
The OLAP-Enabled Grid: Model and Query Processing Algorithms

Michael Lawrence Andrew Rau-Chaplin
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada B3H 1W5

{michaell,arc}@cs.dal.ca
www.cgmLab.org

Abstract

The operation of modern distributed enterprises, be they
commercial, scientific, or health related, generate massive
quantities of data. Decision makers increasingly utilize On-
Line Analytical Processing (OLAP) tools to glean from this
rich data resource nuggets of information which can be used
to better run their enterprises. A typical approach to OLAP
is to construct a single centralized data repository by copy-
ing all of the raw data from the sites where it is generated
to a cental location, where it is integrated, and then to route
all queries to that central location. As the amount of data
and number of sites and users grows this approach suffers
from significant scalability problems.

In this paper, we present a model and algorithmic frame-
work for an “OLAP-Enabled Grid” whose goal is the effi-
cient support of OLAP operations. We show how a Grid
computing infrastructure can be used to store and man-
age expensive to compute data aggregations and to answer
OLAP queries in a fully distributed manner. Our focus is on
the efficient optimization of resources for answering queries
based on a distributed query algorithm which uses cached
and pre-aggregated data stored over a Grid computing in-
frastructure.

1. Introduction

Many enterprises maintain sets of physically distrib-
uted operational databases which contain extremely large
amounts of data. For example, the sales transactions of a
retail chain, patient records of a group of hospitals, or data
from high-energy physics experiments. Decision makers
and analysts often turn to On-Line Analytical Processing
(OLAP) tools to extract useful information about the un-
derlying trends in their data. With the proliferation of net-
working technology supporting long distance collaboration,
many of these enterprises are able to operate in a distributed

fashion. The current approach to constructing a data ware-
house is to copy the raw data from the various distributed
operational databases and to move it to a central site where
it can then be processed to form a single large centralized
repository. As the amount of data and number of sites grows
this “centralized” approach suffers from significant scala-
bility problems.

At the same time, enterprises are adopting Grid comput-
ing as a way of harnessing geographically distributed com-
puting resources. Grids, widely distributed collections of
heterogeneous computers whose resources are pooled to-
gether for a specific task, are becoming an attractive plat-
form for high performance and data intensive scientific and
commercial computing due to their philosophy of efficient
utilization of existing computational infrastructure. In this
paper we present the OLAP-Enabled Grid, a new approach
to data warehousing and OLAP which, rather than integrat-
ing the operational data into a single data warehouse, pro-
vides a virtual data warehouse to its users by transparently
supporting OLAP operations through the use of resources
in a Grid.

Our OLAP-Enabled Grid model arises from the scenario
that the data of a single organization is distributed across a
number of operational databases at remote locations. Each
operational database has capabilities for answering OLAP
queries, and access to a possible variety of other compu-
tational and storage resources which are located close by.
The organization may be a single enterprise, as in the case
of a chain of retail stores maintaining point of sale trans-
actions at its various outlets, or the union of a number of
collaborating organizations, as in the case of scientific re-
search groups collaborating to form a data Grid. There are
a number of users who are interested in doing OLAP on
these databases, viewing them as a single integrated data
warehouse. The users are distributed over the network, and
may enter and leave the network in an ad-hoc manner. The
work presented in this paper gives a precise modeling of the
interaction between the entities in such a Grid, and proposes

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

algorithms for answering queries using cached query results
and materialized views.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the OLAP-Enabled Grid, followed by dis-
tributed query processing strategies in Section 3. A review
of related work in the area of distributed OLAP and Grid
computing is given in Section 4, followed by a summary
and brief discussion of future work in Section 5.

2. The OLAP-Enabled Grid

As described in the introduction, the OLAP-Enabled
Grid considers an organization which has a number of
widely distributed sites, each site being a local network and
containing some number of entities. An example is shown
in Figure 1. The entities are computers having distinct roles
in the OLAP process. Each site is under control of a part of
the organization and maintains some number of data ware-
houses, for example a department of a large enterprise, re-
search lab or retail outlet.

