
Multiway Range Trees:
Scalable IP Lookup with Fast Updates

Subhash Suri George Varghese Priyank Ramesh Warkhede

Department of Computer Science
Washington University
St. Louis, MO 63130.

Abstract—In this paper, we introduce a new IP lookup scheme with
worst-case search and update time of O�log n�, where n is the number
of prefixes in the forwarding table. Our scheme is based on a new data
structure, a multiway range tree. While existing lookup schemes are good
for IPv4, they do not scale well in both lookup speed and update costs
when addresses grow longer as in the IPv6 proposal. Thus our lookup
scheme is the first lookup scheme to offer fast lookups and updates for
IPv6 while remaining competitive for IPv4.

The possibility of a global Internet with addressable appli-
ances has motivated a proposal to move from the older In-
ternet Ipv4 routing protocol with 32 bit addresses to a new
protocol, IPv6 with 128 bit addresses. While there is uncer-
tainty about IPv6, any future Internet protocol will require at
least 64 bit, and possibly even 128 bit addresses as in IPv6.
Thus for this paper we simply use IPv6 and 128 bits to refer
to the next generation IP protocol and its address length.

Our paper deals with address lookup, a key bottleneck
for Internet routers. Our paper describes the first IP lookup
scheme that scales well as address lengths increase as in IPv6,
while providing fast search times and fast update times.

There are four requirements for a good lookup scheme:
search time, memory, scalability, and update time. Search
time is important for lookup to not be a bottleneck. Schemes
that are memory-efficient lead to faster search because com-
pact data structures fit in fast but expensive Static RAM. Scal-
ability in both number of prefixes and address length is im-
portant because prefix databases are growing, and a switch to
IPv6 will increase address prefix lengths. Finally, schemes
with fast update time are desirable because i) instabilities in
backbone protocols [4] can cause rapid insertion and deletion
of prefixes. ii) multicast forwarding support requires route
entries to be added as part of the forwarding process and not
by a separate routing protocol iii) Any lookup scheme that
does not support fast incremental updates will require two
copies of the lookup structure in fast memory, one for up-
dates and one for lookup.

The main drawback of existing lookup schemes is their
lack of both scalability and fast update. Current IP lookup
schemes come in two categories: those that use precomputa-
tion, and those that do not. Schemes like “binary search on
prefix lengths” [9], “Lulea compressed tries” [1], or “binary
search on intervals” [5] perform precomputation to speed up
search; however, adding a prefix can cause the data struc-
ture to be rebuilt. Thus, precomputation-based schemes have
a worst-case update time of ��n�. On the other hand, trie-
based schemes (e.g., [8], [7]) do not use precomputation;
however, their search time grows linearly with the prefix
length.

A. Our Contribution

We introduce a new IP lookup scheme whose worst-case
search and update time is O�logn�, where n is the number
of prefixes in the forwarding table. Our scheme is based on a
new data structure, a multiway range tree, which achieves the
optimal lookup time of binary search, but can also be updated
fast when a prefix is added or deleted. (By contrast, ordinary
binary search [5] is a precomputation-based scheme whose
worst-case update time is ��n�.)

Our main contribution is to modify binary search for
prefixes to provide fast update times. In standard binary
search [5], each prefix maps to an address range. A set of
n prefixes partition the address line into at most �n inter-
vals. We build a tree, whose leaves correspond to interval
endpoints. All packet headers mapped to an interval have the
same longest prefix match. Search time is O�logn�.

The problem is update: a prefix range can be split into
��n� intervals, which need to be updated when the prefix is
added or deleted. Thus our first idea is associating an address
span with every tree node v; the span of v is the maximal
range of addresses into which the final search can fall after
reaching v. Thus the root span is the entire address range.
We then associate with every node v the set of prefixes that
contain the span of v. However, this results in storing redun-
dant prefixes.

To remove this redundancy, we store a prefix with a node v
if and only if the same prefix is not stored at the parent w of
the node. Since the span of v is a subrange of the span of w,
any prefix that contains the span of w, will contain the span
of v. Using this compression rule we can prove that only a
small number of prefixes need be precomputed and stored;
thus updates change information only at O�logn� nodes. By
increasing the arity of the tree, we can reduce the height of
the tree to O�logd n�, for any integer d. We pick d so that the
entire node can fit in one cache line. For instance, a 256 bit
cache line and arity-14 yields a tree height of about 5 or 6 for
the largest IPv4 databases.

