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ABSTRACT

In the meeting case scenario, audio is often recorded usirtipié
Distance Microphones (MDM) in a non-intrusive manner. Tgatly

a beamforming is performed in order to obtain a single enddnc
signal out of the multiple channels. This paper investigabe use
of mutual information for selecting the channel subset phatiuces
the lowest error in a diarization system. Conventionaleyst per-
form channel selection on the basis of signal propertiels as SNR,
cross correlation. In this paper, we propose the use of aahirtu
formation measure that is directly related to the objechivection

of the diarization system. The proposed algorithms areuatedl on
the NIST RT 06 eval dataset. Channel selection improvegtbaker
error by1.1% absolute (6.5% relative) w.r.t. the use of all channels.

Index Terms— Speaker diarization, Information Bottleneck
clustering, Channel selection, Mutual information

1. INTRODUCTION

Speaker diarization determinewtio spoke whénn a given audio
recording. This involves finding the number of speakers dedti-
fication of speech segments of each speaker in an unsupknese
ner.

In the meeting case scenario, data acquisition is done ima no
intrusive manner using a microphone array often referrédwsple
Distant Microphone (MDM). Conventional diarization sysigeuse a
single data stream, thus the signals from multiple charerelsised
to produce a single enhanced signal typically by a beamifgm
algorithm. For a review of the use of beam-forming algorighim
speaker diarization see [1].

channel selection is performed on the basis of Signal toé\Biz-
tio (SNR) or average cross correlation between channelscekier,
SNR and cross-correlations are not directly related to ifwezation
performance of the system.

In this paper, we consider the problem of channel selectam f
a heterogeneous collection of microphones using a measen!y
related to the diarization system. Channel selection &edlto the
fact that sometimes the quality of a channel can be so lowithat
use would in any case degrade the performances. In paritioé
following issues are addressed:

1 How to select the channel that provides the lowest diaczat
error out of the available channels.

2 How to select the subset of channels that provides the towes
diarization error.

Previously we have proposed a system [3] based on the Infor-
mation Bottleneck (IB) principle [4] which is inspired froRate-
Distortion theory. The speaker diarization aims at finding ¢lus-
tering that minimize the loss in mutual information betwéea ini-
tial uniform segmentation and the final clustering. Instefidsing
measures related to the signal itself (SNR or cross-caioaly, we
investigate the use of the mutual information as measuraseess-
ing the quality of a channel or subset of channels. This isthas
the assumption that highest mutual information will proglbetter
clustering. The paper is organized as follows. Section 2nsam
rizes the IB principle and Section 3 presents the speakerdimn
system using the IB framework. The channel selection sclfeme
selection of the best channel and a channel subset is dbitaiec-
tion 4. Section 5 describes all the experiments performegedisas
the baseline system. Section 6 concludes the paper.

The beam-forming algorithm used in [2] selects a reference

channel based on the average cross-correlation and thimmpera
delay-and-sum combination. Delays are computed with ctdpe
the reference channel.

Data used in the NIST Rich Transcription evaluation cossist
of meetings recorded in several sites. These meetingssemra
very heterogeneous data set because of varying humbetpgypo
and quality of microphones in the array. In order to increthee
robustness of the beam-forming algorithm to the differemdi-
tions, several channel weighting and channel selectioaridgns
have been tested in [1] (chapter 5). Typically channel wiaighand
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2. INFORMATION BOTTLENECK PRINCIPLE

Let X, be a set of elements to cluster into a seCaflusters, for in-
stance a set of speech segments.YLbE a set of variables of interest
associated withX such thatvze X andVyeY the conditional distri-
butionp(y|z) is available. In speaker diarization, we use the compo-
nents of a background GMM as the relevance variables. GiusSte
can be interpreted as a compression (bottleneck) of inititd sefX

in which information thatX contains abouY” is passed through the
bottleneckC. The Information Bottleneck (IB) principle states that
the clusteringC' should preserve as much information as possible
from the original data seX w.r.t. relevance variableg.

