
ADAPTIVE TRAINING WITH JOINT UNCERTAINTY DECODING
FOR ROBUST RECOGNITION OF NOISY DATA

H. Liao and M. J. F. Gales

Cambridge University Engineering Department
Trumpington St., Cambridge, CB2 1PZ, UK

{hl251,mjfg}@eng.cam.ac.uk

ABSTRACT

Standard noise compensation techniques for automatic speech recog-
nition assume a clean trained acoustic model. What is thought of as
“clean” data, may still have a variety of speakers, different channels
and varying noise conditions. Hence it may be more reasonable to
consider such data multi-conditional for multistyle training. This
paper shows that multistyle models benefit from VTS compensation
or Joint uncertainty decoding by reducing the mismatch between
training and test. An EM-based noise estimation procedure that pro-
duces ML VTS orJoint noise models is also described. Alterna-
tively, adaptive training withJoint uncertainty transforms factors
out the noise from the data. The uncertainty variance bias de-weights
observations in the training data where the SNR is low. This prop-
erty allows data with a wide SNR range to be used and produces
canonical models that truly represent clean speech, whereas multi-
style trained models must account for all acoustic variation associ-
ated with different noise conditions. This paper presentsJoint
adaptive training including formula for estimating the transforms
and canonical model parameters. Experiments are conductedon the
Resource Management and Broadcast News corpora.

Index Terms—Speech recognition, Robustness

1. INTRODUCTION

Conventional approaches to improve recognition robustness of noisy
speech presume the acoustic model is clean trained. Despitebe-
ing considered “clean”, the training data may contain a widevariety
of speakers, accents, channels and noise conditions. Hence, clean
data may be considered multi-conditional and the models trained on
this data in a multistyle fashion. Little research has been conducted
on applying noise compensation techniques to multistyle systems.
This paper examines VTS andJoint compensation as general ap-
proaches to reducing the mismatch between the training and test con-
dition for both clean and multistyle trained acoustic models.

Alternatively, adaptive training may be applied to remove these
unwanted factors, such as speaker differences or the acoustic envi-
ronment, from being included in the acoustic models [1, 2]. Rather
than force the acoustic model to represent all these factors, as ex-
pected in multistyle training, transforms are used insteadto model
the variation from different factors. MLLR transforms can only nor-
malise low levels of noise, hence is unsuitable for adaptivetraining
with data that has large variations in SNR. This motivates a novel
model training framework calledJoint adaptive training (JAT),
based on noise normalisation usingJoint transforms for training
models on noisy data. JAT takes into account the SNR of the data
when estimating the canonical model parameters. When the noise
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subsumes the speech, the uncertainty variance bias ensuresthose ob-
servations do not contribute to the parameter update. In this way, JAT
weights the training data using uncertainty due to noise. Hence, JAT
explicitly handles a large range of SNR in the training data,produc-
ing a final acoustic model that is truly noise-free.

Experiments are reported on the large vocabulary BroadcastNews
transcription task and an artificially corrupted 1000-wordResource
Management corpus.

2. MODEL-BASED NOISE COMPENSATION
In speech recognition, there are two main approaches to compensat-
ing noisy speech: cleaning the features, e.g. CMN or SPLICE,or
modifying the model parameters. The latter approach, oftencalled
model-based compensation, tends to give better results than the for-
mer, feature-based approach [3]. It is frequently assumed that a noise
corrupted speech observation,ot = [yT

t ∆yT

t ∆2yT

t ]T, at timet is
conditionally independent of all other observations giventhe clean
speechst and the noisent at that time frame. The clean speech and
noise are also assumed to be generated by HMMs with statesθn

t for
the noise1 andθt for the clean speech. Under these assumptions the
likelihood of the noisy speech may be expressed as

p(ot|M,M̌, θt) =

Z

p(ot|st,M̌)p(st|M, θt)dst (1)

where

p(ot|st,M̌) =

Z

p(ot|st, nt)p(nt|M̌, θ
n
t )dnt (2)

andM̌ denotes the compensation model parameters, which may or
may not have an explicit model of the noise2. Typically the uncom-
pensated “clean” acoustic modelM consists of Gaussian compo-
nents each defined by a prior,cm, mean,µ(m)

s , and variance,Σ(m)
s .

