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Abstract—In wireless relay networks, noise at the relays can
be correlated possibly due to common interference or noise
propagation from preceding hops. In this work we consider a
parallel relay network with noise correlation. For the relay strat-
egy of amplify-and-forward (AF), we determine the optimal rate
maximizing relay gains when correlation knowledge is available
at the relays. The effect of correlation on the performance of the
relay networks is analyzed for the cases where full knowledge
of correlation is available at the relays and when there is no
knowledge about the correlation structure. Interestingly we find
that, on the average, noise correlation is beneficial regardless
of whether the relays know the noise covariance matrix or
not. However, the knowledge of correlation can greatly improve
the performance. Typically, the performance improvement from
correlation knowledge increases with the relay power and the
number of relays. With perfect correlation knowledge the system
is capable of canceling interference if the number of interferers
is less than the number of relays.

I. INTRODUCTION

Wireless mesh networks where information is transferred
via multiple hops and routes provide significant throughput
enhancement and have been the focus of much recent work
[1], [2]. Various relay strategies have been studied in literature
[3]–[5]. Among these strategies, amplify and forward has been
found to be highly suitable for parallel relay networks for
its ability to pass on soft information [6], [7]. For an AF
relay network, the relay design involves optimizing the relay
amplification factors to maximize performance. Previous work
pertaining to relay optimization for AF relay networks includes
both single-user relaying [8]–[11] and multi-user relaying [2],
[12].

Most work in the literature assumes independent noise at
the relay terminals. However, noise correlation between nodes
occurs in wireless relay networks due to several reasons. In
this paper we explore the effect of noise correlation for the
following two models.

1) Common Interference Model
Due to the broadcast nature of wireless networks, the re-
lays are exposed to a set of common interferers resulting
in correlated noise at the nodes.

2) Noise propagation with multi-hop AF relaying
For example, in a three-hop AF network, every relay in
the second hop observes a linear combination of noise
from the relays of the preceding stage. This clearly results
in correlated noise at the second-hop relays.

Both the above models are of considerable practical im-
portance. The natural question is whether the relays can
exploit the correlation structure to improve performance. In

practice, learning correlation may result in network overheads.
Whether such overheads are justified depends on the potential
advantage of learning correlation. Thus, our goal in this work
is to estimate the improvement in performance when perfect
correlation knowledge is available at the relays. The optimal
relay design in this case will have the following two objectives:

1) Increase signal power: The relay gains can be designed
such that the copies of desired signal adds up in phase.

2) Reduce interference power: The relay gains may be
chosen such that the common interference terms add out
of phase.

In general, these objectives cannot be achieved simultaneously
and the relay design can be expected to be a trade-off between
the two objectives.

A. Results

The main results of this paper are summarized below.
1) We obtain closed form solutions for the optimal relay

amplification vector and the maximum sum rate for the
network with correlated noise at the relays. This result
generalizes the single-user relay optimization in [8], [9]
and the multi-source relay optimization in [2] both of
which assume independent and identically distributed
(i.i.d.) noise at the relays.

2) We find that correlation, on the average, is always bene-
ficial regardless of the presence or absence of correlation
knowledge at the relays. This is true irrespective of the
channel state information (CSI) at the relays.

3) We study the benefits of exploiting noise correlation at
the relays. We compare the maximum sum rate without
correlation knowledge (relays use optimal amplification
factors based on uncorrelated noise assumption even
if noise is correlated) versus capacity with correlation
knowledge. The following key questions are answered:
Does correlation help? Is the correlation knowledge more
(or less) helpful as the number of relays increases? What
is the effect of correlation as the power at the relays
increases, and when the first hop/second hop becomes
stronger? We also provide asymptotic results to charac-
terize the impact of relay noise correlation.

