ADAPTIVE TRAINING WITH JOINT UNCERTAINTY DECODING
FOR ROBUST RECOGNITION OF NOISY DATA

H. Liao and M. J. F. Gales

Cambridge University Engineering Department
Trumpington St., Cambridge, CB2 1PZ, UK
{hl 251, nj f g}@ng. cam ac. uk

ABSTRACT

Standard noise compensation techniques for automaticlspeeog-
nition assume a clean trained acoustic model. What is thoafgis
“clean” data, may still have a variety of speakers, diff¢i@rannels
and varying noise conditions. Hence it may be more reasertabl
consider such data multi-conditional for multistyle tiagn This
paper shows that multistyle models benefit from VTS compémsa

or Joi nt uncertainty decoding by reducing the mismatch betwee

training and test. An EM-based noise estimation procechatero-

duces ML VTS orJoi nt noise models is also described. Alterna-

tively, adaptive training witldoi nt uncertainty transforms factors
out the noise from the data. The uncertainty variance biagaights
observations in the training data where the SNR is low. Thipp

erty allows data with a wide SNR range to be used and produces

canonical models that truly represent clean speech, wheneiti-
style trained models must account for all acoustic vanmtesoci-
ated with different noise conditions. This paper presekdsnt
adaptive training including formula for estimating thernséorms
and canonical model parameters. Experiments are condanttte
Resource Management and Broadcast News corpora.

Index Terms—Speech recognition, Robustness

1. INTRODUCTION

Conventional approaches to improve recognition robustoésoisy
speech presume the acoustic model is clean trained. Ddspite
ing considered “clean”, the training data may contain a wialéety
of speakers, accents, channels and noise conditions. Helees
data may be considered multi-conditional and the modeiseideon
this data in a multistyle fashion. Little research has besrdacted
on applying noise compensation techniques to multistyltesgs.
This paper examines VTS adabi nt compensation as general ap-
proaches to reducing the mismatch between the trainingesstdan-
dition for both clean and multistyle trained acoustic madel
Alternatively, adaptive training may be applied to remadvese
unwanted factors, such as speaker differences or the aceusi-
ronment, from being included in the acoustic models [1, ZthRr
than force the acoustic model to represent all these fachsrex-
pected in multistyle training, transforms are used insteachodel
the variation from different factors. MLLR transforms camyonor-
malise low levels of noise, hence is unsuitable for adapta@ing
with data that has large variations in SNR. This motivate®weeh
model training framework calledoi nt adaptive training (JAT),
based on noise normalisation usidgi nt transforms for training

models on noisy data. JAT takes into account the SNR of the dat

when estimating the canonical model parameters. When tise no
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subsumes the speech, the uncertainty variance bias etisoseb-
servations do not contribute to the parameter update. $mthy, JAT
weights the training data using uncertainty due to noisexcdeJAT
explicitly handles a large range of SNR in the training dptaduc-
ing a final acoustic model that is truly noise-free.

Experiments are reported on the large vocabulary Broatitass
transcription task and an artificially corrupted 1000-w&®ksource
[Management corpus.

2. MODEL-BASED NOISE COMPENSATION

In speech recognition, there are two main approaches to eosap-
ing noisy speech: cleaning the features, e.g. CMN or SPLIZE,
modifying the model parameters. The latter approach, aftdied
model-based compensation, tends to give better resutishiesfor-
mer, feature-based approach [3]. Itis frequently assuhegditnoise
corrupted speech observatian, = [y; Ay] A%y]|", at timet is
conditionally independent of all other observations gitles clean
speects; and the noiser; at that time frame. The clean speech and
noise are also assumed to be generated by HMMs with gtates

the noisé andé; for the clean speech. Under these assumptions the
likelihood of the noisy speech may be expressed as

p(ol M, N, 6,) / p(oc]se, M)p(s:| M, 0,)ds.
where
p(oi|si, M) /P(OtISt,nt)p(nth,G?)dnt )

and M denotes the compensation model parameters, which may or
may not have an explicit model of the ndis@ypically the uncom-
pensated “clean” acoustic modaH consists of Gaussian compo-
nents each defined by a prior,, mean,u (™, and variancex!{™ .

