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ABSTRACT

This paper addresses the problem of locating an acoustic source
using a sensor network in a distributed manner, i.e., without trans-
mitting the full data set to a central point for processing. This
problem has been traditionally addressed through the nonlinear
least squares or maximum likelihood framework. These methods,
even though asymptotically optimal under certain conditions, pose
a difficult global optimization problem. It is shown that the as-
sociated objective function may have multiple local optima and
saddle points and hence any local search method might stagnate
at a sub-optimal solution. In this paper, we formulate the problem
as a convex feasibility problem and apply a distributed version of
the projection onto convex sets (POCS) method. We give a closed
form expression for the projection phase, which usually constitutes
the heaviest computational aspect of POCS. Conditions are given
under which, when the number of samples increases to infinity or
in the absence of measurement noise, the convex feasibility prob-
lem has a unique solution at the true source location. In general,
the method converges to a limit point or a limit cycle in the neigh-
borhood of the true location. Simulation results show convergence
to the global optimum with extremely fast convergence rates com-
pared to the previous methods.

1. INTRODUCTION

The problem of locating a source that emits acoustic waves using a
wireless network of acoustic sensors has been addressed by several
authors (see e.g. [1, 2, 3, 4] and references therein). This problem
has been traditionally solved though nonlinear least squares esti-
mation, which is equivalent to the maximum likelihood estimator
when the observation noise is modeled as a white Gaussian pro-
cess. Rabbat and Nowak [2, 5] proposed a distributed implemen-
tation of the incremental gradient algorithm to solve this problem
in a distributed manner, i.e., without the need to transmit the data
to a central point for processing. A drawback of their method, or
any other local search method, is that it is sensitive to local optima
and saddle points. As will be shown below, the objective function
associated with this problem is indeed multi-modal and may have
a number of local optima and saddle points.

To overcome this shortcoming, in this paper the problem is
formulated as a convex feasibility problem instead of nonlinear
least squares. Necessary and sufficient conditions are given under
which, when the number of samples increases to infinity or in the
absence of measurement noise, the convex feasibility problem has
a unique solution at the true source location.

This research was partially supported by DARPA-MURI grant ARO
DAAD 19-02-1-0262.

To solve the convex feasibility problem we propose the pro-
jection onto convex sets (POCS) method [6] (see also [7] Ch. 5).
We show that this method can be implemented in a distributed
manner, i.e., each sensor performs the bulk of its computations
based on its own data and it is not required that the full data set be
sent to a central point for processing. As in Nowak’s distributed
EM algorithm [8], a number of communication cycles across the
network is sufficient for the implementation of the estimator. A
closed form expression is given for the usually computationally
demanding projection phase of POCS, which leads to a computa-
tionally efficient implementation. For a finite number of samples it
is shown that convergence to a point or a limit cycle in the vicinity
of the true source position occurs. Simulation results show global
convergence of the proposed method in contrast to a local search
method, with extremely fast convergence rates.

2. PROBLEM FORMULATION

Consider a sensor network composed of L sensors distributed at
known spatial locations, denoted rl, l = 1, . . . , L, where rl ∈
R

2. Generalization to R
3 is straightforward but is not explored

here. An acoustic source is located at an unknown location θ∗ ∈
R

2. Each sensor collects n noisy measurements of the acoustic
signal transmitted by the source, denoted {yl

t}, l = 1 . . . , L, t =
1, . . . , n. Following [1, 2, 3], the reading of the source’s signal
strength at sensor l is modeled by

yl
t =

A

||rl − θ||β + wl
t, t = 1, . . . , n

where A and β are the source signal strength and isotropic attenua-
tion coefficient, respectively, and wl

t is a zero-mean measurement
noise with unknown variance σ2. We assume that β and A are
known. The first assumption is reasonable if a characterization of
the terrain in which the network is deployed is available. The sec-
ond one is valid when an additional sensor is added to an already
deployed network and the new sensor transmits an acoustic signal
with known power to enable the network to estimate its location.

Formulated as a nonlinear least squares problem1, the source’s
location can be estimated by

θ̂NLS = arg min
θ

L∑
l=1

n∑
t=1

[
yl

t − A

||rl − θ||β
]2

. (1)

The fact that the objective function is a sum of L components was
exploited in the implementation of the distributed incremental gra-
dient method in [2, 5]. However, since the objective function has

1Equivalent to maximum likelihood when the noise is assumed to be a
white Gaussian process.
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Fig. 1. The negative log of the nonlinear least squares objective
function.

multiple local optima and saddle points, the incremental gradient
method may stagnate at one of these sub-optimal solutions instead
of converging to the optimal one. A realization of the negative log
of the objective function in (1) is presented in Fig. 1. The details
of the simulation that generated this figure are given in Sec. 4. It
can be seen that the objective function has many local optima and
saddle points.