II. SYSTEM MODEL

We consider a multi-source parallel relay network as shown
in Fig. 1. In this model, L source nodes wish to communicate
to a common destination through a set of N relays. The data
transmission takes place in two time slots. In the first slot,



the sources transmit to the relays and in the second slot,
all the relays simultaneously forward their received signal to
the destination. Note that there is no direct link between the
source and the destination. All the nodes are equipped with a
single antenna. Here each source has power Pk}L
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Fig. 1. Two Hop Multi-Source Parallel Relay Network

relays have a sum power constraint of PR. The relay received
symbols during the first time slot are given by

r =
L∑

k=1

fkxk + nR

where fk represents the N ×1 channel between the kth source
and the relays, xk is the symbol transmitted by the kth source
with power E [|xk|2] = Pk. The elements of nR are AWGN
with the covariance matrix given by K = E [nRn†

R]. In the
second slot, the relay Ri}N

i=1 scales its received signal with a
complex scaling factor di and transmits to the destination. We
collect the relay gain factors di in an N × 1 vector d. Then
the received signal at the destination can be expressed as

y =
L∑

k=1

dTGfkxk + dTGnR + nD (1)

where G = diag(g) and nD ∼ CN (0, 1) is additive white
Gaussian noise (AWGN). Further, we assume that there is no
correlation between destination noise nD and the relay noise
vector nR as these noise processes occur at two different time
slots. The relays have a sum power constraint which can be
expressed as

dT

[(
L∑

k=1

fkf
†
kPk + K

)
� I

]
d∗ = PR (2)

where � represents the element-wise multiplication of two
matrices. The achievable sum-rate for this network is given
by1

R∑ = log

(
1 +

∑L
k=1 |dTGfk|2Pk

dTGKG∗d∗ + 1

)
. (3)

We seek to maximize the sum rate of the network with
respect to the amplification vector d subject to the sum power
constraint at the relays. The following theorem provides the
optimal relay design and the maximum achievable sum rate.

1Gaussian inputs are optimal for AF relaying.

Theorem 1: The maximum achievable sum rate in a two-
hop multi-source parallel AF relay network with noise corre-
lation is given by R◦ = log(1 + SNR◦) where

SNR◦ = PRλmax

[
A−1B

]
(4)

and the optimal relay amplification vector d◦
Σ is

d◦
Σ = κ

(
vmax

[
A−1B

])∗
(5)

where

A = K � gg†PR +
L∑

k=1

fkf
†
kPk � I + K � I

and B =
∑L

k=1 (fk � g)(fk � g)†Pk. Here λmax(A) and
vmax(A) denote the principal eigen-value and principal eigen-
vector of A respectively, and κ ensures compliance with the
relay power constraint.
The proof is available in [13]. For the single user case (L = 1),
let P = P1 and f = f1. Now the optimal relay amplification
vector do is

do = κ(A−1(f � g))∗ (6)

and the maximum SNR is given by

SNRo = PPR(f � g)†A−1(f � g) (7)

where
A = K � gg†PR + ff†P � I + K � I. (8)

Note that A is not a diagonal matrix. Therefore the optimal
relay gain may not co-phase the input signal as some part of
noise can be canceled with gain adjustments. For the remainder
of this work we will focus on the single user scenario to gain
insights into the impact of relay noise correlation.

III. DOES CORRELATION HELP?

In this section, we address the following important ques-
tions:

1) Does correlation help when the relays know the covari-
ance matrix?

2) Does correlation hurt when the relays are unaware of it?
To answer the first question we compare the following two
scenarios.

• The noise is correlated and relays are aware of the
correlation. (Scheme-11)

• The noise is uncorrelated. (Scheme-00)
To answer the second question we compare the following two
scenarios.

• The noise is correlated and relays are unaware of the
correlation. (Scheme-10)

• The noise is uncorrelated. (Scheme-00)
If Scheme-11 outperforms Scheme-00 then we can say that
correlation helps if the relays are aware of it. Similarly,
if Scheme-00 outperforms Scheme-10 then we can say that
correlation hurts when the relays are unaware of it.