Our third contribution is to extend multiway range trees
to IPv6. On a 32-bit machine, a single 128-bit address will
require 4 memory accesses. Thus, an IP lookup scheme de-
signed for IPv4 could slow down by a factor of 4 when used
for IPv6. In practice, since we are assuming wide memories
of at least 128 bits, we can handle such wide prefixes in one
memory access. Unfortunately, the use of 128 bit addresses
result in the use of a small branching factor and hence large
tree heights. To avoid this problem, we generalize our scheme



to the case of k-word prefixes, giving a worst-case search and
updates times of O�k � logd n�, where n is the total number
of prefixes present in the database. Notice that the factor of k
is additive.

The rest of this paper is organized as follows. Section I
describes basic binary search. Section II describes our main
data structure, the multiway range tree. Section III briefly
describes how to handle updates efficiently. Section IV de-
scribes our extension to long addresses. Section V describes
our experiments and measurements. Section VI states our
conclusions.

I. IP LOOKUP BY BINARY OR MULTIWAY SEARCH

We first review binary search [5] prefix matching. Suppose
the database consists of m prefixes r�� r�� � � � � rm. Each pre-
fix r matches a contiguous interval �b� e� of addresses. For
instance, the interval of prefix r � 	�
� begins at point
	�
������ and ends at 	�
������������. View the IP address
space as a line in which each prefix maps to a contiguous in-
terval, and each destination address is a point. Prefix intervals
are disjoint but one prefix can completely contain another.
The longest matching prefix problem reduces to determining
the shortest interval containing a query point.

Let p�� p�� � � � � pn, where n � �m, denote the distinct end-
points of all the prefix intervals, sorted in ascending order.
With each key pi, we store two prefixes, match��pi� and
match��pi�. The first, match��pi�, is the longest prefix that
begins or ends at pi. The second, match��pi�, is the longest
prefix whose interval includes the range �pi��� pi�, where
pi�� is the predecessor key of pi.

Given a destination address q, we perform binary search
in log� n time to determine the successor of q, which is the
smallest key greater than or equal to q. If q � succ�q�, we
return match��succ�q�� as best matching prefix of q; other-
wise, we return match��succ�q��. This search can imple-
mented as a binary tree. To reduce tree height and memory
accesses (assuming processing cost in registers is small com-
pared to memory access cost), the binary search tree can be
generalized to a multiway search tree; we use a B-tree.

In a B-tree, each node other than the root has at least t� 	
and at most �t � 	 keys, where t is known as the arity of
the tree. The root has at least one key. A node with k keys,
where t�	 � k � �t�	, has exactly k�	 subtrees. Specif-
ically, suppose a node v of the tree has keys x�� x�� � � � � xk.
Then, there are k � 	 subtree T�� T�� � � � � Tk��, where T� is
the B-tree on keys less than or equal to x�; T� is the B-tree
on keys in the range �x�� x��, and so on. To search for a
query q at a node v, we find the smallest key xi that is greater
than or equal to q, and continue the search in the subtree Ti.
For a tree of arity (degree) worst-case search takes O�logt n�
(wide) memory accesses.

II. MULTIWAY RANGE TREES

The main difficulty with the binary search scheme [5] is
that the addition of a short prefix can affect the match���
value of a large number of keys that it covers. For exam-
ple, consider a database with a lone 8-bit prefix 	�
� together

with 32K additional 32-bit prefixes described by the sequence
	�
�����	�	� 	�
�����	�
� 	�
�����	�� � � �	�
������������.

Thus all IP addresses of the form 	�
�����x�y where the
LSB of y � � will have 	�
� as their best matching pre-
fix. The binary search method [5] handles this by setting
match��p� � 	�
� for all the 32K prefixes of length 32.
Now consider adding the prefix 	�
������Since this new pre-
fix is now a better match for prefixes of the form 	�
�����x�y,
we have to update match��p� � 	�
����� for 32K values of
p. Thus update can take linear time. We avoid this problem
using the following ideas.

