tiotemporal filters given by (4) and (5) respectively:

C(x, t) = wcGσC
(x)W (t), (4)

S(x, t) = wsGσS
(x)
(
W

t∗ EτS
)

(t), (5)

where wc and ws are constant parameters, GσC
and GσS

are
spatial Gaussian filters standing for the center and surround
areas respectively, and EτS is an exponential temporal filter.
The center temporal filter W (t) is given by:

W (t) = EτG,n
t∗ (δ0 − wcEτC ) (t), (6)

where the gamma temporal filter EτG,n(t) is defined by:

Eτ,n(t) =
tn exp (−t/τ)

τn+1
, (7)

with n ∈ N, τ is a constant parameter (Eτ,n(t) = 0 for t < 0),
EτC is an exponential temporal filter, δ0 is the dirac function

and
t∗ stands for the temporal convolution. In case that n = 0,

the gamma filter turns to an exponential filter. The convo-
lution of the temporal filter W (t) with the exponential filter
EτS (t) is related to the delay in the appearance of the sur-
round temporal filter with respect to the center one.

3. RETINAL MODEL ANALYSIS

The calculation of the activation degree A(x, t) in (2) applied
to the video V (x, t) in (1) turns into a spatial convolution with
a time-varying kernel as proved in the following proposition.
To simplify the calculation, it is assumed that gi+1− gi = ∆t
is constant for all i = 1, . . . , N .



Proposition 1. For all t < g1, the activation degree A(x, t)
in (2) applied on V (x, t) in (1) is A(x, t) = 0. For t ≥ g1,
A(x, t) can be rewritten as:

A(x, t) =

N∑
i=1

φ(x, t− gi)
x∗ fi(x), (8)

where φ(x, u) is a spatial DoG filter weighted by two tempo-
ral filters Rc(u) and Rs(u) satisfying:

φ(x, u) = wcGσC
(x)Rc(u)− wsGσS

(x)Rs(u), (9)

Rc(u) =

u∫
max{0,u−∆t}

W (`)d`, (10)

Rs(u) =

u∫
max{0,u−∆t}

W (`)
`∗ Eτs(`)d`, (11)

and Rc(u) = Rs(u) = 0 for u < 0.

The proof of Proposition 1 is omitted due to the lack
of place. According to Proposition 1, the activation degree
A(x, t) depends on all the images fi(x) occurring before time
t but the following corollary shows that, under some mild as-
sumptions, the activation degree can be processed image per
image. Before presenting this corollary, let us introduce a
useful lemma.

Lemma 1. The function φ(x, u) is a continuous and infinitely
differential function for all u ≥ 0 and all x ∈ R2 such that:

lim
u→+∞

φ(x, u) = φ(x),∀x ∈ R2, (12)

where φ(x) is a DoG filter independent of u.

Lemma 1 shows that φ(x, u) converges toward a constant
spatial DoG filter as u tends to infinity. This convergence is

Fig. 2: Temporal filters Rc(u) and Rs(u).

illustrated in Fig. 2. Let ε > 0 be a small positive constant.
According to Lemma 1, there exists tc = tc(ε) > 0 such that

|φ(x, u)− φ(x)| < ε,∀u ≥ tc,∀x ∈ R2. (13)

The following corollary comes from Proposition 1 together
with Lemma 1.

Corollary 1. Let ε > 0 and assume that the parameters of
φ(x, u) are chosen such that tc(ε) < ∆t. Let t such that
g1 ≤ t ≤ gN+1 and i be the unique integer such that gi ≤
t < gi+1. Then, the activation degree A(x, t) in (8) can be
approximated by

Â(x, t) = fi(x)
x∗φ(x, t−gi)+

∑
j: gj+tc<t

fj(x)
x∗φ(x) (14)

where |Â(x, t)−A(x, t)| < η with η a small positive constant
directly proportional to ε. It follows that:

Â(x, t) = Ai(x, t) +Bi(x) (15)

where Ai(x, t) is the filtered version of fi(x):

Ai(x, t) = φ(x, t− gi)
x∗ fi(x), (16)

and Bi(x) is defined recursively by B1(x) = 0 and

Bi+1(x) = Bi(x) +Ai(x) (17)

with
Ai(x) = φ(x)

x∗ fi(x).

The interest of Corollary 1 is to show that, at time t, the
activation degree A(x, t) can be approximated by Â(x, t)
which only depends on t via Ai(x, t). The remaining term
Bi(x) in (15) corresponds to the Aj(x, t)’s for j < i
occurring before time gi in (8). Since Lemma 1 yields
Aj(x, tc) ≈ Aj(x), the remaining term Bi(x) is (almost)
time independent and it does not convey any information on
fi(x). The factor Aj(x) is transmitted at the end of time in-
terval [gj , gj+1], hence, in practice, it is not useful to compute
the full convolution Â(x, t) in (15). It is sufficient to apply
the non-SPAM filter on image fi(x) during the time interval
[gi, gi + tc] and to transmit Ai(x, t).

The above corollary is crucial for the reason that it enables
the simplification and representation of the non-SPAM filter
like a block of time-varying DoG kernels. The DoG kernels
have been extensively studied in the past [6, 10, 11] and they
can be processed efficiently. Fig. 3 shows the non-SPAM de-
composition of one image, say fi(x), which is extracted from
a video stream. We have selected 5 different time samples
t ∈ {t1, t2, t3, t4, t5} of Ai(x, t) where gi ≤ tj ≤ gi+1.