We group entities in the OLAP-Enabled Grid according
to five different roles, however we note that there may exist
entities in the Grid which do not participate in the OLAP
process at all.

1. OLAP Server - A machine which has sole control over
an operational database. It may maintain some mate-
rialized views and may also act as a computational or
storage resource. The OLAP servers all have the same
schema, but each maintains a partition of the total data
available to the users.

2. Computational Resource - A machine which offers cy-
cles for performing tasks on the behalf of other entities
in the Grid.

3. Storage Resource - A machine which offers disk space
for storing data on behalf of other entities in the Grid.

4. Resource Optimizer - There is exactly one resource op-
timizer for each site. A resource optimizer has the in-
formation necessary to perform scheduling and allo-
cation of computational and storage resources, and to
carry out queries. It may also have some cache space
for storing common query results for queries generated
in its site.

5. User - Users submit ad-hoc queries to resource opti-
mizers and may enter and leave the network at will.
Each user has an amount of cache space for caching
query results.

An analogous model in the peer-to-peer (P2P) setting
was described in [1]. It is similar in that peers can take on

the role of users, OLAP servers or storage resources, how-
ever the P2P setting is different in that there is no central-
ized control (where as Grids may have specialized servers
managing subsets of the infrastructure), and that requests
are routed through the logical connections between peers.

As shown in Figure 1, in the proposed model each site
can have any number of OLAP servers which may or may
not donate storage or computational resources. In Figure
1, the amount of computational resources an entity has is
shown by the number of rows in its rack, while the amount
of storage resources are indicated by the size of the attached
disk. There is one resource optimizer at each site, whose
responsibility is to keep an updated catalogue of the avail-
able resources (computational, storage, data, and cache) in
the Grid, and use this information to help schedule com-
putations, allocate storage resources, and answer queries in
a distributed fashion. Having described our basic model,
in the next sections we focus on the efficient optimiza-
tion of resources for answering queries based on a distrib-
uted query algorithm which uses cached and pre-aggregated
data.

3. Query Processing

To answer queries in the OLAP-Enabled Grid we pro-
pose a two-tiered process. The first tier is using the caches
on the local site in a cooperative manner to answer as much
as the query as possible, and the second tier is requesting the
missing fragments from the OLAP servers. This two-tiered
process is necessarily dependent on our choice of location
for cached query results and materialized views. We allow
user caches to store any query results which may be of inter-
est, which in general are multi-dimensional view fragments
spanning multiple OLAP data warehouses. Pre-aggregated
views of an OLAP data warehouse are stored on the stor-
age resources of the site local to that data warehouse, i.e.
we do not consider pushing materialized views out to other
sites. The reason for this is that by making caches the first
source for query results (as done in [2]), the caches in a
site will tend to be saturated with data from the most fre-
quently requested views in that site. Hence most queries
on those views will not make it to the sites which main-
tain those views. As a result, the most frequently requested
views as seen by an OLAP server are not necessarily in high
demand at any one particular site. They are more likely less
oft requested views at each site, so that they do not demand
significant cache space at those sites, but for which the ag-
gregate demand over all sites is significant. Thus it does not
make sense to push these materialized views out to other
sites since they are not frequently requested there.

At each tier, the resource optimizer plays a central role.
In the first tier, the user submits a query q to the resource op-
timizer. Having an index of all fragments cached in the local

2

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

Site
Site

Site

Site

U

U

U U

U
U

U
U

U U

User

Resource OptimizerO

OLAP Server

O

O

OO

Computational Resource

Storage Resource

DW

Figure 1. An example OLAP-Enabled Grid.

site, the resource optimizer locates all relevant fragments
which can be used to compute part of q, and formulates a
set of sub-queries Q = {q1, q2 . . . qn} for the remaining
fragments. Each of these queries qi is sent on behalf of the
user to the resource optimizer at each site having an OLAP
server whose fact table intersects with qi. In tier two query
answering, a resource optimizer receives a query q to be
answered using a data warehouse on its site. It locates all
OLAP servers and storage resources at this site having ma-
terialized views which can answer q and chooses the one
which can answer it the quickest based on a cost modeling.
The results are sent back to the user who requested them.
This process is outlined in Algorithm 1.