IB method [4] is inspired from Rate-Distortion theory which
states the best representatiorof dataX minimizes the mutual in-
formation I(X,C), i.e. the distortion and preserves as much in-
formation as possible about Y (maximizindC,Y")). Thus the



IB objective function can be formulated as minimization lné t_a- .
grangian,

I(X,0) = BI(C,Y) @)
wheref is the trade-off between the amount of informatiq@, Y")
to be preserved and the compression of the initial repragent
I(C, X). Function (1) must be optimized w.r.t. the stochastic map-
ping p(C|X). Expressions fod (X,C) and I(C,Y) can be de-
veloped ad/ (X, C) = 3=, p(z)p(cla)logZd and I(C,Y) =

p(c)
Speaker Error ! 30

¥, . P(e)p(y|e)logZs) This leads to a set of self-consistent equa-
tions as shown in [5] which can be solved to obtain the clustpr )
resentation.

The limit 5 — oc induces a hard partition of the input space i.e.

the probabilistic map(c|z), takes values of and 1 only. This is Fig. 1. Correlation between Mutual information and DER for the

equivalent to minimizing only the information loss in theisterin . . .
i.g. I(C,Y). Different zglgoriilhms have been proposed in Iiterzgture.meetmg EDI20050216-1051 for different channels. Higher mutual

for minimizing the 1B objective function. One common apprbas information corresponds to lower diarization errors
the agglomerative Information Bottleneck(alB).
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. . 4, MUTUAL INFORMATION CHANNEL SELECTION
2.1. Agglomerative Information Bottleneck
The agglomerative Information Bottleneck (alB) is a greeny Let us considetV different acoustic feature streams (MFCC coef-
proach to minimize the objective function of equation (1)heT ficients). LetX;,i = 1,..., N, denote the speech chunks (input
initialization consists of the trivial clustering ofX| clusters; i.e. Vvariables for clustering) extracted from the acousticfeastreams.
each data point treated as a separate cluster. Subsegtnentlyis- Consider the objective function of equation (1) for eackastn:
ters are merged iteratively such that after each step tseforutual o o '
information w.r.t the relevant variabl&s is minimum. Fu=1(Xi,Ci) = BI(C:,Y) )
The loss of mutual information/, obtained by merging two When the alB clustering start§’( = X;) the value of the ob-
clustersz; andx; is given by Jensen-Shanno_n divergence b_e_tY"ee'}bctive function is given by:
p(Y|z;) andp(Y|z;) (see [5]). In case of discrete probabilities,
this divergence is straightforward to compute. The infdiamapre- H(X:) — BI(X:,Y) ©)
served in each step decreases monotonically. Details éinle-
mentation of alB algorithm can be found in [5] and will not he-f ~ since I(X;, X;) = H(X;). All X; are derived using the same
ther discussed here. The optimal number of clusters isteeldry =~ segmentation, thus the random variables have identicalliton
thresholding the Normalized Mutual InformatiaN,M I = fég‘;)) p(xi), and hence the sanfé(X;). This implies the feature stream
Details of this method are described in [3]. ’ that has the maximurh(X;, Y) minimizes the objective function. In
other words minimizing the objective function (1) at the ineing of
he cl ing, it ival imizing th nmati
3. SPEAKER DIARIZATION ALGORITHM tj_(t}g u;;enng, it is equivalent to maximizing the mutudbimation

We summarize here the speaker diarization algorithm desatrin fornllgfflii/lgvtilg’ rglgvgl:]it}{/gigt])?ég:rsée::?hglgsgepcinge%%\ggé
detail in [3]. T.he clustering steps are descrlbed_ be_low. i.e. onI(Y,X;). We can expect that higher initid(Y, X;) will
1 Acoustic feature extraction from the aUd'Q f'le_' produce better clustering. Based on similar considerstiorutual
2 Speech/non-speech segmentation and rejection of n@etspe information of relevance variables wifti was used for feature selec-
frames and uniform segmentation of speech frames in chunkgon in the problem of text processing ([6] Chapter 4). As aana-

of fixed size D = 2.5s i.e., definition of sat. ple, Figure 1 shows the correlation of diarization error &, X)
4 Estimation of GMM model with shared diagonal covariancefor various channels of one meeting in RT 06 eval dataset.

matrix for each segment i.e., definition of §ét In the following we consider two different problems: theesel
5 Estimation of conditional probability(y|z). tion of the single channel and the selection of the chanriedetfithat