4. NON-SPAM FRAME

The goal of this section is to recall that the non-SPAM fil-
ter, when it is applied on each image separately, is invertible
and permits us to reconstruct the video image per image. For
this reason, we establish that the non-SPAM filter has a frame
structure according to the frame theory [11, 12]. Let us con-
sider the image fi(x) over the time interval [gi, gi+1]. As un-
derlined in the discussion following Corollary 1, the decoder



(a) Image fi(x) (b) Time t1 (c) Time t2

(d) Time t3 (e) Time t4 (f) Time t5

Fig. 3: Non-SPAM filter applied to fi(x) at 5 time samples.

receives a stream of images Ai(x, t) described by (16) and its
goal is to reconstruct fi(x) from Ai(x, t) for t ∈ [gi, gi+1].

For numerical purpose, we need to discretize the non-
SPAM filter in space and in time. Let x1, . . . , xn ∈ R2

be some sets of spatial sampling points and t1, . . . , tm ∈
[gi, gi+1] be temporal sampling points. Let us denote u1 =
t1 − gi, . . . , um = tm − gi be the elapsed times between the
tj’s and gi. Without any loss of generality, it is assumed that
the ui’s are the same whatever the considered time interval
[gi, gi+1]. As a consequence, the continuous spatial convolu-
tion Ai(x, t) is approximated by the discrete convolution:

Ai(xk, tj) = φ(xk, tj − gi) ~ fi(xk)

=

n∑
p=1

φ(xk − xp, uj)fi(xp) = Ai(xk, uj),

for all 1 ≤ k ≤ n and 1 ≤ j ≤ m. Let ϕk,j be the row vector
of Rn defined by

ϕk,j =
(
φ(xk − x1, uj), . . . , φ(xk − xn, uj)

)
. (18)

Let us denote fi the sampled version of the image fi(x):

fi = (fi(x1), . . . , fi(xn)) , (19)

and ‖fi‖ be the Euclidean norm of fi. In our previouw work,
we have proven that the family of vectors Φ is a frame [13,14].

5. RETINAL MODEL SYNTHESIS

The optimal reconstruction of the input video, image per im-
age, is possible when we provide to the decoder all the coeffi-
cients of the non-SPAM image. At time tm ending the interval
[gi, gi+1], the optimal estimate f̂i of fi is given by:

f̂i = (Φ>Φ)
−1

Φ>Ai, (20)

where M−1 denotes the inverse of a matrix M and M> de-
notes its transpose. With a short abuse of notation, Φ is a
family of vector of size the nm × n given by Φ = ϕk,j :
1 ≤ k ≤ n, 1 ≤ j ≤ m, Ai is another vector which is
given by Ai = Ai(xk, uj) : 1 ≤ k ≤ n, 1 ≤ j ≤ m. The
dual frame, which is necessary to have a perfect decoding at
time tm [11, 12], is (Φ>Φ)−1Φ>. Instead of computing the
above matrix operator which is time consuming and resource
demanding, we can easily shown that (20) is a solution of the
following least squares problem:

f̂i = arg min
fi∈Rn

 m∑
j=1

‖φj ~ fi −Ai,j‖2
 , (21)

where the vectors φj and Ai,j are defined by:

φj =
(
φ(x1, uj), . . . , φ(xn, uj)

)
, (22)

Ai,j =
(
Ai(x1, uj), . . . , Ai(xn, uj)

)
. (23)

Hence, the estimate f̂i is computed by using a gradient de-
scent algorithm.

6. NUMERICAL RESULTS

We have captured a video with a rate of 20 images per second
and we have applied the non-SPAM on each image of size
64×64 using the software tool MATLAB.

(a) Original
Image

(b) Reconstructed
Image

Fig. 4: Reconctruction of the 400th image of the video
stream.

All the parameters which are related to the lifespan of
the non-SPAM filter are tuned according the video rate (see
Corollary 1) ∆t = 50msec, τC = 10. ∗ 10−3sec, τS =
9. ∗ 10−4sec, τG = 1. ∗ 10−3sec, n = 5, wc = 0.75, and
ws = 1. The rest of the parameters which are related to
the spatial domain, σc, σs, wc, ws, are biologically plausible
and they have been obtained by modeling the center-surround
structure of the retinal cells’ receptive fields [1, 11].

The reconstruction results generated by the total number
of coefficients are almost perfect and they are illustrated in
Fig. 4. Hence, there is some redundancy within the trans-
mitted coefficients. For this reason, we propose to apply the
Rank-Order-Coding (ROC) model proposed in [1] . The ROC



model is traditionally used to convert an analog signal into a
rank order of electrical impulses (spikes). The spike which is
first emitted has been caused by a rapid excitation because of
a strong signal.

In this study, we apply the ROC model only with respect
to the informative coefficients which are generated by the
non-SPAM transformation but we do not aim to produce any
spikes. We sort in a descending order the coefficients of each
decomposition layer and we select a percentage of coeffi-
cients inAi keeping the ones with the highest energy omitting
the rests. In Fig. 5, we have selected one image of the video
stream and we have decided to use 5 different percentages of
the highest values of the activation degree of 5 DoG kernels.

(a) Original Image
f1000(x)

(b) 20% of
coefficients

(c) 40% of
coefficients

(d) 60% of
coefficients

(e) 80% of
coefficients

(f) 100% of
coefficients

Fig. 5: Reconstruction based on the ROC model.

7. CONCLUSION

This paper proposes to study the analysis and the synthesis
of a retinal-inspired filter which is applied on video streams.
We have shown that this filter can be applied image per image
without any significant loss of information. Our future goal is
to adapt this filter into a bio-inspired codec which is going to
produce an event-based code.
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