PMC [5] and VTS compensation [6] approximate the integrals
in equation 1 for each acoustic model component. This asstimaé
the frame/state alignment of the clean speech does not ehwitiy
noise. In the cepstral domain, the relationship betweenrsthgc
clean speectr, additive noisen, channelh and static corrupted
speechy is often written as [5, 6]

yi = i + hi + ¢ilog(1 + exp(C(n — x — h))) (3)

where matrice€' andC™* are the discrete cosine transform matrix
(DCT) and its inverse. The vector denotes the'” row of the DCT.
Thelog andexp functions operate at an element level on the resul-
tant filterbank vectors. VTS compensation approximates riin-
linear equation with a first-order vector Taylor series. WNTS
has shown to be more efficient than PMC [7] and a better approxi
mation than the log-normal [6] it is still computationallyeensive

1)

1A single state is assumed for the noise model in this paper.
2If the compensation model parametevs are single-pass retrained, as
in [4], then no noise model is explicitly estimated.



as every model component must be individually adapted wipect
to the noise. This involves the computation of noisy speeatlignts
with respect to the noise and clean speech.

speech utterances. Hence consider an approach where actean
tic model is compensated using VTS, with the noise modediter
tively improved using EM to maximise the likelihood of theste

In contrast, model-basekbi nt uncertainty decoding [4], shares condition. Such an EM framework for estimating the additvel
parameters adoi nt transforms estimated per cluster or class of convolutional noise was presented in [9], but in this wortineation
model components—analogous to how MLLR transforms may bés conducted in the cepstral domain. Also, a simple iteeafist-

estimated and applied. The number of clusteris usually several
order of magnitudes less than the total number of Gaussiarns
the system. In uncertainty decoding, the corrupted speéleslihiood
for a componentn takes this form

p(od| M, M, m)= |A(T)|N(A(T)Ot +6); pulm) 22’”423)

(4)
where the parameters”), b") and%"” are simply estimated from
the corrupted/clean speech conditional. For nt uncertainty de-
coding, this conditional is estimated from the joint distiion. In
comparison, front-end uncertainty decoding estimatedn gtistri-

bution for each component of a front-end GMM representirg th

observed, corrupted acoustic space; this form howeveersuffom
a fundamental problem and is less efficient than the modstda
approach [8].

Previously, the joint distribution was estimated usingreste

data [4, 8]. It may be predicted given the clean speech arsenoi The setofR Joi nt transformsi7 = [T T

model using VTS or PMC [3, 7], resulting in noise compengatin
Joi nt transforms. However, thdoi nt transform may model
other factors, such as speaker differences, if they areuated for
in the mismatch function during generation of the joint idsttion.
Furthermore, the joint distribution may be considered $jnagoint
model of training and test conditions. The “clean” speecldef®
may be multistyle or adaptively trained and the compensadio-
plied as a mechanism to reduce the mismatch between traanichg
test. In this wayd oi nt transforms are similar to MLLR transforms
as they reduce mismatch, howver with the addition of a vagdnas
and they may be predicted given some prior models.

2.1. The Clean Speech Class Model
To determine this joint distribution per clagsan a priori model of

the clean speech/ (p{", EFJ)) is needed; this is derived from the
full acoustic models. The class and component posterintsireean
and variance of each clagsre

T
LW =575, L= 0 -
t=1

1 (m) (")
T 2 L n

me'f‘ 777.67‘
(r) (m) (m) (m), (m)T (r),, (rT ©)
50 =1m 2L (Bl ) =l
me'f‘
wherec(™ is the component weights (™ the meanx{™ the vari-

ance, andy{™

=™ althoughs{" is full. For low numbers of classes compared
to the number of model components in the acoustic model, this
should be a good approximation, since the between classianea
should dominate over the within class covariance.

2.2. Noise Model Estimation

In order to apply these predictive compensation schemeghere
clean or multistyle trained models, the noise parameterst e
estimated to best reduce the mismatch between training estd t
Non-speech regions may be used to estimate the additive fis
however this does not easily provide an estimate of the @&ann
nor can this strategy accommodate changes in the noise awgr |

the component posterior alignment probability at
time framet. An approximation to this is to use the diagonal form of

order gradient search is used to find an MLE of the noise vegian
Although using the MLE noise model derived using VTS com-

pensation may give good results fwi nt compensation [10], there
is a mismatch between the compensation used during noiseaest
tion and that applied during recognition. Hence, it is Selesto
generate ML noise parameters explicitly tunedJoti nt compen-
sation rather than VTS. MUl oi nt noise estimation gave improved
results especially for multistyle trained acoustic modéf3]. The
following auxiliary function is used for MLJoi nt noise estimation

T

Z Z ~™ Jog [pJ(ot|<I> M, m)]

(6)
t=1m=1

except the log probability for the output distribution ismgiven by

Q0 (®;d) =

paor|®, M) = A1 (A<”°t+f3‘”; plm B 45
(7)
. T(’ﬂ, may
be derived from the joint distribution that is estimatedhfirthe clean
speech class model and the estimated noise parandeters