Algorithm 1 Two-Tiered Query Answering Overview
1: User U sends query q to its local resource optimizer R
2: R uses its index on the locally cached query fragments

to locate which ones can be used to partially answer q,
and formulates a set of sub-queries Q for the missing
portions.

3: The local users send their relevant cached fragments to
U .

4: for all qi ∈ Q do
5: for all OLAP Servers S potentially containing re-

sults for qi do
6: Send qi to S’s local resource optimizer RS .
7: RS answers qi by sending it to S or the local com-

putational resource which can answer it the quick-
est.

8: The answer to qi from S is sent back to U .
9: end for

10: end for
11: Once U has received all of the results it needs, it com-

bines them and performs any final aggregation neces-
sary to get the final answer to q.

One obvious question is: why search the local caches
before the local OLAP servers? Since they are likely much
better equipped to answer queries than the user machines
doing the caching. The reason is that a well designed
caching strategy will not cache data from local OLAP
servers, since it is much easier to get and as a result much
less valuable than data from remote OLAP servers. Hence
by searching the caches first we are not necessarily favour-
ing cached data over local OLAP servers.

3.1. Tier 1 - Cooperatively Using Local
Caches

We index caches by using an R-Tree for each view in the
data cube lattice which indexes the fragments of that view
which are stored in the caches. Each fragment is also an-
notated with the number of rows it contains, as well as the
address of the machine (user or gateway cache) which con-
tains the fragment. When a resource optimizer O is given
a query q it searches the R-Tree at the view v correspond-
ing to q’s level of aggregation, and identifies all intersect-
ing view fragments. Based on the intersecting regions of
the identified fragments, it computes a set of sub-queries
Q which request the missing fragments. It then searches
up the data cube lattice beginning with the ancestors of v,
and at each view w re-writes the queries in Q as queries on
w and attempts to answer them recursively, which in turn
makes other recursive calls. Any of the queries in Q which
cannot be completely answered by the recursive procedure
is sent to all OLAP servers whose bounding boxes overlap
with the query. All of the results, both cached and from the
sub-queries, are returned to the user which combines them
into the result set for q.

The algorithm which computes the set of missing view
fragments (queries) Q given a query q and a set of inter-
secting view fragments QI is described as follows. Q is

3

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

q1 q2

q3

q

Figure 2. A multi-dimensional range query q
(solid lines) given to a resource optimizer,
which finds the intersecting queries q1, q2,
and q3 (dashed lines) in the cache. The set of
fragments Q which remain to be answered is
initialized to those regions shown which have
at least one dotted line side, and the remain-
ing sides dotted, dashed and solid lines.

initialized by drawing a grid of unequally sized cells on q
by extending the boundaries of each query in QI through q.
For example, in Figure 2, QI = {q1, q2, q3} is drawn with
dashed lines, and the grid imposed on q (the solid-line box)
is shown with dotted lines. The queries in Q are initialized
to those boxes which have at least one side as a dotted line,
and all other sides dotted, dashed, or solid lines (i.e. all re-
gions not covered by q or queries in QI). The algorithm
then merges adjacent pairs of fragments in Q which have
the same dimensions on the adjacent hyperplane, until no
more such merges are possible. As a heuristic the pair to be
merged at each step is chosen to maximize the area of the re-
sulting merged fragment. For example, in Figure 2, the first
pair merged is the two fragments directly above q1, as this
results in the largest merged fragment. The final set of frag-
ments in this example is Q = {q4, q5, q6, q7, q8, q9, q10},
shown in Figure 3.

