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Abstract—This paper proposes a solution for energy-efficient
communication in reconfigurable intelligent surface (RIS)-
assisted unmanned aerial vehicle (UAV) networks. The limited
battery life of UAVs is a major concern for their sustainable
operation, and RIS has emerged as a promising solution to
reducing the energy consumption of communication systems.
The paper formulates the problem of maximizing the energy
efficiency of the network as a mixed integer non-linear program,
in which UAV placement, UAV beamforming, On-Off strategy of
RIS elements, and phase shift of RIS elements are optimized. The
proposed solution utilizes the block coordinate descent approach
and a combination of continuous and binary genetic algorithms.
Moreover, for optimizing the UAV placement, Adam optimizer is
used. The simulation results show that the proposed solution
outperforms the existing literature. Specifically, we compared
the proposed method with the successive convex approximation
(SCA) approach for optimizing the phase shift of RIS elements.

Index Terms—RIS-assisted UAV network, energy-efficient com-
munications, mixed-integer non-linear program, block coordinate
descent, genetic algorithm, Adam optimizer.

I. INTRODUCTION

1In recent years, unmanned aerial vehicles (UAVs) have
gained immense popularity due to the high likelihood of
establishing line-of-sight connections with ground nodes, rapid
deployment, and adjustable mobility [1], [2]. With such at-
tributes, UAVs are being employed for various applications
such as surveillance, rescue missions, delivery, and commu-
nication, among others. The development of UAV communi-
cation networks has been identified as a promising solution
to address the limited coverage area of existing terrestrial
communication networks, especially in remote areas.

However, the limited battery life of UAVs is a major con-
cern for their sustainable operation. The conventional UAVs
are equipped with communication systems that consume a
significant amount of energy, resulting in limited flight time.
To overcome this challenge, the concept of reconfigurable
intelligent surface (RIS) has emerged as a promising solution
to reduce the energy consumption of communication systems.
RIS has the potential to enhance the signal-to-interference-
plus-noise ratio (SINR) of wireless channels, and thereby

1This work was supported in part by funding from the Innovation for Defence
Excellence and Security (IDEaS) program from the Department of National
Defence (DND).

reduce the power consumption of the communication sys-
tem, enabling UAVs to fly for a longer duration. Moreover,
RIS can provide communication links to the blocked ground
users (GUs) that do not maintain direct access to the UAVs.
Therefore, by integrating RISs and UAVs, RIS-assisted UAV
networks reduce power consumption of UAVs while improving
coverage and connectivity significantly [1].

In the current literature, communication-efficient problems
were explored for RIS-assisted UAV networks, e.g., [3]-
[15]. In particular, the authors of [3] explored an adaptive
RIS-assisted aerial-terrestrial downlink communication system
between UAVs and multi-users by optimizing RIS element
allocation and reflective coefficients. In [4], the authors in-
vestigated UAV-user communications with RIS assistance to
maximize the worst-case secrecy rate, considering transmitter
power allocation, RIS beamforming, and UAV trajectory. In
[5], the authors proposed a RIS-assisted UAV communication
system to maximize the received signal power at GUs by
jointly optimizing passive and active beamforming and UAV
trajectory. Moreover, the work in [6] addressed the energy
consumption problem for both orthogonal multiple access
(OMA) and non-orthogonal multiple access (NOMA) cases
by jointly optimizing the UAV’s trajectory and the passive
beamforming of the RIS elements.

Several works also considered the use of RIS-assisted
systems [7], [8], [9], which proposed an aerial RIS (ARIS)-
assisted system that satisfies the ultra-reliable low latency
communication (URLLC) constraints. In [10], the authors
investigated total transmit power minimization for heteroge-
neous networks that use multiple UAVs and RISs. However,
they did not consider energy efficiency which is defined as
the ratio of total sum-rate of GUs to the total power con-
sumption of system. Energy efficiency has been widely used
to evaluate the performance of conventional communication
systems that rely solely on ground based stations [11], [12],
[13]. Reference [14] focused on maximizing energy efficiency
for a single ARIS-assisted downlink communication with a
single user and did not consider the multiple ARIS-assisted
scenario. In [15], the authors considered a multiple ARIS
configuration to maximize the average energy efficiency for
downlink communication between the base station and the
GU. The majority of previous works focused on optimizing
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either the sum-rate or power consumption objective functions.
However, most proposed solutions employed computationally
expensive methods such as successive convex approximation
(SCA) and reinforcement learning. Additionally, there is a
higher likelihood of getting trapped in a local minimum when
utilizing the SCA method.