6 IB Clustering and model selection using NMI as described ipwill produce the lowest Diarization Error Rate. In the firase, ob-
section 2.1 taining/ (Y, X;) involves the extraction of separate acoustic features

o . . ) for each channel. In the second case, obtaidifig, X;) involves

7 Viterbi realignment using conventional HMM/GMM system e selection of a subset of channels, the beamforming ottiiset

estimated from previous segmentation. and the extraction of the acoustic features. This is eqeitab the
This clustering relies on the purity of initial segmetiswhich are  approach referred as channel elimination in [1] althougéedaon a
arbitrarily obtained by uniform segmentation. If the lemgif the  different criterion. Let us consider separately the twansci®s.
segment D is small enough segments may be considered astgeher
by a single speaker. Although this hypothesis can be truase of
Broadcast News audio data, in case of conversational speitich
fast speaker change rate and overlapping speech (like itingee Let us consider a set éf channels andv different acoustic feature
data), initial segments may contain speech from severaksps. streams (MFCC coefficients). Here we aim to select the bestra
Thus Viterbi re-alignment is performed in order to refinesekgment  that provides the minimum diarization error. L&t,i = 1,..., N
boundaries. be the MFCC features extracted from each channel (The surjrs

4.1. Single Channel Selection



denotes the features correspond to individual channetgh Bcous-
tic feature streans; is segmented in chunks of fixed size D = 2.
Let X denotes the speech chunks that correspond to the acous

5s. Table 1. Speech/No speech, speaker error and DER of the baseline
Fystem. All channels are used in the beamforming

feature streandy. In order to compare the mutual information as Miss | FA | spnsp| spkrerr | DER
obtained from differentX;, the relevance variable s& must be 6.5 | 0.1 6.6 17.1 23.7
kept fixed. We defin@” as the components of a GMM background
model as obtained from the beamformingatifthe available chan- s _
nels " ]|
Thus, the best channel is chosenas- arg max; I(Y, X¢) w S
4.2. Multiple Channel Selection g
% 25
In case of channel subset selection, the goal is to deteransubset g
of the available channels that once beamformed, produedelest B
diarization error. The brute force solution would involve theam- w0
forming of all possible subsets. In caseMfchannels, the number ®
of possible non-empty subsets to be considered is equdl te 1 CW’ﬁgsia(,g?g?é?iﬁgn%}ﬁo T T

This value can be prohibitively high like in case of EDI mags
recorded with 16 channels.
Instead, we adopt a greedy approach that uses the chankel ran

ing as discussed in section 4.1. The algorithm is summarézed
follows
1 SorttheN single channels according to the valud ¢Y, X;)
obtained as in section 4.1.
2 ConsiderN possible subsets obtained from the sorted list
such that the first subset contains the top channel, the sec- s
ond subset contains the top two channels and so on. This is 10
equivalent to having an—best list of channels and us@é s

possible subsets instead ¥ — 1.
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3 Perform beamforming on these subsets.

(b)

Fig. 2. Meeting-wise speaker error rates for Oracle , random, and
mutual information based selection. (a) Selection of sirgylannel
5 Perform uniform segmentation of speech in fixed chunks tdb) Selection of a subset

define input variables for clustering. L&t be the input vari-

ables that correspond K7

6 Computel (Y, X}) using a background GMM model. As be-
fore the GMM estimated from the beamforming of all avail-
able channels is used.

4 Extract MFCC coefficients for each of th€ beamformed
signals. LetS} be the MFCC feature stream extracted from
thebeamformeautput of topk channels.

the Beamformlttoolkit [9].
from the signal.
Speech/non-speech segmentation is obtained using a forced
alignment of the reference transcripts on close talkingropilcone
data using the AMI RTO06s first pass ASR models [10]. Resuls ar
scored against manual references force aligned by an ASBwsys
The results of the baseline system as discussed in Sect®n 3 i
presented in Table 1. In this approach all channels are aségam-
forming. Since the we use the same speech nonspeech sefiorenta
for all the experiments, only speaker error is reporteddfeze The
sp/nsp error of all algorithms discussed in this paper vélsame as
presented in Table 1.

19 MFCC features are then extracted

7 Select the best channel subsek#as= arg maxy, 1(Y, X})

This algorithm will select the subsétthat, once beamformed, will
produce the highest mutual information. One advantage thi¢h
approach is that no thresholds are involved in channel sefean-
like conventional methods which depends on SNR or crosleorr
tion [2]. The method is actually a greedy approach to the icblan
elimination and we will experimentally verify its effectémess.