Given the acoustic model1, from which the clean speech class
model may be derived, an estimate of the noise paraméteisat
maximises the auxiliary functio® ; is required. That is find

b= {ﬂn,ﬁ]n,ﬂh} :argmngJ(M,T;M,T) (8)
P

where7 is computed directly from clean speech class modeldand
With a suitable initial starting point, here the VTS-basedBvhoise
model, the noise parameters may be iteratively refined wusgngple
gradient-based optimisation scheme. For example theieeldibise
mean update is

iy — - Q7
llfn,z — llfn,z 3,113“

where( is the learning rate; the additive noise variance and cHanne
mean are similar. The second derivatives need to be conddio
such that they remain negative to ensure the updates cent@ia
local maximum; when they are not, a simple back-off straiegp
switch to a first-order optimisation. Itis also importanettsure that
each step improves the auxiliary. More detailed informatd this
estimation procedure for both VTS adai nt MLE noise models

is given in [10].

09,
a/ln,i

©)

3. JOINT ADAPTIVE TRAINING

Adaptive training is a powerful technique for factoring oatvanted
variability due to speaker, channel and environmental ratsm[1,

2]. This yields a pure “canonical” model of speech compared t
multistyle training where the models incorporate all theialzility

of the acoustic data. In adaptive training, both a set ofsfiams
and the acoustic model parameters are iteratively estimatan
EM framework. First, given the current acoustic modéls a new
set of transfornt/” is estimated. Subsequently, the canonical model
parameters are updated given this new set of transformstigiéul
iterations of this interleaved training may be performedptimise

an auxiliary function for the noisy speech observatiéhsnd state
sequencd given the transcription. Compared to adaptation with



MLLR, Joi nt uncertainty transforms may explicitly model the ef- wherewt g m) _ % The Hessian matrix is composed of

fects of noise when a mismatch function for noise, such as,\g'S G.i’ffﬂﬂb
used to generate the joint distribution.

With JAT, determining the ML transforms and model paranseter 8?9 H T¢)
is not directly possible so an auxiliary function is used 3# Z Zwt i (15)
S,% h=1t=1
a " M " M (rh) S(rh)  (m)\2
QJ(M,LP;M,@) S5 S (10) o QJ ;=3 3w 1 (a0 +b —Hgy) (16)
h=1 t=1 m=1 3( + ~(rh)2
h=1t=1 Oy s
~ rh ~(rh) . (m m ~ (rh
log [|A |N( Ao, 45" pm By s ))] 2 Q) am b(rh (m)
_ra SN (B )
(m) ; . - L. 9 (m)a (m)2 (m)2 +6 A(Th)2
where,; " is the posterior probability that the observatigris gen- M h=1t=1

erated by component: on heterogeneous training data segmente
into H homogeneous blocks, each of lengtH”, for all valid state
sequences given the transcription.

dFrom equations 13 and 14, it can be seen that contributiam fr
observations when the SNR is low will be de-weighted by the un

The uncertainty transforms in JAT are estimated as destiibe Cetainty bias tern, ">, When the noise completely subsumes the
section 2.2. Note the clean speech class model, describ2d jn speech, the uncertainty bias will be infinite and these ebsiens
needs to be re-computed every time the canonical model mtegd will not contribute to the model parameter update. If the SHR
When estimating new transforms, this creates a disconnbetey  Nigh. the uncertainty bias will tend to zero, allowing thesserva-
the initial ML noise model is estimated with a different alespeech  tions to fully contribute. This allows the canonical modetiuly be
class model than the input transform. Nevertheless, it neapds- @ 'éPresentation of clean, noise-free speech. o
sible to begin with theoi nt transform produced fron® and M. The (_estlmatlon of the mode variance is stabilised by lingtit
More discussion of this issue may be found in [10]. to changing at most by a factor of

3.1. Canonical Model Parameter Estimation &iﬂ_ﬂ _ mln(mdx( ( )2 ( )2>7U02.i)2) (18)
After a new set of transforms are estimated, the model pasme w7 '

are retrained. The auxiliary function, from equation lOg@only In practice,y was set at 2. The Hessian matrix must also be negative
terms dependent on the model parameters are shown, givin definite for the optimisation to converge, however the 2mivdéve
is not guaranteed to be. It may be re-expressed as

H TM M
Y (m)y,
o (uw) =15 S ) O (g1
hlt 1 m=1 W_wl,i _19+_ (19)
A(c!™?)2 2
D (rh) (rh) (m)\2 ER
'rh)2 ( a; Ot +b /"Ls i )
Z log(o —l—ab )+
(m)2 ~(rh)2 N (m)
i=1 Osi’ 0 whered = max <19 (m)) and

where diagonal covariance matrices assumed/arid the number
of dimensions in the feature vector. Because the joint foanmspa- T m)
rameters affect the model parameters and are shared ovgriroan (m) Z Z (20)
mogeneous blocks, there is no closed form solution for thdeho b1 =1 ( (m)2 + (rh)Z)
parameters that maximise this auxiliary function. Hencecaeg
alised EM approach is taken, where a second order gradisetiba 7k (rh) (rh) (m)\2