Motivated by the aforementioned limitations of the existing
related studies, this paper focuses on the energy-efficient
communication in RIS-assisted UAV networks. In this context,
a RIS is deployed to enhance wireless connectivity while
reducing UAV movement. We formulate the problem of max-
imizing the energy efficiency of the network as a mixed
integer non-linear program in which UAV placement, UAV
beamforming, On-Off strategy of RIS elements, and phase
shift of RIS elements are simultaneously optimized. Since
solving this problem is computationally intractable, we use
the blocked coordinate descent (BCD) approach. BCD is an
optimization algorithm that solves a large-scale optimization
problem by iteratively optimizing a subset of variables while
holding the other variables fixed. We utilize a continuous
genetic algorithm to optimize the phase shift of RIS elements
and the beamforming of UAV, whereas a binary genetic
algorithm is employed to optimize the On-Off strategy of the
RIS elements. Moreover, we optimize the placement of UAV
by using the Adam optimizer [16]. Our simulation results show
that our proposed method offers improved energy efficiency as
compared to the existing literature.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a RIS-assisted UAV network with one UAV,
one RIS, and multiple ground users (GUs). All GUs and UAV
have single antennas. The UAV can provide good connectivity
for the GUs. To further improve performance, the UAV utilizes
a RIS. Fig. 1 shows an example of the considered system
model. The UAV flies at a fixed altitude ZU for T seconds to
provide communication services for K GUs with 0 altitude.
By using a Cartesian coordinate system, we can represent
the horizontal position of the UAV, RIS, and the k-th GU as
WU = [xU , yU ]

T , WR = [xR, yR]
T , and Wk = [xk, yk]

T for
k = 1, 2, . . . ,K. We consider that the RIS and GUs maintain
fixed positions, but the position of the UAV can be changed.
The RIS is deployed at the altitude of ZR equipped with a
controller and M = Mc ×Mr reflecting units (RUs) to form
a uniform array (UA). Specifically, each row of the UA has
Mr RUs with an equal distance of dr meters and each column
of the UA consists of Mc RUs with an equal distance of dc
meters. These RUs can reflect the received signals in adjustable
phase shifts. The phase-shift matrix of the RIS is modeled as
the diagonal matrix Θ = diag(ejθ1 , ejθ2 , . . . , ejθM ), where
θm ∈ [0, 2π) for m = 1, 2, . . . ,M . Considering the power
consumption of RISs due to controlling the phase shift values
of the reflecting elements [15], it is often not energy efficient to
turn on all the RIS elements. Let us define the binary variable
xm ∈ {0, 1}, where xm = 1 indicates that the m-th RIS ele-
ment is on, and 0 otherwise. Defining X = diag(x1, . . . , xM ),

Fig. 1. A typical RIS-assisted UAV communication system.

the effective phase-shift matrix of the RIS can be written as
Θe = ΘX .

B. Channel Model

The channel between the UAV and the k-th GU is given by
[17]

hUGk =

√
β0

(dUGk )
αUG

k

(√
κUGk

κUGk + 1
+

√
1

κUGk + 1
ĥUGk

)
,

where dUGk :=
√
||Wk −WU ||2 + Z2

U is the distance between
the UAV and the k-th GU, β0 is the path loss at the reference
distance of 1 meter, αUGk represents the path loss exponent
of the link from the UAV to the k-th GU, κUGk denotes the
corresponding Rician factor, and ĥUGk ∼ CN (0, 1) is the
scattering component of the k-th GU.