An alternative problem formulation of the problem of estimat-
ing the source’s location is the following. Consider the l sum-
mands in the objective function (1). It is easily seen that the func-
tion

fl(θ) =

n∑
t=1

[
yl

t − A

||rl − θ||β
]2

obtains its minimum on the circle

Cl =

{
θ ∈ R

2 : ||θ − rl|| =

[
A

yl

]1/β
}

where yl = n−1 ∑n
t=1 yl

t. Let Dl be the disk defined by

Dl =

{
θ ∈ R

2 : ||θ − rl|| ≤
[

A

yl

]1/β
}

. (2)

Then our estimation problem is solved by finding a point in the
intersection of the sets Dl, l = 1, . . . , L, that is,

θ̂ ∈ D =

L⋂
l=1

Dl ⊂ R
2. (3)

Note that due to observation noise the intersection D might be
empty. In this case, our estimator is any point that minimizes the
sum of distances to the sets Dl, l = 1, . . . , L, that is,

θ̂ = arg min
θ∈R2

L∑
l=1

||x − PDl(x)|| (4)

where for a set S ⊆ R
2 and a point x ∈ R

2, PS(x) is the orthog-
onal projection of x onto S, that is,

PS(x) = arg min
y∈S

||x − y|| (5)

where || · || is the Euclidean norm. Observe that (4) includes (3) as
a special case when a minimum value of zero is attainable. Since
the sets Dl are convex, both the consistent and inconsistent convex
feasibility problems, (3) and (4), respectively, can be solved via the
POCS method to be described below.

Before describing POCS, we give necessary and sufficient con-
ditions for the consistency of the estimator (4). Denote by H the
convex hull of the sensors’ spatial locations, i.e.,

H =

{
x ∈ R

2 : x =

L∑
l=1

αlrl, αl ≥ 0,

L∑
l=1

αl = 1

}
.

It is possible to show geometrically (see Fig. 2) that when the num-
ber of samples increases to infinity, or in the absence of measure-
ment noise, the convex feasibility problem (4) has a unique solu-
tion at the true source’s location, denoted by θ∗, if and only if θ∗

lies in H, that is,

L⋂
l=1

{
θ ∈ R

2 : ||rl − θ|| ≤ ||rl − θ∗||} = {θ∗}

if and only if θ∗ ∈ H
where L ≥ 2.

In the general case of finite number of samples and finite sig-
nal to noise ratio, one of two cases can occur: (a) D �= ∅, and (b)
D = ∅. In the former, the POCS method is guaranteed to con-
verge to a point in D. In the latter, the POCS method converges
to a limit cycle in the vicinity of the point that minimizes the sum
of distances to the sets Dl (2), or, when a certain sequence of re-
laxation parameters are used, the method converges to the optimal
solution.

3. DISTRIBUTED IMPLEMENTATION OF POCS

The POCS method [6, 7] is given by the following algorithm.

1. Initialization: θ0 is arbitrary.

2. Iterative step: For all k ≥ 0,

θk+1 = θk + λk

[
PDκ(k)(θ

k) − θk
]

(6)

where {λk}k≥1 is a sequence of relaxation parameters sat-
isfying for all k, ε1 ≤ λk ≤ 2 − ε2 for some ε1, ε2 > 0,
κ(k) = k mod L, and PS(x) is defined in (5).

Usually the projection operator is the most computationally de-
manding element of POCS. In our application, however, a closed

form expression is available for (6). Clearly, if ||θ−rl|| ≤
[

A
yl

]1/β

then θ ∈ Dl and PDl(θ) = θ, otherwise,

PDl(θ
k) = rl + [α cos(φ), α sin(φ)]T (7)

where α = β
√

A/yl, and φ = atan(θk(2)−rl(2), θk(1)−rl(1)),
where atan(·, ·) is the four quadrant inverse tangent function, and
for a vector vector x ∈ R

2, x(1) and x(2) denote its first and
second coordinates, respectively.
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Fig. 2. Source, denoted by a black dot, is located inside (top) and
outside of (bottom) the convex hull H of the sensors’ locations,
denoted by crosses.