A. Benchmark Schemes

1) Relays with uncorrelated noise: Scheme-00: This setup
has been commonly studied in literature [2], [8]–[10]. The
system model consists of a two hop parallel relay network
with independent noise at the relays. The noise covariance



matrix, which is diagonal, is given by K�I. For a sum power
constraint at the relays, the optimum relay amplification vector
is found in [8], [9]. The result can also be obtained from
Theorem 1 by replacing K with K � I. The achievable SNR
is given by

SNR00 = PPR(f � g)†[(GKG†PR + ff†P + K) � I]−1(f � g).
(9)

A special case of Scheme-00 is where the relay noise
terms are independent and identically distributed. Since we
require the trace of the noise covariance matrix to be equal
in all the schemes, the covariance matrix for this scheme
will be Kiid = Tr(K)

N I. We denote this model as Scheme-
iid indicating that the relay noise terms are i.i.d. Again,
the optimal relay amplification vector for this model can be
obtained from Theorem 1 by replacing K with Tr(K)

N I. The
resulting SNR is found as

SNRiid = PPR(f � g)
†
[
(

Tr(K)GG†PR

N
+ ff

†
P +

Tr(K)I

N
) � I

]−1

(f � g).

(10)

2) Relays with no correlation knowledge: Scheme-10: In
this scheme, correlation is induced between the relay noise
terms. However the marginals remain the same as in Scheme-
00, nri

∼ CN (0,Kii); i.e. noise at relay Ri is AWGN with
variance Kii. Note that Kij represents the correlation between
the noise terms nRi

and nRj
for i �= j, and in general may not

be equal to zero. Since the relays do not utilize the correlation
structure, the relay amplification vector is the same as in the
case of Scheme-00. The SNR achieved with the relay gain
D10 = diag(d10) where d10 is the relay amplification vector
for this scheme is given by

SNR10 =

∣∣(f � g)†D−1
10 (f � g)

∣∣2 PPR

(f � g)†D−1
10 AD−1

10 (f � g)
. (11)

As there is no correlation knowledge at the relays, the relay
operation here involves only co-phasing of the input signal
and does not involve noise cancelation. It is straightforward
to see that Scheme-11 will perform better than Scheme-10
as it exploits the correlation structure in designing the relay
amplification factors. It is not clear whether Scheme-10 is also
inferior to Scheme-00 and Scheme-iid. It is also not clear
which is better among Scheme-00 and Scheme-iid. Answering
these questions will provide useful insights into the impact of
correlation in multi-hop AF relay networks. We address this
in the rest of this section.

B. Asymptotic analysis

We compare the schemes for the two extreme cases of
PR → ∞ and P → ∞.

1) Relay Power PR → ∞: At high PR, (7) reduces to

SNR11 = f†K−1fP. (12)

Similarly, at high PR D10 = G(K � I)G†PR and A =
GKG†PR . Substituting these in (11), we obtain

SNR10 =
(f†(K � I)−1f)2P

f†(K � I)−1K(K � I)−1f
. (13)

It is evident from (9) that the SNR of Scheme-11 at very high
relay power is

SNR00 = P f†(K � I)−1f . (14)

Similarly the SNR of Scheme-iid is readily obtained as

SNRiid =
f†fP

Trace(K)/N
. (15)

Remark: Except for Scheme-10, all the relay schemes turn
out to be a point to point SIMO channel. It must be noted
that the noise at the multiple antenna receiver is correlated
and the noise covariance matrix is the same as the relay noise
covariance matrix of the original network. For Scheme-10, the
multiple antenna receiver is unaware of the noise correlation
and assumes the noise covariance matrix to be K� I instead
of K.

To answer the question whether correlation hurts when
there exists no knowledge of it, let us consider the difference
SNR10 − SNR00. For the simple case of N = 2 and for real
channels, we have

SNR10 − SNR00 =
−2f1f2K12(f2

1K11 + f2
2K22)

f2
1K11 + f2

2K22 + 2f1f2K12
(16)

where f = [f1 f2]
T . The difference can be either positive

or negative depending on the term −2f1f2K12. For example,
when the signals are positively correlated (f1f2 ≥ 0) and the
noise components are negatively correlated K12 ≤ 0, then
correlation helps as part of noise gets canceled. Similarly when
both the signal and noise components are correlated in the
same direction (positive or negative) then correlation hurts as
it increases the noise power. Therefore the overall effect of
correlation can only be determined from the average behavior.