Our basic lattice search procedure, as outlined in Algo-
rithm 2, can be thought of as a view fragment adaptation of
Deshpande’s Exhaustive Search Method (ESM) [3]. It be-
gins with a query q on a view v, and searches for cached
fragments of this view and from aggregating higher level
cached fragments to answer as much of q as possible. Its
output is a set of fragments QI which can be computed from
the cache as well as a set of remaining fragments Q which
must be sent to the OLAP servers to be answered.

We call our strategy the query fragment bubble-up
strategy and Deshpande’s [3] the query chunk bubble-up
strategy, since requests for sub-fragments or chunks are

q1 q2

q8
q10

q3

q
q

q

q

q4

5

6

7

q9

Figure 3. A multi-dimensional range query q
(solid lines) given to a resource optimizer,
which finds the intersecting queries q1, q2,
and q3 (dashed lines) in the cache. The fi-
nal set of fragments Q which will be either
answered by cached fragments of views fur-
ther up in the data cube lattice or sent to the
OLAP servers is {q4, q5, q6, q7, q8, q9, q10}.

bubbled-up to ancestor views in the data cube lattice. Our
algorithm, like Deshpande’s ESM, is naive to the possible
overlap between queries at higher level views, a more clever
implementation would proceed breadth-first, using a global
queue for fragment requests at each view like Deshpande’s
Virtual Count Method (VCM).

Our procedure will only be beneficial over an all-or-none
strategy, where either q is entirely answered from the caches
or not at all, if the OLAP servers can efficiently the group of
number of small queries faster than a large query which con-
tains all of them. This is certainly reasonable, since reading
the records to answer a query is a disk bound activity where
the amount to be read (with an appropriate index) is propor-
tional to the size of the query. There are a number of re-
maining questions about the algorithms described here, for
example the worst-case number of fragments in Q found
by Find Missing Fragments as a function of the number of
fragments in QI , as well as the time complexities of the
algorithms.

3.2. Tier 2 - OLAP Server Site Query An-
swering

The set of fragments Q of a query q which cannot be
answered from the caches on the local site must be sent to
the OLAP servers to be answered. For each query q′ in
Q, we form a d-dimensional bounding box B by adding
global selection ranges to those dimensions not grouped on

4

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

Algorithm 2 Cache Search
Input: Query q on view v
Output: Set of fragments QI of q which are answered

from the cache and a set of fragments Q which need
to be answered by the OLAP servers.

1: QI ← all cached fragments intersecting q as found by
searching the R-Tree of view v.

2: Q ← FindMissingFragments(q, QI).
3: for all q′ ∈ Q do
4: for all Parent views w of v in the lattice do
5: Re-write q′ as a query over w by taking a global

selection range on all dimensions in w which are
aggregated in v.

6: QI ′, Q′ ← CacheSearch(q′, w).
7: if Q′ = ∅ then
8: Compute q′ by aggregating the results in QI ′.
9: Remove q′ from Q and add it to QI ′.

10: Break from inner loop.
11: end if
12: end for
13: end for

by q. Then to determine which OLAP servers may con-
tain records necessary for answering q′, we then search the
R-Tree containing the OLAP servers’ fact table bounding
boxes for intersection with B, and send q′ to each matching
server S.

An OLAP server S, upon receiving a query q appeals to
its local resource optimizer O for determining a cheap way
in which to compute q. This depends on materialized views,
the power and load on the various computational resources
at the site, as well as the load-dependent bandwidth between
sites. The query may be answered directly by S itself, or
may be answered by another computational and storage re-
source containing materialized views, or by another com-
putational resource which can receive the necessary data
from a storage resource which contains it. Each option is
explored, and the cheapest one taken. O figures out how
quickly each machine M which is both a storage and com-
putational resource (including S) and contains appropriate
materialized views can answer q locally. O also determines
the smallest view/index combination stored on a storage re-
source D (D = “disk”), and computes how quickly q can be
computed if this view/index is transferred to the best com-
putational resource at the site. The best computational re-
source will often be the most powerful, but depending on
this machine’s load, another less powerful but more avail-
able machine may be deemed best.