PMC [5] and VTS compensation [6] approximate the integrals
in equation 1 for each acoustic model component. This assumes that
the frame/state alignment of the clean speech does not change with
noise. In the cepstral domain, the relationship between thestatic
clean speechx, additive noisen, channelh and static corrupted
speechy is often written as [5, 6]

yi = xi + hi + ci log(1 + exp(C -1(n − x − h))) (3)

where matricesC andC -1 are the discrete cosine transform matrix
(DCT) and its inverse. The vectorci denotes theith row of the DCT.
The log andexp functions operate at an element level on the resul-
tant filterbank vectors. VTS compensation approximates this non-
linear equation with a first-order vector Taylor series. While VTS
has shown to be more efficient than PMC [7] and a better approxi-
mation than the log-normal [6] it is still computationally expensive

1A single state is assumed for the noise model in this paper.
2If the compensation model parameteršM are single-pass retrained, as

in [4], then no noise model is explicitly estimated.



as every model component must be individually adapted with respect
to the noise. This involves the computation of noisy speech gradients
with respect to the noise and clean speech.

In contrast, model-basedJoint uncertainty decoding [4], shares
parameters asJoint transforms estimated per cluster or class of
model components—analogous to how MLLR transforms may be
estimated and applied. The number of clustersR is usually several
order of magnitudes less than the total number of GaussiansM in
the system. In uncertainty decoding, the corrupted speech likelihood
for a componentm takes this form

p(ot|M,M̌, m)= |A(r)|N
“

A
(r)

ot+b
(r); µ(m)

s ,Σ
(m)
s +Σ

(r)
b

”

(4)
where the parametersA(r), b(r) andΣ(r)

b are simply estimated from
the corrupted/clean speech conditional. ForJoint uncertainty de-
coding, this conditional is estimated from the joint distribution. In
comparison, front-end uncertainty decoding estimates a joint distri-
bution for each component of a front-end GMM representing the
observed, corrupted acoustic space; this form however suffers from
a fundamental problem and is less efficient than the model-based
approach [8].

Previously, the joint distribution was estimated using stereo
data [4, 8]. It may be predicted given the clean speech and noise
model using VTS or PMC [3, 7], resulting in noise compensating
Joint transforms. However, theJoint transform may model
other factors, such as speaker differences, if they are accounted for
in the mismatch function during generation of the joint distribution.
Furthermore, the joint distribution may be considered simply a joint
model of training and test conditions. The “clean” speech models
may be multistyle or adaptively trained and the compensation ap-
plied as a mechanism to reduce the mismatch between trainingand
test. In this wayJoint transforms are similar to MLLR transforms
as they reduce mismatch, howver with the addition of a variance bias
and they may be predicted given some prior models.

2.1. The Clean Speech Class Model

To determine this joint distribution per classr, an a priori model of
the clean speechN

`

µ(r)
x ,Σ

(r)
x

´

is needed; this is derived from the
full acoustic models. The class and component posteriors, and mean
and variance of each classr are

L
(m) =

T
X

t=1

γ
(m)
t , L

(r) =
X

m∈r

L
(m)

, µ
(r)
x =

1

L(r)

X

m∈r

L
(m)

µ
(r)
x

(5)
Σ

(r)
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L(r)

X

m∈r

L
(m)
“

Σ
(m)
x +µ

(m)
x µ

(m)T

x

”

−µ
(r)
x µ
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wherec(m) is the component weight,µ(m)
x the mean,Σ(m)

x the vari-
ance, andγ(m)

t the component posterior alignment probability at
time framet. An approximation to this is to use the diagonal form of
Σ

(m)
x althoughΣ(r)

x is full. For low numbers of classesR compared
to the number of model componentsM in the acoustic model, this
should be a good approximation, since the between class covariance
should dominate over the within class covariance.

2.2. Noise Model Estimation

In order to apply these predictive compensation schemes to either
clean or multistyle trained models, the noise parameters must be
estimated to best reduce the mismatch between training and test.
Non-speech regions may be used to estimate the additive noise [7],
however this does not easily provide an estimate of the channel,
nor can this strategy accommodate changes in the noise over long

speech utterances. Hence consider an approach where a cleanacous-
tic model is compensated using VTS, with the noise model itera-
tively improved using EM to maximise the likelihood of the test
condition. Such an EM framework for estimating the additiveand
convolutional noise was presented in [9], but in this work estimation
is conducted in the cepstral domain. Also, a simple iterative 1st-
order gradient search is used to find an MLE of the noise variance.