Theorem 2: At high relay power PR, Scheme-10 outper-
forms Scheme-00 in terms of both average SNR and average
rate. That is

E[SNR10] ≥ E[SNR00] and E[R10] ≥ E[R00]

where R10 = log(1 + SNR10) and R00 = log(1 + SNR00).
Refer to [13] for the proof.

The above result is significant as it suggests that, in the
average sense, correlation does not hurt even if correlation
knowledge is not available. To determine the relationship for
the rest of the cases, we take the expectation of SNR in (12),
(14), and (15):

E[SNR11] = P

N∑
i=1

E[|fi|2](1/λi) = P

N∑
i=1

1/λi (17)

E[SNR00] = P

N∑
i=1

E[|fi|2](1/Kii) = P

N∑
i=1

1/Kii(18)

E[SNRiid] =
P
∑N

i=1 E[|fi|2]∑N
i=1 Kii/N

=
NP∑N

i=1 Kii/N
(19)

where E[|fi|2] = 1 while λi and Kii are the ith eigen-value
and ith main-diagonal term of K respectively. E[SNR11] is
greater than E[SNR00] follows from the reason that the ordered
vector containing the eigen-values of K majorizes the main di-
agonal of K, i.e. λ � d. We also have E[SNR00] ≥ E[SNRiid]
due to the harmonic-arithmetic mean inequality. Therefore we
obtain the following relationship:

E[SNR11] ≥ E[SNR10] ≥ E[SNR00] ≥ E[SNRiid] (20)

Thus in the high relay power regime, correlation does not
hurt even when the system is ignorant of the underlying noise
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Fig. 2. Average rate of a single user system as a function of total relay
power PR for P = PI = 10.
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Fig. 3. Average rate of a single user system as a function of source power
P for PR = PI = 10.

correlation structure. Importantly, it is also clear that there is a
performance gain when the correlation structure is exploited.

2) Source Power P → ∞: At very high source power, the
optimal relay network (Scheme-11) is equivalent to a MISO
system. From (7), we have

SNR11 = PRg†g. (21)

Similarly, it can be shown that the rest of the schemes also
achieve the SNR in (21) at high P .

SNR10 = SNR00 = SNRiid = PRg†g. (22)

It can be noticed that this scenario represents the maximal
ratio transmission (MRT) where the relays act as a multiple
antenna transmitter. This is intuitive as the noise at the relays
is negligible compared to the source power and therefore the
effect of the noise covariance matrix is non-existent. We now
verify the results with numerical analysis in the following
subsection.

C. Numerical Results

We consider a common-interference based model to gener-
ate the relay noise covariance matrix. Each relay in addition
to its thermal noise observes faded versions of common
interference signals. The effective relay noise including both

the interference and the local noise is given by

neff =
Q∑

k=1

hkik + nR (23)

where ik is the signal transmitted by the kth interferer and hk

is the channel between the relays and the kth interferer. The
covariance matrix is given by

K = E[neffn†
eff ] =

Q∑
k=1

hkh
†
kPIk

+ I. (24)

The total interference power is PI =
∑Q

k=1 PIk
. Fig. 2 plots

the average rate per channel-use as a function of the total relay
power for P = PI = 10 for the case of two relays and one
interferer. The main observations are

1) The performance order of the schemes in (20) which was
obtained at high PR is valid at all values of PR.

2) The difference (R11 − R10) which indicates the benefits
of learning correlation increases with relay power. With
increase in relay power, the schemes diverge in perfor-
mance, which is an indication that correlation impacts
more at high relay power.