In determining the cost of answering a query using ma-
terialized views, many studies, for example [4, 5, 6, 7, 8,
9, 10, 11], employ a linear cost model where the cost of an-
swering a query q using a materialized view v is equal to the

number of records in v. This is irrespective of the size of q.
Under this model, it would be pointless to try and partially
answer queries from local caches, i.e. if the query cannot
be entirely answered from cache, then it should be sent to
the OLAP servers. However in practice when index struc-
tures are build on the views, the time to answer a query is
proportional to the number of records which must be read
as well as the cost of aggregating these records to the level
that the original query has been posed on, if necessary. In
the context of our previous work on the cgmCUBE system
[12, 13, 14] the data is indexed using R-Trees so that each
leaf points to a disk block and records the bounding box of
all rows stored in that disk block. In this case the lookup
time using the R-Tree is negligible and the time to answer a
query is proportional to the number of records which must
be read from disk. This in turn depends on the density of
the view which the query is actually answered on, and the
size of the re-written query over that view. We express the
time to answer a query as a function with two components:

1. A reading time tr for reading the records from disk

2. And an aggregation time ta to aggregate the records in
memory (which may be 0 in the case that q is answered
directly on its view).

The reading time depends on the disk speed and load of the
machine it is done on, and the aggregation time depends
on the processor speed. Since aggregation is not computa-
tionally intensive except for the amounts of data involved,
transferring records from one machine to be aggregated on
another is more costly than the actual aggregation, and so
the reading and aggregation must both be done on the same
machine. We abstract the reading time as a function de-
pending on the query and view, as

tr = �d
fread(q, v)

sd

where sd is the disk speed of the machine performing the
reading �d is the load on its disk, q is the query to be an-
swered, v is the view it is answered on, and fread(q, v) is
a function giving the number of disk I/Os for reading the
records in v which are necessary to compute q. Similarly,
we define

ta = �p
faggregation(q, v)

sp

as the aggregation time, where sp is the processor speed
of the machine performing the aggregation, �p is the load
on its processor, and faggregation(q, v) gives the number of
operations (if any) for aggregating the records read from v
in order to answer q. Our total time to answer a query is
hence

tq = tr + ta, (1)

5

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

where v is chosen to minimize tq. Note that this formulation
for the sake of simplicity is naive to the fact that these two
operations may be pipelined and performed in parallel. In
order to make scheduling decisions, the resource optimizer
should have knowledge of the processor and disk speeds of
all of the computational and storage resources at its site, and
can poll the machines to get their respective loads.

Our basic scheduling approach is similar to that of other
data-intensive computational Grid schedulers [15, 16, 17]
in that it models execution time on the various available re-
sources and chooses the cheapest option. The difference is
in the details of the cost modeling as described in the above
equations, which are specific to OLAP queries which can be
evaluated in many possible ways using different views. In
order to answer a query, our scheduler computes the value
of Equation 1 for each machine capable of answering the
query (storing an appropriate materialized view), and picks
the one minimizing it.

Here we have assumed that each materialized view is
over a single OLAP server’s data only. However, we may
potentially make improvements by combining materialized
views from two or more OLAP servers if queries on those
views frequently range over both servers. A further and
easy means for improvement would be to aggregate partial
results from each OLAP server before sending them back
to the local site. By combining the results for N different
OLAP servers at the remote site rather than sending them
back independently to be aggregated at the requesting site
we could reduce the amount of WAN transmission by 1/N .
We are currently exploring these extensions.