A. Address Spans

Our key idea is to associate address spans with nodes and
keys of the tree; intuitively, the address span of a node is the
range of addresses that can be reached through the node. For
the multiway tree in Figure 1, first consider a leaf node, such
as z. For each key x in it, we define the span of x to be
the range from its predecessor key to the key itself. (When
the predecessor key doesn’t exist, we use the artificial guard
key ��.) To ensure that spans are disjoint, each span in-
cludes the right endpoint of its range, but not the left end-
point. Thus, the spans of a� b and c are span�a� � ���� a�,
span�b� � �a� b�, span�c� � �b� c�.

The span of a leaf node is defined to be the union of the
spans of all the keys in it. Thus, we have span�z� � ���� c�.
The span of a non-leaf node is defined as the union of the
spans of all the descendants of the node. Thus, for in-
stance, span�v� � ���� i�, and span�w� � �i� o�, and
span�u� � ���� o�. (In fact, it is easy to check that nodes at
the same level in the tree form a partition of the total address
span defined by all the input prefixes.) We now describe how
to associate prefixes with nodes of the tree.

c e f l ma b d g h i j k n o

c f

i

k m

u

v w

β

α

z x y

Fig. 1. Address spans.

B. Associating Prefixes with Nodes

Suppose we have a prefix r with range �br� er�. Clearly
if for some node v of the tree, span�v� is contained in the
range �br� er�, then r is a matching prefix for any address in
span�v�. We could store r at every node v whose span is
contained in range �br� er�, but this leads to a potential mem-



ory blowup: we can have n prefixes, each stored at about
n nodes. Observe, however, that the span of a parent is the
union of the spans of each of its children. Thus if a prefix
contains the span of a parent node, then it must contain the
span of the child. Thus we do not need to explicitly store the
prefix at the child if it is already stored at the parent. Thus we
use the following compression rule:
[Prefix Storing Rule:] Store a prefix r at a node or leaf key v
if and only if the span of v is contained in �br� er� but the span
of the parent of v is not contained in �br� er�. (The parent of
a key in a leaf node L is considered to be L.) In addition, r is
stored with the start key of its range, namely, br.

The first rule should be intuitive; the second rule (storing
prefixes with the start key) is slightly more technical and is
necessary to handle the special case when a search encoun-
ters the start point of a range. We can show that the update
memory, for all practical purposes, is essentially linear ex-
cept for a logarithmic factor of �tw (proof omitted for lack of
space). With t � 	� and w � 
�, this is an additive factor of
around 

N .

C. Search Algorithm

We summarize the search algorithm. The arity t of the
range tree is a tunable parameter. Each node has at least t�	
and at most �t � 	 keys. Let Mv be the (narrowest) prefix
stored at each internal node v in the search structure, where
Mv is the root of the corresponding heap at node v in the up-
date structure. Let Ek be the prefix stored with each leaf key
in the search structure corresponding to the root of the equal
list heap in the update structure; let Gk be the prefix stored
with each leaf key in the search structure corresponding to
the root of the span list heap.

We initialize the best matching prefix to be null. Sup-
pose the search key is q, and the root of the range tree is
u. If Mu is non-empty and is longer than the current best
matching prefix, then we update the best matching prefix
to Mu. Let x�� x�� � � � � xd be the keys stored at u, and let
T�� T�� � � � � Td�� denote the subtrees associated with these
keys. We determine the successor xi of q as the smallest
key in x�� x�� � � � � xd that is greater than or equal to q. We
recursively continue the search in the subtree Ti.

As in the original static search, we initialize the successor
to be�, and when we descend into the subtree Ti, we update
the successor to be xi. Suppose k is the successor key of q
when the search terminates. We check to see if k � q. If the
equality holds, we return Ek; otherwise, we return Gk.

III. UPDATES TO THE RANGE TREE

We show how to handle prefix additions and deletions. We
describe at a high level the changes that occur in the range
tree when a prefix r � �br� er� is inserted or deleted. Concep-
tually, update can be divided into three phases (which can be
combined), each of which takes at most t logt n time.
1. [Updating the Keys and Handling Splits and Merges.]
The keys representing the endpoints of the prefix range,
namely, br and er, may need to be inserted or deleted. A key
may be the endpoint of multiple prefix ranges, so we main-

tain a count of the number of prefixes terminating at each key.
When a key is newly inserted, its count is initialized to one.
Whenever a prefix is inserted or deleted, the counts of its end-
point keys are updated accordingly. When the count of a key
decrements to zero, it is deleted from the range tree. Insertion
and deletion can result in nodes being split and merged; it is
easy to update the spans of the affected nodes using the spans
of the parent nodes.