Although using the MLE noise model derived using VTS com-
pensation may give good results forJoint compensation [10], there
is a mismatch between the compensation used during noise estima-
tion and that applied during recognition. Hence, it is sensible to
generate ML noise parameters explicitly tuned forJoint compen-
sation rather than VTS. MLJoint noise estimation gave improved
results especially for multistyle trained acoustic models[10]. The
following auxiliary function is used for MLJoint noise estimation

QJ (Φ; Φ̂) =
T
X

t=1

M
X

m=1

γ
(m)
t log

h

pJ(ot|Φ̂,M, m)
i

(6)

except the log probability for the output distribution is now given by

pJ (ot|Φ̂,M, m)= |Â
(r)

|N
“

Â
(r)

ot+b̂
(r)

; µ(m)
s ,Σ

(m)
s +Σ̂

(r)

b

”

(7)
The set ofR Joint transforms,T =

h

T (1), T (r), . . . , T (R)
i

, may

be derived from the joint distribution that is estimated from the clean
speech class model and the estimated noise parametersΦ̂.

Given the acoustic modelM, from which the clean speech class
model may be derived, an estimate of the noise parametersΦ̂ that
maximises the auxiliary functionQJ is required. That is find

Φ̂ =
n

µ̂n, Σ̂n, µ̂h

o

= arg max
ˆ
Φ

QJ

“

M, T ;M, T̂
”

(8)

whereT̂ is computed directly from clean speech class model andΦ̂.
With a suitable initial starting point, here the VTS-based MLE noise
model, the noise parameters may be iteratively refined usinga simple
gradient-based optimisation scheme. For example the additive noise
mean update is

µ̂n,i = µn,i − ζ
∂2QJ

∂µ2
n,i

-1
∂QJ

∂µn,i

(9)

whereζ is the learning rate; the additive noise variance and channel
mean are similar. The second derivatives need to be conditioned
such that they remain negative to ensure the updates converge to a
local maximum; when they are not, a simple back-off strategyis to
switch to a first-order optimisation. It is also important toensure that
each step improves the auxiliary. More detailed information of this
estimation procedure for both VTS andJoint MLE noise models
is given in [10].

3. JOINT ADAPTIVE TRAINING

Adaptive training is a powerful technique for factoring outunwanted
variability due to speaker, channel and environmental mismatch [1,
2]. This yields a pure “canonical” model of speech compared to
multistyle training where the models incorporate all the variability
of the acoustic data. In adaptive training, both a set of transforms
and the acoustic model parameters are iteratively estimated in an
EM framework. First, given the current acoustic modelsM, a new
set of transformT is estimated. Subsequently, the canonical model
parameters are updated given this new set of transforms. Multiple
iterations of this interleaved training may be performed tooptimise
an auxiliary function for the noisy speech observationsO and state
sequenceθ given the transcription. Compared to adaptation with



MLLR, Joint uncertainty transforms may explicitly model the ef-
fects of noise when a mismatch function for noise, such as VTS, is
used to generate the joint distribution.

With JAT, determining the ML transforms and model parameters
is not directly possible so an auxiliary function is used

QJ

“

M,Φ;M̂, Φ̂
”

=

H
X

h=1

T (h)
X

t=1

M
X

m=1

γ
(m)
t × (10)

log
h

|Â
(rh)

|N
“

Â
(rh)

ot+b̂
(rh)

; µ̂(m)
s , Σ̂

(m)

s +Σ̂
(rh)

b

”i

whereγ(m)
t is the posterior probability that the observationot is gen-

erated by componentm on heterogeneous training data segmented
into H homogeneous blocks, each of lengthT (h), for all valid state
sequences given the transcription.

The uncertainty transforms in JAT are estimated as described in
section 2.2. Note the clean speech class model, described in2.1,
needs to be re-computed every time the canonical model is updated.
When estimating new transforms, this creates a disconnect where
the initial ML noise model is estimated with a different clean speech
class model than the input transform. Nevertheless, it may be pos-
sible to begin with theJoint transform produced from̂Φ andM̂.
More discussion of this issue may be found in [10].