AT ) o (a;" o +b;"" — pgy")
optimisation scheme is used to optimise the model parameter <m> = Z Z A (21)

(m)2 ('rh)2
929y 929y 1o a0, h=1 =1 ( T O, )
M(m) (m) 2,2 5, 5 (m)2 on (771)
&(%2 tmz |—¢ 220, “529, ad; This parametet should remain greater than a half to ensure stabil-
81 81 00 ("20u(T) o(o(?)? o0 {"? ity of the optimisation. It may be observed that the ratimé?”) to
(12) (m) should converge to unity as the model parameters better ap-

prOX|mate the training data, given the setlafi nt transforms.
Lastly, instead of directly optimising the variance, tlog of

the variance is estimated to ensure that the converged ratu@ns

positive. Thus, the following change of variable is made

" T < (rh) (m) ¢ =log =™ (22)
o + b — : s
8QJ < N’s,z ) (13)

8#2?) Z Z v (m)2 ~(rh)2

h=1 t=1 05 +0p;

The learning raté may be less than one, but in this work a value of
unity was found to be stable. The first derivative of the darlin
equation 11 with respect to the mean of compomemind dimension
iis

The derivatives may be easily recomputed to now optimise

and with respect to the model variance 4. EXPERIMENTS

(m)2 ~ (r'h)Q

90, " T e @™oy + b — )2 ) A simplified Broadcast News system based on the 2003 CU-HTK
9 K3 + Ub,z

PYRCOP Z Z - system [11] was evaluated. MFCC parameters with the Othregps
Ts,i h=1 t=1 and associated 1st- and 2nd-order features for 39 dimensiere
(14) used with cross-word triphones and decision-tree cludtstates.



There were 16 Gaussian components per state, yielding @8 1 the JAT system, which exceeded matched and multistyle witg V
model components. The CU RT-03 diarisation system segmenteperformance at both 20 and 14 dB SNR. The 20 dB Car test cantain
and clustered the BN audio providing 143 hours of data for Mint  noise not seen in the training data. The results illustfeeveakness
ing. The dictionary contained 59K words. For decoding, adiiy  of multistyle training when the noise is not present in treéning;

LM generated lattices which were re-scored using a trigrdvh L the error rate only improves slightly to 43.5% from 49.7% teaa

An initial decoding run provided the hypothesis for noiséirea-  trained. However, the JAT system factors in the Car noiseaaiye
tion. Figures are reported against thev03 test set encompassing as the Operations Room, yielding the same word error rate2866

3 hours of shows from six different news sources aired in 8812  Still, this is double the matched clean WER of 3.1%.

| Compensation] Noise Est. Type]| %WER |

None — 20.8 5. CONCLUSIONS
Joi nt ML VT.S 19.1 This paper has discussed various approaches to buildingtral-
ML Joi nt 18.8 : e : L
tomatic speech recognition systems. Multistyle trainiwgere the
VTS ML VTS 18.8 data is used directly estimate the model parameters, maljsbda

Table 1. Broadcast News results using 236i nt transforms or compensated with VTS droi nt schemes to give additional robust-
VTS with 2 full CMLLR transforms ordev03 test set. ness by reducing the mismatch between training and testtoomsd
Experiments on a multistyle, large vocabulary Broadcast\&ys-

BN results are presented in table 1. There was a 2% absaem show improvements withoi nt and VTS compensation and
lute gain over the baseline system when applying eitherJ2zbént demonstrate how matching the compensation used during eeis
transforms or VTS compensation. When these compensatiemsts timation to that used during test improves accuracy. Mazgoa
are used with CMLLR, this improved to 18.0% and 17.7% respecnew form of adaptive training witioi nt transforms gives the best
tively, although withJoi nt a small gain of 0.1% is maintained over results since the noise is factored out from the training.dathe
solely using CMLLR. However, clearly the noise estimatigpet  uncertainty due to noise will de-weight noisier segmentspeech
should match the compensation; there is a 0.3% gain) tornt allowing JAT to accommodate a wide range of SNR in the trajnin
compensation whehoi nt noise estimates are used rather than VTSdata. This results in acoustic models which truly reprettempure
Preliminary experiments with JAT on BN showed no improvetaen acoustic speech variability, rather than effects due t@lsgedif-
This was felt to be due to the training data being of relayiveégh  ferences or noise conditions. This was shown on experincamts
SNR. Hence further experiments were conducted by artifjocalr- ducted on the RM database.
rupting the RM task.
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