The link from the UAV to the RIS is presumed by a line-
of-sight (LOS) channel, and the channel gain can be found by
[18]

hUR =

√
β0

(dUR)
2h

UR
LOS ,

where dUR :=

√
||WR −WU ||2 + (ZR − ZU )2 is the dis-

tance between the UAV and the RIS, and hURLOS represents
the array response component which can be denoted by

hURLOS =

[1, e−j
2πdr

λ ϕURψUR

, . . . , e−j
2πdr

λ (Mr−1)ϕURψUR

]
T

⊗[1, e−j
2πdc

λ φURψUR

, . . . , e−j
2πdc

λ (Mc−1)φURψUR

]
T

where ϕUR = yU−yR
||WR−WU || , φUR = xR−xU

||WR−WU || , and
ψUR = zU−zR

dUR . We point out that ϕUR, φUR, and ψUR

are the cosine of horizontal angle-of-arrival (AoA), sine of
horizontal AoA, and sine of vertical AoA, respectively.



Considering the channel between RIS and each GU, we
assume that the RIS-aided channels are modeled by the Rician
fading. Thus, the channel gain is given by [17]

hRGk =

√
β0

(dRGk )
αRG

k

(√ κRGk
κRGk + 1

hRGk,LOS

+

√
1

κRGk + 1
ĥRGk

)
,

where dRGk :=
√
||Wk −WR||2 + Z2

R is the distance between
the RIS and the k-th GU, αRGk denotes the path loss exponent
of the link between the RIS and the k-th GU, κRGk is
the corresponding Rician factor, ĥRGk ∼ CN (0, IM ) is the
scattering component, and the LOS component is

hRGk,LOS =

[1, e−j
2πdr

λ ϕRG
k ψRG

k , . . . , e−j
2πdr

λ (Mr−1)ϕRG
k ψRG

k ]
T

⊗[1, e−j
2πdc

λ φRG
k ψRG

k , . . . , e−j
2πdc

λ (Mc−1)φRG
k ψRG

k ]
T
,

in which ϕRGk = yk−yR
||Wk−WR|| , φRGk = xk−xR

||Wk−WR|| , and
ψRGk = zR

dRG
k

. In a similar way, ϕRGk , φRGk , and ψRGk
denote cosine of horizontal angle-of-departure (AoD), sine of
horizontal AoD, and sine of vertical AoD, respectively.

Given the aforementioned channel models, the effective
channel gain between the UAV and the k-th GU with the aid
of the RIS is given by Ck = hUGk + (hRGk )

H
Θeh

UR.

C. Problem Formulation

In this paper, the UAV is assumed to share the same
frequency band for providing services to the GUs. The trans-

mitted signal of the UAV is given by S =
K∑
k=1

√
pksk, where

pk and sk are the transmitted power and signal for the k-
th GU, respectively. Assuming that Pmax is the maximum

transmit power of the UAV, we have
K∑
k=1

pk ≤ Pmax. Then

the received signal at the k-th GU can be expressed as

yk = Ck
√
pksk +Ck

K∑
t=1,t̸=k

√
ptst︸ ︷︷ ︸

interference

+ nk︸︷︷︸
noise

,

where nk ∼ CN (0, σ2). Therefore, the received signal-to-
interference-plus-noise ratio (SINR) at the k-th GU is

γk =
|Ck|2pk

|Ck|2
K∑

t=1,t̸=k

pt + σ2

.

As a result, the sum-rate of all GUs can be written as

Rt = B

K∑
k=1

log2(1 + γk), (1)

where B is the bandwidth of the channel.