2. [Updating the Address Spans and Prefix Heaps.] When
a new key is inserted, it may change the address span of some
nodes in the range tree. Specifically, suppose we add a new
key q. Then, any node uwhose rightmost key is q has its span
enlarged—previously, the span extended to the predecessor
of q; now it extends to q. In addition, if s is the successor of
q, then the span of every node that is an ancestor of s but not
an ancestor of q shrinks—previously, the span terminated at
the predecessor of q; now it terminates at q. Thus, altogether
there can beO�logt n� nodes whose address span need updat-
ing. Similarly, when a key is deleted, spans of a logarithmic
number of nodes are affected.
Modification of address spans can cause changes in the pre-
fix heaps stored at these nodes—when the address span in-
creases, some of the prefixes stored at the node may need to
be removed, and when the address span of a node shrinks,
some of the prefixes stored at a node’s children may move up
to the node itself.

3. [Inserting or Deleting the New Prefix.] Finally, the pre-
fix r is stored in the heaps of some nodes, as dictated by the
Prefix Storing Rule. This phase of the update process adds or
removes r from those heaps.

Lemma 1: Given an IP address, we can find its longest
matching prefix in worst-case time O�t logt n� using the
range tree data structure. The number of memory accesses is
O�logt n� if each node of the tree fits in one cache line. The
data structure requires O�nt logtW � memory, and a prefix
can be inserted or deleted in the worst-case time O�t logt n�.

IV. MULTIWORD ADDRESSES: IPV6 OR MULTICAST

In this section, we describe an extension of our scheme to
multiword prefixes. On a 32-bit machine, accessing a single
128-bit address will require 4 memory accesses. Thus, an
IP lookup scheme designed for IPv4 addresses could suffer a
slowdown by factor of 4 when used for IPv6.

We consider the general problem of handling k-word ad-
dress prefixes, where each word is some fixed W bits long.
We show that our multiway range tree scheme generalizes to
the case of k-word prefixes, giving a worst-case search and
updates times of O�k � logd n�, where n is the total number
of prefixes. We describe the general construction. The top
level tree T� is the range tree on the first words of the input
set of prefixes, namely, S. Consider a key x in the tree T�,
and let S�x� denote the set of prefixes whose first word equals
x. We build a second range tree on the set S�x�, and have the
� branch of x in T� point to it. We will call this second tree
T �x�. We also store with the key x the longest (best) prefix
in T� matching x.

In general, the tree T �x� �x� � � �xi��� is a range tree on the



ith words of the prefixes whose first i � 	 words are exactly
x�� x�� � � � � xi��. If xi is a key in this subtree, then its left
subtree contains keys smaller than xi, the right subtree con-
tains keys bigger than xi, and the � pointer points a range
tree on the �i� 	�st words of the set S�x� � x� � � �xi�� � xi�.
(This is the set of prefixes whose first i words are exactly
x�� x�� � � � � xi.) The key xi also stores the best prefix in the
set S�x� � x� � � �xi��� that matches xi.

For instance, suppose W � �, and consider three prefixes
r� � 	��, r� � 	�	���	�, and r� � 	�	��		��. Then, the
search tree on the first word includes the prefix range 	��,
and points to 	�	� and 	�	�. This example also illustrates
that the keys in the search tree form a multiset , since many
different prefixes may have a common first word. Thus, each
of our range trees will allow duplicate keys. In addition to
allowing duplicate keys, the multiword multiway search tree
has one other significant difference from the single word tree.
Consider a key x at some node in the range tree. The key x
partitions the key space in three parts: �, � and �. Perhaps
surprisingly, we can prove that the obvious trick of removing
duplicate keys in each range tree, results in a correct algo-
rithm but with poor performance.

Given a packet destination address �p� � p� � � � pk�, the
search algorithm is as follows. Observe that each pi is fully
specified, so it maps to a point. We begin with the first word
p�, and find its successor key s in the top level tree T�. During
the search for s, we maintain the best matching prefix found
along the path.