4. Related Work

There has been surprisingly little previous work on
OLAP in a Grid environment. A number of researchers have
taken a software component oriented approach to the prob-
lem, by describing the services and middleware interactions
which should exist in order to support OLAP [16, 18, 19].
In [20, 21], Niemi et. al. describe how to answer queries in
a distributed manner using a collection server which breaks
each query into sub-queries and sends them to the relevant
nodes containing the actual data. Although certainly useful,
these approaches largely ignore the issues of resource opti-
mization and the technicalities of data and query specifica-
tion which are necessary for efficiently supporting a virtual
data warehouse. Their concern is with the software which
makes OLAP in a Grid possible, but not on how to manage
the resources in the entire Grid to do it in the most efficient
possible manner.

Other studies focus on cost modeling in computational
and data Grids but don’t directly address OLAP. In [15], in-
coming data mining tasks are scheduled on single machines
so that the task is completed as quickly as possible. In [16],

two general formulas are given for modeling the response
time of a data-intensive application, one for when the ap-
plication is executed in the local site, and one at the remote
site where the data resides. Our scheduling approach, de-
scribed in Section 3 is most similar to [17] who consider
data-intensive applications executed on one of a number
of widely distributed clusters. They provide five formu-
las for modeling execution time: local data/execution, local
data/remote execution, remote data/local execution, remote
data and same remote execution, and remote data and dif-
ferent remote execution. Their Chameleon scheduler com-
putes the total time it takes for an application to complete
and the output to be transferred to the user for each possibil-
ity in the five scenarios, and picks the one which is cheapest.

A major distinction with previous computational and
data Grid execution cost modeling and the work presented
here is that we consider the data dependency relationship
between different OLAP queries. Previous data Grid work
is such that each data intensive task requires one and only
one data set, where as an OLAP query can be answered
from many different sources of pre-aggregated data at dif-
ferent costs. Hence the cost modeling, scheduling and re-
source allocation techniques must be aware of this. Many
queries may require massive amounts of data aggregation,
and so the results of these queries are very valuable in terms
of re-usability.

The issues of pre-aggregated data have previously been
considered in Peer-to-Peer OLAP systems [1, 2]. In [1], the
data placement problem for databases in Peer-to-Peer (P2P)
networks is considered. In [2] a P2P OLAP system called
PeerOLAP is presented which takes a completely decen-
tralized approach by propagating queries to peers through
a logical network. Each peer caches query results, and is-
sues queries to its peers hoping to make use of their cached
information.

5. Summary and Future Work

In this paper, we have presented a model and algorithmic
framework for an “OLAP-Enabled Grid” and shown how a
Grid computing infrastructure can be used to store and man-
age expensive to compute data aggregations and to answer
OLAP queries in a fully distributed manner. Our focus has
been on the efficient optimization of resources for answer-
ing queries based on a distributed query algorithm which
uses cached and pre-aggregated data stored over a widely
physically distributed Grid computing infrastructure. We
are currently constructing an experimental evaluation of the
system built on the cgmCUBE code base [13, 14] and inves-
tigating a variety of caching and pre-aggregation strategies.

6

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

References

[1] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Su-
ciu, “What can databases do for peer-to-peer?,” in
WebDB Workshop, pp. 31–36, 2001.

[2] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L.
Tan, “An adaptive peer-to-peer network for distributed
caching of olap results,” in SIGMOD ’02, pp. 25–36,
2002.

[3] P. Deshpande and J. F. Naughton, “Aggregate aware
caching for multi-dimensional queries,” in EDBT
’00: Proceedings of the 7th International Conference
on Extending Database Technology, (London, UK),
pp. 167–182, Springer-Verlag, 2000.

[4] H. Gupta and I. S. Mumick, “Selection of views to
materialize in a data warehouse,” IEEE Transactions
on Knowledge and Data Engineering, vol. 17, pp. 24–
43, January 2005.

[5] P. Kalnis, N. Mamoulis, and D. Papadias, “View se-
lection using randomized search,” Data Knowl. Eng.,
vol. 42, no. 1, pp. 89–111, 2002.