Essentially, the UAV consumes power due to hovering and
wireless signal transmission, while GUs consume power for
circuit operations and the RIS elements consume power for
controlling the phases. Consequently, the total power con-
sumption of our envisioned system is given by

Pt = ph︸︷︷︸
hovering power of UAV

+

K∑
k=1

pk︸ ︷︷ ︸
transmit power of UAV

+

K∑
k=1

pck︸ ︷︷ ︸
circuit power of GUs

+

M∑
m=1

prxm︸ ︷︷ ︸
power consumption of RIS

, (2)

where pck is the circuit power consumption of the k-th
GU and pr is the power consumption of each RU. In (2),
ph is the drone’s hovering power which is expressed by

ph =

√
(mg)3

2πr2pnpρ
, where m is the drone’s weight, g is the

gravitational acceleration of the earth, rp is propellers’ radius,
np is the number of propellers, and ρ is the air density [19].
From (1) and (2), we can define the energy efficiency of the
RIS-assisted UAV network as η = Rt

Pt
.

Given the considered system model, our objective is to
jointly optimize the phase-shift of RIS elements, RIS On-Off
vector, beamforming vector of the UAV, and its placement
to maximize the energy efficiency under the minimum rate
requirement of GUs and the total power constraint of the UAV.
Mathematically, the energy efficiency maximization optimiza-
tion problem can be formulated as

maximize
X,θ,P,WU

η

subject to B log2(1 + γk) ≥ Rk,min, (3a)
K∑
k=1

pk ≤ Pmax, (3b)

pk > 0, for 1 ≤ k ≤ K, (3c)

xm ∈ {0, 1}, for 1 ≤ m ≤M
θm ∈ [0, 2π), for 1 ≤ m ≤M

where X = (x1, . . . , xM )
T , θ = (θ1, . . . , θM )

T ,
P = (p1, . . . , pK)

T , and Rk,min is the minimum data rate
requirement of the k-th GU. The minimum rate constraint for
each GU is given in (3a). Moreover, (3b) and (3c) represent
the total power constraint of the UAV.

The derived optimization problem is a mixed-integer non-
linear program (MINLP) even for the single GU case with
K = 1. It is generally difficult to obtain the globally optimal
solution of a MINLP.

III. PROPOSED SOLUTION

In this section, we first use the alternating optimization
approach (BCD) to divide the derived MINLP into three
sub-problems, which has been widely applied to tackle the
non-concave problems in RIS-assisted UAV networks [18].
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(Adam optimizer)

Phase shift and beamforming
(continuous genetic algorithm)

(
W
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(
θ(i),P (i)

)
W

(i)
U

X(i)
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Fig. 2. Block diagram of the overall proposed solution.

Algorithm 1: Continuous genetic algorithm for phase
shift and beamforming optimization

Generate the initial population
P(0) = [Y

(0)
1 ,Y

(0)
2 , . . . ,Y

(0)
2L ]

T
.

Let Q(0) be a selection random variable defined on the set
{1, 2, . . . , 2L} with probability mass function

Pr{Q(0) = k} =
η
(
Y

(0)
k

)
2L∑
l=1

η
(
Y

(0)
l

) .

for i = 1 : N1 do
Select 2L individuals from P(i−1) using the selection
random variable Q(i−1).
Randomly select L pairs of individuals in P(i−1) for
cross-over. Substitute each pair with the two generated
offsprings.
Add a small random value to each element of generated
offsprings (mutation).
Find the updated population P(i) and selection random
variable Q(i).

end for

Then each sub-problem is separately optimized, while other
variables are considered to be fixed. Specifically, we employ
a continuous genetic algorithm to jointly optimize the phase
shifts of the RIS and beamforming of UAV, and a binary
genetic algorithm to optimize the On-Off strategy of the RIS.
Afterwards, the optimized position of the UAV is obtained
using the Adam optimizer. The block diagram of the overall
proposed solution is depicted in Fig. 2. As it can be observed,
the optimization process terminates if the amount of improve-
ment in energy efficiency is less than a given threshold δ.