As soon as we find a key q such that q � p�, we stop
searching the tree T�. If the best matching prefix stored at q
is longer than the one found so far, we update the answer. We
now extract the second word of the packet header, namely,
p�, and start the search in the range tree T �p�� pointed to
by q. Search terminates either when the associated B-tree is
empty, or when we don’t get an equal match with the search
key. In the former case, we simply output the best matching
prefix found so far. In the latter case, suppose the search
terminates at a successor key s such that s � p�. In this
case, we compare the current best matching prefix with the
prefix stored at the root of the span list heap of s, and choose
the longer prefix.

V. EXPERIMENTAL RESULTS

This section describes the experimental setup and measure-
ments for our scheme. We consider software platforms us-
ing modern processors such as the Pentium and the Alpha.
For the Pentium processor, size of a cache line is 32 bytes
(256 bits). For hardware platforms, we assume a chip model
that can read data from internal or external SRAM. We as-
sume that the chip can make wide accesses to the SRAM
(using wide buses), retrieving upto �	� and even 	��� con-
secutive bits. We count memory accesses in terms of distinct
cache-line accesses, as opposed to the number of memory
words retrieved. Since lookup memory needs to be in fast
SRAM while update memory need not, we separately state
our lookup-relevant memory and update memory. We imple-
mented our range tree scheme in C on a UNIX machine.

A. Results for IPv4 and IPv6

Experiments were conducted using (somewhat dated) rout-
ing table snapshots from IPMA[6]; only a subset of results
are described here. Experiments involved inserting prefixes
in the same order as the input database. Measurements of
lookup time were obtained for randomly generated IP ad-
dresses.

Given an input set of n prefixes, the height of the range
tree of maximum arity �t is h � dlogt �ne. The number
of memory accesses per lookup is h in the worst case. For
insertion of a new prefix, the worst case number of memory
accesses is �ht���h�t�	�, while for deletion of a prefix the
worst case number of memory accesses is �ht��h��t��.

Table I summarizes observed tree height, memory require-
ment for the search structure and the overall memory require-
ment (i.e., including memory relevant only for updates) for
the largest available dataset, Mae-East.

Arity Height Search Memory Total Memory
4 15 0.82MB 1.76MB
8 8 0.51MB 1.15MB
14 6 0.44MB 0.99MB
18 5 0.42MB 0.95MB

TABLE I

Mae-East database: 41,456 prefixes, 62273 distinct keys

Similar observations hold for the smaller PacBell dataset
(Table II) for which the number of distinct keys is about a
third of Mae-East (though it has half the number of prefixes
of Mae-East). This is reflected in the memory requirement
and height of the range tree, which are a function of number
of keys, not prefixes.

Arity Height Search Memory Total Memory
4 12 0.26MB 0.53MB
8 6 0.17MB 0.36MB
14 5 0.15MB 0.32MB
18 4 0.15MB 0.30MB

TABLE II

PacBell database: 24740 prefixes, 24380 distinct keys

An important purpose of the experiments was to under-
stand variation of performance parameters (speed and mem-
ory requirement) with change in arity of the range tree. The
results show that when the arity is small, say 4, the total mem-
ory requirement is quite high. This occurs because the range
tree structure guarantees a minimum utilization of t��

�t��
for

maximum arity �t. Thus, when the maximum arity is �, many
nodes have only one key, which leads to an increased number
of allocated nodes and large total memory. Increasing arity of
the tree from very small values achieves significant reduction
in the number of nodes.

The worst-case update time for our scheme is calculated
assuming node split/merge at each level of the tree. To eval-
uate the average update performance, we first built the prefix
database corresponding to the Mae-East database. We then



generated 500 random prefixes, inserted them into the data
structure, and then deleted them in random order. Table III
below summarizes the results of this experiment.

Arity Height Average Worst Case
4 12 107 337
8 6 58 321
14 5 45 455
18 4 38 479

TABLE III

Average update performance of multiway range trees.

For small arity values, say 4, the average update time is
fairly close to the worst case. But with increasing arity, aver-
age update time becomes much smaller than worst case up-
date time. This is expected, because the probability of a node
merge/split is very high for lower arity values, and decreases
linearly with increasing arity. For arity 	�, which is used later
on for comparison with other schemes, the average update
time is less than 	�� of the worst case.