5. EXPERIMENTS AND RESULTS 5.1. Single Channel selection

We performed all the experiments on the NIST RT06 evaluataia
for “Meeting Recognition Diarization” task based on datafrMul-
tiple Distant Microphones (MDM) [7] and results are prowidia
terms of Diarization Error Rates (DER). DER is the sum of miks
speech error, false alarm speech error and speaker errateffails

In this experiment, we tried to select a single best chansalea
scribed in Section 4.1. We performed oracle channel sele¢éx-
haustively computing the diarization error for each chaand man-
ually selecting the channel with highest/lowest DER) to pane the
proposed method with the best and worst case scenario. \We als

on DER see [8]). Speech/non-speech (spnsp) is the sum oédniss performed random selection of channels to ensure the tigoper-
speech and false alarm speech. System parameters are tuttezl o formance is better than chance. A channel is selected abmamdth
development data. We used the NIST RTO5 evaluation dataeas thuniform prior assigned for all the channels. The averagelsgreer-
development data. Delay and sum beamforming is performéd wi ror is calculated from multiple trialsl( trials).



Table 2. Speaker error for different channel selection algorithms Table 3. Total number of channels and number of channels selected

Selection Scheme spkr err (%)
Oracle best 14.3
Oracle worst 29.1
Random selection 23.2
Max Cross correlation 22.9
Max 1(Y, X,) 18.5

(a) Single channel selection

Selection Scheme spkr err (%)
Oracle best 15.3
Oracle worst 21.0
Random selection 18.4
Selection using (Y, X ) 16.0

(b) Multiple channel selection

for each meeting with corresponding speaker errors

Proposed scheme Baseline
Meeting | spkr err | #channels| spkrerr| #channels
CMU_20050912 7.7 2 7.7 2
CMU_20050914 11.1 2 11.1 2
EDI_20050216 39.9 8 46.0 16
EDI_20050218 28.1 8 29.6 16
NIST_20051024 7.1 5 9.1 7
NIST_20051102 9.5 6 9.4 7
TNO_20041103 22.6 9 22.6 10
VT_20050623 9.7 4 9.7 4
VT_20051027 10.8 3 10.8 3

diarization. The results are better than randomly selgatannels
by 4.7% absolute. Even with using only one channel the results are
comparable.4% worse absolute) to the baseline system which uses

We also performed channel selection using maximum averaggeamforming of all the channels. On the other hand, whenorand

cross correlation as discussed in [1]. In this method a siogan-
nel is selected as follows. The average cross correlatiogaoh
channel with respect to all other channels is computed. Tlaa-c
nel with maximum average cross correlation with all othearofels
is then selected for diarization. Table 2(a) lists the tssof vari-

ous schemes. The proposed system performance is bettethéhan

random selection system or using cross correlation basadnelh
selection. Note that the total speaker error is close to dhahe
baseline just with using one best channel. Figure 2(a)n&sting-
wise speaker errors. The proposed scheme is better thaarttiem
selection in most of the meetings.

5.2. Multiple Channel selection

In this set of experiments, we select a subset of the chanaisier
than single best channel. We perform the oracle best, wodstre
random selection experiments as in the single channel ddste
that, only N' subsets are considered in this step instea2™of- 1

possible subsets. The system performs significantly betser the
random subset selection (Table 2(b)). Meeting-wise speatkers
(Figure 2(b)) shows proposed scheme has better perforntamee
pared to random selectibin

channel selection is performed the system is significantiysithan
baseline §.1% worse absolute).

We also proposed an algorithm based on mutual information to
select channel subset for beamforming. This is based ommthéfat
some channels have such poor performance that would notagnyw
help in combination with others. The algorithm performaisceery
close to selecting the best subset manud@lly% worse than oracle).

It uses only a subset of channels fomeetings and it performs’%
absolute better then the system that uses all the channslm the
case of meetings like EDI, the algorithm eliminates the optione
array that yields poor performance. Also in case of NIST imegst
only a subset of the array is used. The multichannel selectio
gorithm first beamforms the channels and then computes tieainu
information criterion. Alternatively, individual chanisecan be se-
lected iteratively such that each newly added feature bring max-
imum increase in the total mutual information. Similar ayamhes
has been explored in the context of classifier feature sefeft1],
and would be investigated in future.
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