[6] W. Liang, H. Wang, and M. E. Orlowska, “Material-
ized view selection under the maintenance time con-
straint,” Data Knowl. Eng., vol. 37, no. 2, pp. 203–
216, 2001.

[7] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Im-
plementing data cubes efficiently,” in SIGMOD ’96,
pp. 205–216, 1996.

[8] C. Zhang, X. Yao, and J. Yang, “An evolutionary ap-
proach to materialized views selection in a dataware-
house environment,” IEEE Transactions on Systems,
Man and Cybernetics, Part C, vol. 31, pp. 282–294,
August 2001.

[9] H. Gupta and I. S. Mumick, “Selection of views to
materialize under a maintenance cost constraint,” in
ICDT ’99, pp. 453–470, 1999.

[10] H. Uchiyama, K. Runapongsa, and T. J. Teorey, “A
progressive view materialization algorithm,” in Pro-
ceedings of the 2nd ACM International Workshop on
Data Warehousing and OLAP, pp. 36–41, 1999.

[11] A. Shukla, P. Deshpande, and J. F. Naughton, “Mate-
rialized view selection for multidimensional datasets,”
in 24rd VLDB Conference, pp. 488–499, 1998.

[12] F. Dehne, T. Eavis, and A. Rau-Chaplin, “Paral-
lel multi-dimensional ROLAP indexing,” in Proc.
IEEE/ACM Int. Symp. on Cluster Computing and the

Grid (CCGrid), pp. 86–93, IEEE Comp. Soc. Dig. Li-
brary, 2003.

[13] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin,
“Parallel ROLAP data cube construction on shared-
nothing multiprocessors,” Distributed and Parallel
Databases, vol. 15, pp. 219–236, 2004.

[14] F. Dehne, T. Eavis, and A. Rau-Chaplin, “The cgm-
CUBE project: Optimizing parallel data cube genera-
tion for ROLAP,” Distributed and Parallel Databases,
to appear.

[15] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri,
“Scheduling high performance data mining tasks on a
data grid environment,” in 8th International Euro-Par
Conference on Parallel Processing, (London, UK),
pp. 375–384, Springer-Verlag, 2002.

[16] H. Stockinger, K. Stockinger, E. Schikuta, and
I. Willers, “Towards a cost model for distributed and
replicated data stores,” in Proceedings. Ninth Euromi-
cro Workshop on Parallel and Distributed Processing,
(Washington, DC, USA), pp. 461–467, IEEE Com-
puter Society Press, 2001.

[17] S.-M. Park and J.-H. Kim, “Chameleon: a re-
source scheduler in a data grid environment,” in 3rd
IEEE/ACM International Symposium on Cluster Com-
puting and the Grid., IEEE, May 2003.

[18] B. Fiser, U. Onan, I. Elsayed, P. Brezany, and A. M.
Tjoa, “On-line analytical processing on large data-
bases managed by computational grids,” in DEXA ’04:
International Workshop on Database and Expert Sys-
tems Applications, (Washington, DC, USA), pp. 556–
560, IEEE Computer Society, 2004.

[19] W. Dubitzky, D. McCourt, M. Galushka, M. Romberg,
and B. Schuller, “Grid-enabled data warehousing for
molecular engineering,” Parallel Comput., vol. 30,
no. 9-10, pp. 1019–1035, 2004.

[20] T. Niemi, M. Niinimki, J. Nummenmaa, and
P. Thanisch, “Constructing an olap cube from distrib-
uted xml data,” in 5th ACM international workshop on
Data Warehousing and OLAP, pp. 22–27, 2002.

[21] T. Niemi, M. Niinimki, J. Nummenmaa, and
P. Thanisch, “Applying grid technologies to xml based
olap cube construction.,” in Proceedins of the 5th In-
ternational Workshop in Design and Management of
Data Warehouses, 2003.

7

Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06)
0-7695-2582-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