3.1. Canonical Model Parameter Estimation

After a new set of transforms are estimated, the model parameters
are retrained. The auxiliary function, from equation 10, where only
terms dependent on the model parameters are shown, givenΦ̂, is

QJ

“

M;M̂
”

= −
1

2

H
X

h=1

T (h)
X

t=1

M
X

m=1

γ
(m)
t × (11)

D
X

i=1

 

log(σ
(m)2
s,i +σ̂

(rh)2
b,i )+

(â
(rh)
i ot+b̂

(rh)
i −µ

(m)
s,i )2

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

where diagonal covariance matrices assumed andD is the number
of dimensions in the feature vector. Because the joint transform pa-
rameters affect the model parameters and are shared over many ho-
mogeneous blocks, there is no closed form solution for the model
parameters that maximise this auxiliary function. Hence a gener-
alised EM approach is taken, where a second order gradient based
optimisation scheme is used to optimise the model parameters

"

µ̂
(m)
s,i

σ̂
(m)2
s,i

#

=

"

µ
(m)
s,i

σ
(m)2
s,i

#

−ζ

2

6

4
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∂σ
(m)2
s,i

∂2
QJ

∂σ
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QJ

∂
“

σ
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3

7

5

-1
2

4

∂QJ

∂µ
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s,i

∂QJ

∂σ
(m)2
s,i

3

5

(12)

The learning rateζ may be less than one, but in this work a value of
unity was found to be stable. The first derivative of the auxiliary in
equation 11 with respect to the mean of componentm and dimension
i is

∂QJ

∂µ
(m)
s,i

=
H
X

h=1

T (h)
X

t=1

γ
(m)
t

 

â
(rh)
i ot + b̂

(rh)
i − µ

(m)
s,i

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

(13)

and with respect to the model variance

∂QJ

∂σ
(m)2
s,i

=
H
X

h=1

T (h)
X

t=1

1

2
ω

(m)
t,i

 

(â
(rh)
i ot + b̂

(rh)
i − µ

(m)
s,i )2

σ
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s,i + σ̂

(rh)2
b,i

− 1

!

(14)

whereω
(m)
t,i =

γ
(m)
t

σ
(m)2
s,i

+σ̂
(rh)2
b,i

. The Hessian matrix is composed of
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H
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â
(rh)
i ot + b̂

(rh)
i − µ

(m)
s,i

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

(17)

From equations 13 and 14, it can be seen that contributions from
observations when the SNR is low will be de-weighted by the un-
certainty bias term̂σ(rh)2

b,i . When the noise completely subsumes the
speech, the uncertainty bias will be infinite and these observations
will not contribute to the model parameter update. If the SNRis
high, the uncertainty bias will tend to zero, allowing theseobserva-
tions to fully contribute. This allows the canonical model to truly be
a representation of clean, noise-free speech.

The estimation of the model variance is stabilised by limiting it
to changing at most by a factor ofυ

σ̂
(m)2
s,i = min

„

max

„

σ̂
(m)2
s,i ,

1

υ
σ

(m)2
s,i

«

, υσ
(m)2
s,i

«

(18)

In practice,υ was set at 2. The Hessian matrix must also be negative
definite for the optimisation to converge, however the 2nd derivative
is not guaranteed to be. It may be re-expressed as

∂2QJ

∂(σ
(m)2
s,i )2

= w
(m)
1,i

„

−ϑ̂ +
1

2

«

(19)

whereϑ̂ = max

„

ϑ,−
w
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T (h)
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t=1

γ
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σ
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b,i

”2
(20)

w
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2,i = −
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X
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T (h)
X

t=1

γ
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i ot + b

(rh)
i − µ
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s,i )2

“

σ
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s,i + σ
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”3

1

C

A
(21)

This parameterϑ should remain greater than a half to ensure stabil-
ity of the optimisation. It may be observed that the ratio ofw

(m)
2,i to

w
(m)
1,i should converge to unity as the model parameters better ap-

proximate the training data, given the set ofJoint transforms.
Lastly, instead of directly optimising the variance, thelog of

the variance is estimated to ensure that the converged valueremains
positive. Thus, the following change of variable is made

ς = log Σ
(m)
s (22)

The derivatives may be easily recomputed to now optimiseς .

4. EXPERIMENTS

A simplified Broadcast News system based on the 2003 CU-HTK
system [11] was evaluated. MFCC parameters with the 0th cepstra,
and associated 1st- and 2nd-order features for 39 dimensions were
used with cross-word triphones and decision-tree clustered states.