IPv6 Performance: Since IPv6 prefix databases are un-
available, we only provide analytical bounds. Using 
� bit
words, each address is l � � words long. Worst case lookup
time is l � dlogt �ne for trees of arity �t. Let h be the height
of any tree. Then, h � dlogt �ne. Since we already know
worst case update time for a single tree of height h, total up-
date time for the data structure is l���ht��h��t��� in the
worst case. For �	� bit cache-line, we can choose an arity of
	�. For a dataset of the same size as Mae-East (�	� ��� pre-
fixes), we get a projected worst case lookup time of � mem-
ory accesses and an update time four times the IPv4 update
time, 	
�� memory accesses. The total memory requirement
also changes for IPv6. We measured the increased overhead
(due to � tree pointers associated with each key) by prepend-
ing the string �� � � � ��� to each prefix. The constructed data
structure required almost double the amount of memory re-
quired for the corresponding IPv4 data structure.

B. Comparison with other schemes

Several schemes have been proposed in the literature for
performing IP address lookups. We evaluate these schemes
on four important metrics: lookup time, update time, memory
requirement and scalability to longer prefixes. Table IV com-
pares the complexity of search time, update time and mem-
ory requirement of the proposed scheme against some of the
prominent schemes proposed in literature.

Scheme Lookup Update Memory
Patricia trie O�W � O�W � O�nW �

Multibit tries O�W�k� O�W
k

�k� O�nW�k�
Binary search O�log

�
n� O�n� O�n�

Multiway search O�logk n� O�n� O�n�
Prefix length binary search O�logW � O�n� O�n logW �

Multiway Range Trees O�logk n� O�k logk n� O�kn logk n�

TABLE IV

Comparison of search, update and space complexities

As seen from the table, all existing schemes, except trie-

based schemes, require O�n� update time in the worst-case.
Trie based schemes are slow for large address sizes; large
strides can increase worst-case memory exponentially (most
papers only report memory on typical databases.)

VI. CONCLUSION

We have described a new IP lookup scheme that scales well
to IPv6 and multicast addresses, allowing fast search and up-
date. It is the first scheme we know of that possesses all these
properties.

For example, prior schemes such as [9], [1], [5] all have
��n� update times, where n is the number of prefixes, while
multibit trie schemes (e.g., [8], [7], [3]) take O�w� search
times, where w is the address length. With the size of prefix
tables approaching 100,000 and expected to perhaps reach
500,000 in a few years, ��n� update times can be problem-
atic. On the other hand, multibit trie schemes require w�c
memory accesses where c is at most 8 in order to bound mem-
ory. This can be expensive for 128-bit IPv6 addresses. Thus
our scheme, which takes worst-case search and update times
of O�logn�, may be interesting for larg IPv6 tables, espe-
cially by choosing a sufficiently high arity to make the log n
term very small.

Even for IPv4, unlike other schemes such as [9], [1], [8],
our scheme is not patented and can be used freely for publi-
cally available software. Our scheme is competitive for IPv4
For example, on a Mae-East database using a 512 bit cache
line, our scheme takes 5 memory accesses to do a worst-case
lookup, requires 0.44 MB storage, and needs 455 memory ac-
cesses for update in the worst case. Even if its performance
is not as good as multibit tries, its availability and simplicity
could make it useful for a software solution used by low-end
routers that sit on the edge of the network.

REFERENCES

[1] Andrej Brodnik, Svante Carlsson, Mikael Degermark, and Stephen
Pink. Small Forwarding Table for Fast Routing Lookups. Computer
Communication Review, October 1997.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[3] Pankaj Gupta, Steven Lin, and Nick McKeown. Routing Lookups in
Hardware at Memory Access Speeds. INFOCOM ’98, April 1998.

[4] C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability.
ACM SIGCOMM 97.

[5] B. Lampson, V. Srinivasan, and G. Varghese. IP Lookups using Multi-
way and Multicolumn Search. IEEE INFOCOM ’98.

[6] Merit Inc. IPMA Statistics. http://nic.merit.edu/ipma.
[7] S. Nilsson and G. Karlsson. Fast Address Look-Up for Internet

Routers. Proceedings of IEEE Broadband Communications 98, April
1998.

[8] V. Srinivasan and George Varghese. Faster IP Lookups using Con-
trolled Prefix Expansion. ACM Sigmetrics’98, June 1998.

[9] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plat-
tner. Scalable High Speed IP Routing Lookups. ACM SIGCOMM 97.