A. Phase Shift and Beamforming Optimization

For optimizing the phase shift of the RIS elements and
beamforming of the UAV, we take advantage of the continuous
genetic algorithm. The continuous genetic algorithm is a type

Algorithm 2: Adam optimizer for the UAV placement.
g2i indicates the element-wise square gi ⊙ gi. Good
default settings are α = 0.001, β1 = 0.9, β2 = 0.999,
and ϵ = 10−8. All operations on vectors are element-
wise. With βi1 and βi2, we denote β1 and β2 to the
power of i.
Require: α: Step size
Require: ϵ: Small constant
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the

moment estimates
Require: η (WU ): Objective function
Require: W (0)

U : Initial position of UAV
Initialize m0 ← 0, v0 ← 0, and i← 0
for i = 1 : N2 do

Compute gradient gi ← ∇WU
η
(
W

(i−1)
U

)
.

Update biased first moment estimate:
mi ← β1mi−1 + (1− β1)gi
Update biased second raw moment estimate:
vi ← β2vi−1 + (1− β2)g2i
Compute bias-corrected first moment estimate:
m̂i ← mi

1−βi
1

Compute bias-corrected second raw moment estimate:
v̂i ← vi

1−βi
2

Update parameters: W (i)
U ←W

(i−1)
U − α m̂i√

v̂i+ϵ
end for

of optimization algorithm that is used to search for optimal
solutions in continuous parameter spaces [20]. The algorithm
is based on the principles of natural selection and evolution,
and it works by creating a population of candidate solutions
and iteratively refining them over multiple generations. The
main steps of the continuous genetic algorithm include initial-
ization, selection, crossover, mutation, and termination.

• The first step of the algorithm is initialization, where
a population of potential solutions is created randomly.
The size of the population is typically set based on the
complexity of the problem, and each candidate solution
is represented as a vector of continuous values.

• In the selection step, the candidate solutions are evaluated
based on a fitness function, which measures how well
they perform on the given problem. In this paper, energy
efficiency (η) is considered as the fitness function. The
best-performing solutions are selected to become parents
for the next generation.

• In the crossover step, pairs of parents are combined to
produce new offspring solutions. This is done by finding
the weighted sum of parent vectors and creating a new
solution vector that inherits traits from both parents. The
crossover process helps to explore different regions of
the search space and can help to create more diverse
candidate solutions.

• In the mutation step, random changes are introduced into
the offspring solutions to further explore the search space



and prevent the algorithm from getting stuck in a local
optimum. This is done by adding a small random value
to each element of the solution vector.

The algorithm continues to iterate through the selection,
crossover, and mutation steps until a termination criterion is
met. The details of the continuous genetic algorithm for opti-
mizing the phase shift of the RIS elements and beamforming
of the UAV are given in Algorithm 1.

B. RIS On-Off Optimization

Given UAV position WU , phase vector θ, and beamforming
vector P , problem (3) is a nonlinear integer optimization
problem with respect to the RIS On-Off vector X. Since the
nonlinear integer optimization problem is NP-hard in general,
it is difficult to obtain the globally optimal solution with poly-
nomial complexity. To tackle this computational intractability,
we use the binary genetic algorithm to solve the RIS On-
Off optimization problem. The main steps of binary genetic
algorithm are same as the continuous one, where crossover
and mutation steps are adapted to be applied to the vectors of
binary values. In the crossover step, parts of the parent vectors
are swapped to create a new solution vector, whereas binary
bits of offspring solutions are flipped with a small probability
in the mutation step.

C. UAV Placement Optimization

To obtain the optimized position of the UAV, we utilize
the Adam optimizer. The Adam optimizer is a gradient-
based optimization algorithm that is widely used in machine
learning because of its superior performance compared to other
gradient descent methods [16]. One of the primary reasons
for its superiority is that it maintains separate learning rates
for each parameter and adapts them based on the historical
gradient information. This allows the algorithm to handle
sparse gradients and noisy data more efficiently, leading to
faster convergence and better performance. Additionally, the
adaptive learning rates ensure that the algorithm can navigate
complex loss landscapes more effectively, avoiding getting
stuck in local minimum.

The Adam optimizer works by computing a moving average
of the gradient and its square, which allows it to adjust the
learning rate adaptively. The algorithm consists of several
steps, including initializing the moving averages, computing
the gradient on a mini-batch of data, updating the moving
averages with the gradient information, and finally updating
the parameters based on the adaptive learning rate. The algo-
rithm also incorporates bias correction terms to ensure that the
moving averages are initialized at zero and that the updates
are unbiased. The detailed steps of the Adam optimizer for
optimizing the UAV placement are given in Algorithm 2.