There were 16 Gaussian components per state, yielding over 100K
model components. The CU RT-03 diarisation system segmented
and clustered the BN audio providing 143 hours of data for ML train-
ing. The dictionary contained 59K words. For decoding, a bigram
LM generated lattices which were re-scored using a trigram LM.
An initial decoding run provided the hypothesis for noise estima-
tion. Figures are reported against thedev03 test set encompassing
3 hours of shows from six different news sources aired in Jan 2001.

Compensation Noise Est. Type %WER

None — 20.8

Joint
ML VTS 19.1
ML Joint 18.8

VTS ML VTS 18.8

Table 1. Broadcast News results using 256Joint transforms or
VTS with 2 full CMLLR transforms ondev03 test set.

BN results are presented in table 1. There was a 2% abso-
lute gain over the baseline system when applying either 256Joint
transforms or VTS compensation. When these compensation schemes
are used with CMLLR, this improved to 18.0% and 17.7% respec-
tively, although withJoint a small gain of 0.1% is maintained over
solely using CMLLR. However, clearly the noise estimation type
should match the compensation; there is a 0.3% gain forJoint
compensation whenJoint noise estimates are used rather than VTS.
Preliminary experiments with JAT on BN showed no improvements.
This was felt to be due to the training data being of relatively high
SNR. Hence further experiments were conducted by artificially cor-
rupting the RM task.

For experiments on the 1000-word Resource Management task,
the same features and model topology as the BN system were used,
except for 6 components per GMM. This gave 9492 system compo-
nents. Data was corrupted with Car and Operations Room noisefrom
the NOISEX-92 database to give 20 and 14 dB SNR tests; resultsare
averaged across thefeb89, oct89 andfeb91 test sets totaling an
hour. A multistyle model was built from data with OperationsRoom
noise added at the speaker level at SNRs of 8, 14, 20, 26 or 32 dB.
This was used as the initial model to begin JAT. The parameterϑ was
reduced from 2.5 to 1 in increments of 0.5 for 4 iterations of model
re-estimation between each of 4 transform updates.

Acoustic Model Operations Car
Training Compensation 20 dB 14 dB 20 dB

Matched — 7.4 14.3 —
— 38.0 83.7 49.7

Clean Joint 9.2 22.6 8.0
VTS 8.4 23.6 7.4
— 7.0 15.5 43.5

Multistyle Joint 6.7 12.3 7.6
VTS 6.5 12.0 6.9

JAT Joint 6.2 11.4 6.2

Table 2. Baseline RM clean, multistyle, and JAT performance with
16 transformJoint and VTS compensation, %WER).

Table 2 provides RM results. As expected, clean performance
was poor, while multistyle trained acoustic models gave results com-
parable to matched system. Applying VTS or 16 diagonal model-
basedJoint transforms to the clean models greatly improved re-
sults; but more interestingly, compensating multistyle models gave
accuracies better than matched for either scheme. Using 16 diagonal
constrained MLLR transforms was consistently poorer thanJoint
compensation for these conditions. The best training scheme was

the JAT system, which exceeded matched and multistyle with VTS
performance at both 20 and 14 dB SNR. The 20 dB Car test contains
noise not seen in the training data. The results illustrate the weakness
of multistyle training when the noise is not present in the training;
the error rate only improves slightly to 43.5% from 49.7% on clean
trained. However, the JAT system factors in the Car noise as easily
as the Operations Room, yielding the same word error rate of 6.2%.
Still, this is double the matched clean WER of 3.1%.

5. CONCLUSIONS

This paper has discussed various approaches to building robust au-
tomatic speech recognition systems. Multistyle training,where the
data is used directly estimate the model parameters, may be also be
compensated with VTS orJoint schemes to give additional robust-
ness by reducing the mismatch between training and test conditions.
Experiments on a multistyle, large vocabulary Broadcast News sys-
tem show improvements withJoint and VTS compensation and
demonstrate how matching the compensation used during noise es-
timation to that used during test improves accuracy. Moreover, a
new form of adaptive training withJoint transforms gives the best
results since the noise is factored out from the training data. The
uncertainty due to noise will de-weight noisier segments ofspeech
allowing JAT to accommodate a wide range of SNR in the training
data. This results in acoustic models which truly representthe pure
acoustic speech variability, rather than effects due to speaker dif-
ferences or noise conditions. This was shown on experimentscon-
ducted on the RM database.
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