In Fig. 3, we plot the average rate as a function of source
transmit power for PR = PI = 10. Clearly, with increase in
source power, the schemes achieve the MRT bound. Therefore
the effect of correlation is less pronounced with increasing
source power. Fig. 4 shows the average rate as a function
of the interference power for one interfering node and two
relays. As one can expect, the average rate decreases with PI .
However R11 does not reach zero even at infinite interference
power. This can be explained through the following: With one
interfering source and N relays, the average SNR for Scheme-
11 at very high PR is given by

E[SNR11] = (N − 1) + E

[
1

1 + PI ‖ h1 ‖2

]
. (25)

This suggests that the average SNR is at least N − 1 irre-
spective of the interference power. However, the average SNR
decreases when the number of interferers increases. This is
due to loss in degrees of freedom due to increase in the range
space of interference.

Fig. 5 shows the average sum rate versus the number of
relays. The covariance matrix is generated with the help of 9
interferers with total power PI = 200. It can be noticed that
the sum rate increases at a greater rate when the number of
relays is greater than the number of interferers. As PI → ∞,
R11 → 0 when the number of relays is less than the number
of interferers (N ≤ Q). However for (N > Q), R11 does not
vanish even when PI → ∞.

Remark: As we discussed earlier, the relay design problem
is a tradeoff between canceling the interference and maximiz-
ing the signal power. At very high interference power, it is
important to cancel the interference. At high PR since the
network behaves as a SIMO system with N antennas at the
receiver, up to (N − 1) interfering sources can be rejected.
When the number of interferers is more than the total number
of relays, interference cannot be completely nulled.
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D. Impact of channel knowledge at the relays

Throughout this paper, we assume that the relays have
perfect knowledge of all the channels in the network. It may
seem that complete channel knowledge is required at the
relays for the relationship in (20) to hold. In Scheme-11, since
the relays know the noise covariance matrix, they must also
know the channels between the relays and interferers (when
the number of interferers is less than the number of relays).
This information is not available at the relays for Scheme-
10. Still, it performs better than Scheme-00 where there is
no noise correlation. In fact, it can be shown that Scheme-
10 outperforms Scheme-00 even when there is absolutely no
channel knowledge at the relays including the source-relay and
relay-destination channels. This is also true when the relays
only have local channel information. That is, relay Ri knows
only its forward and backward channels f(i) and g(i). The
following theorem states these results:

Theorem 3: The average achievable rate for a relay net-
work is lesser with relay noise covariance matrix K � I than
with any general K, where only local channel knowledge is
available at the relays. In other words

E[log(1 + SNR10)] ≥ E[log(1 + SNR00)]. (26)

Further, when there is absolutely no CSI available at the relays,
Scheme-10 outperforms Scheme-00 in terms of the average
SNR, i.e. E[SNR10] ≥ E[SNR00].

The proof is available in [13]. It is now clear that relay
noise correlation is always helpful regardless of the channel
and correlation knowledge at the relays. For maximizing
signal power channel knowledge is essential while correlation
knowledge is required to minimize interference power. With
perfect channel knowledge, increasing the number of relays
(while keeping the total relay power fixed) is helpful as signal
power is increased due to coherent combining.

IV. CONCLUSION

In this work, we considered an AF relay network wherein
the relay noises are correlated which may be due to common
interference or multi-hop AF relaying. We obtained closed
form expressions for optimal rate maximizing relay gains and
maximum achievable rate when correlation knowledge is avail-
able at the relays for both single and multi-source scenarios.
Further we showed that correlation does not hurt irrespec-
tive of channel and correlation knowledge at the relays. We
also showed that correlation knowledge results in significant
performance improvement. Analytical and simulation results
demonstrate significant rate enhancement when correlation
knowledge is exploited. With appropriate gains, the relays can
perform distributed interference cancelation when the number
of relays is greater than the the number of interferers. The
performance improvement increases with the total relay power
and the number of relays. As there are significant benefits
in learning correlation, practical schemes to communicate the
correlation structure to the relays need to be explored.
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