IV. NUMERICAL RESULTS

This section presents numerical results that validate the
efficacy of the proposed alternating approach for optimizing
UAV placement and beamforming, On-Off strategy of RIS

Fig. 3. Energy efficiency versus the number of GUs when M = 60.

elements, and phase shift of RIS elements. The following
benchmark schemes are used for performance comparison:

• Without RIS: This scheme does not employ the RIS to
assist communication and considers only the direct link
between the UAV and the GUs.

• RIS with random Phase: In this scheme, the phase shift
of the RIS elements are chosen randomly within the range
of [0, 2π).

• SCA method: In this scheme, we apply SCA method to
optimize the phase shift of the RIS elements. SCA is an
iterative optimization technique used to solve non-convex
optimization problems [10]. It involves transforming a
non-convex optimization problem into a sequence of
convex sub-problems, which can be solved efficiently.

In this paper, we examine a scenario similar to the config-
uration presented in [18], where a single RIS is installed on a
building facade to improve aerial-ground communications. The
GUs are distributed randomly and uniformly within a circular
area centered at (200 m, 25 m) with a radius of 20 m. The
details of the considered simulation parameters are given in
Table I.

Assuming that there are 60 RIS elements, Fig. 3 illustrates
the relationship between the energy efficiency and the number
of GUs. The figure shows that the energy efficiency increases
as the number of GUs (K) increases. Additionally, it is
apparent that not using RIS results in consistently low energy
efficiency since there is no indirect path from the UAV to the
GUs. Overall, our proposed method is superior to the SCA
method and random phase, particularly for a large number of
GUs since the SCA method is more prone to trapping in a
local minimum.

Fig. 4 illustrates the relationship between the energy ef-
ficiency and the number of the RIS elements (M ) when
K = 4. Fig. 4 clearly shows that deploying RIS significantly
improves the system performance, whereas negligible gains
are observed without the RIS. Optimizing phase shifts results
in slightly better performance compared to the random phase
shift scheme, emphasizing the importance of optimizing phase
shifts. The proposed method outperforms the SCA method,
and this improvement becomes more apparent as the number



Fig. 4. Energy efficiency for different number of RIS elements when K = 4.

TABLE I
SIMULATION PARAMETERS

parameter value parameter value
ZU 70 m ZR 40 m
W

(0)
U (200 m, 50 m) WR (200 m, 0 m)
λ 10 cm Pmax 1 W
dr 5 cm dc 5 cm
B 20 MHz β0 10−2

αUG
k 3 αRG

k 2.4
κUG
k 2 κRG

k 2
pck 1 mW pr 1 mW
m 2 kg g 9.8 m

s2

rp 0.2 np 4
ρ 1.225 kg

m3 Rk,min 100 bits
s

of GUs increases.
In summary, integrating RIS with UAV communications

can significantly enhance network coverage, and the energy
efficiency of the RIS-assisted schemes improves as the number
of RIS elements increases. This suggests that a larger number
of reflecting elements provides more flexibility for the joint
phase shift and UAV placement optimization, leading to better
communication quality and higher gains.

V. CONCLUSION

In this paper, we proposed an energy-efficient communi-
cation scheme for RIS-assisted UAV networks. By optimizing
the On-Off strategy, phase shift of RIS elements, and the UAV
placement and beamforming, our proposed scheme maximized
the energy efficiency of the network. We formulated the
optimization problem as a mixed integer nonlinear program
and utilized the BCD approach to tackle it. We employed
a combination of continuous and binary genetic algorithms,
as well as the Adam optimizer, to optimize the various
variables of the problem. Our simulation results showed that
the proposed scheme outperforms existing literature in terms
of energy efficiency. Specifically, our scheme achieves sig-
nificant improvements in the energy efficiency of downlink
communications between the aerial base station and the GUs.
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