The relaxation parameters λk play an important role in the
convergence of the method. At the first phase of the implemen-
tation of the POCS method, the relaxation parameters are set to
1. As the method progresses, a convergence criterion is repeat-
edly checked. If convergence to a single point is detected, it is
concluded that D �= ∅, and the final estimate θ̂ is set to the limit
point. If convergence to a limit cycle is detected, i.e., each sen-
sor converges to a different value, it is concluded that D = ∅ and
the method enters phase two. At phase two the relaxation param-
eters are decreased at a rate of 1/k. In [9], it is shown that this
relaxation sequence leads to convergence to the point x that min-
imizes the sum of squared distances to the sets Dl, that is, to θ̂
defined in (4). It should be noted that if the transition to phase two
occurs prematurely, this convergence result still holds. The effect
will be a slowdown of convergence. A sub-optimal but computa-
tionally cheaper alternative to phase two is to approximate θ̂ by
the arithmetic mean of the points in the limit cycle. This simple
approach was used in the simulation reported in Sec. 4. Due to
its global convergence properties, the estimate resulting from the
POCS method could also be used to trigger a local search for the
nonlinear least squares estimator such as the one in [2].

Note that all the information required for the computation of
(7) (or (6)) is available at sensor l and hence a distributed imple-
mentation is possible. Following [8], assume without loss of gen-

erality that the indices l = 1, . . . , L correspond to a cycle through
the network. Let sensor 1 be initiated with a pre-specified initial
value θ0. Sensor 1 generates θ1 through (6) and transmits θ1 to
sensor 2. Upon receiving θk from sensor κ(k), sensor κ(k + 1)
calculates θk+1 and transmits it to sensor κ(k + 2). The informa-
tion cycle continues until the detection of convergence to either a
limit point or a limit cycle. The convergence detection criteria can
be easily implemented in a distributed manner as well. Phase two
can be implemented in a similar way.

4. SIMULATION RESULTS

This section presents a simulation of a sensor network of L =
5000 nodes, distributed in a 100 × 100 field. Each sensor col-
lects a single measurement of the acoustic source located at θ∗ =
[50, 50]T , which emits a signal with A set to 100. The measure-
ment noise variance is σ2 = 1 and the attenuation coefficient is
β = 2. Following [3, 5], not all sensors participate in the estima-
tion task. At an acquisition phase, each sensor decides whether or
not a source is present using a simple threshold test. Only those
sensors whose acoustic reading is above 10 participate. In the re-
alization presented here, L1 = 31 sensors detected the source and
entered the estimation phase.

A realization of the objective function associated with the non-
linear least squares estimation method (1) is shown in Fig. 1. To
optimize the viewing angle, the negative log of the objective func-
tion is presented. Hence, the optimum point is the global max-
imum rather than the minimum, which appears close to the true
location of the source. The objective function has multiple local
optima and saddle points, which impose difficulties on any local
search method. In Fig. 3, the paths taken by the steepest descent
(SD) method initiated from multiple points on a grid are presented
on top of the contour plot of the nonlinear objective function (1).
The SD method could also be implemented in a distributed man-
ner, e.g., distributed Fisher scoring [10]. The initial points are de-
picted by crosses, followed by a line which follows the path taken
by the algorithm, and ends at the convergence points depicted by
circles. It is seen that only when the method is initiated close to
the global optimum at the center of the plot, does convergence to
the global optimum occur. The method mostly stagnates at local
optima or saddle points.

In contrast to this shortcoming of the local search method, the
proposed POCS method converges to the vicinity of the global op-
timum regardless of the initial point. In Fig. 4 the paths taken by
the POCS method are presented. The order of the sensors in the
information cycle described in Sec. 3 was selected randomly. A
better illustration of the method is presented in Fig. 5, in which
four representative paths are superimposed on top of the convex
sets (discs) (2). At each iteration the sequence generated by the
algorithm is projected onto a different disc, unless it is already in-
side it. It is seen that the convergence is extremely fast; after as
few as three sub iterations (6), the sequence reaches the vicinity of
the global optimum.

5. CONCLUSIONS

The problem of distributed acoustic source localization using a
wireless sensor network was formulated as a convex feasibility
problem and solved via the POCS method. The solution has global
convergence properties with fast convergence rates. Finally we
note that this concept can be generalized to other problems in
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Fig. 3. Paths taken by the steepest descent method.
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Fig. 4. Paths taken by the POCS method.

which the objective function depends on the parameters through
terms of the form ||θ−cl||, where cl, l = 1, . . . , L are data depen-
dent terms. In particular, this concept can be easily generalized to
the three dimensional case. Generalization to non-isotropic media,
unknown source amplitude, non-Gaussian noise, and the effect of
channel noise are worthy of additional study.
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Fig. 5. Paths taken by the POCS method on top of the convex sets.
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