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ABSTRACT
While data-driven methods for spoken language understanding

reduce maintenance and portability costs compared with handcrafted
parsers, the collection of word-level semantic annotations for train-
ing remains a time-consuming task. A recent line of research has
focused on building generative models from unaligned semantic rep-
resentations, using expectation-maximisation techniques to align se-
mantic concepts. This paper presents an efficient, simple technique
that parses a semantic tree by recursively calling discriminative se-
mantic classification models. Results show that it outperforms exist-
ing generative models, while performance is close to more complex
grammar induction techniques. We also show that our method is ro-
bust to speech recognition errors, by improving over a handcrafted
parser previously used for dialogue data collection.

Index Terms— semantic analysis, spoken dialogue systems,
spoken language understanding

1. INTRODUCTION

Most commercial dialogue systems employ keyword spotting tech-
niques for understanding the user input. These methods are robust to
noise, but their simplicity prevents them from modelling long-range
dependencies within an utterance, as well as scaling to complex se-
mantic representations (e.g., semantic trees). Such keywords—and
the way they are mapped to a specific semantic representation—are
typically defined by hand, e.g. by specifying a VoiceXML grammar
that instantiates slot values.

Within the past 20 years, research on spoken language under-
standing (SLU) has produced models that alleviate these issues
by learning to derive a semantic representation from data. Most
work has focused on generative dynamic Bayesian networks that
model the semantics of the utterance as a hidden structure on which
observed words are conditioned [1, 2, 3, 4, 5]. An advantage of
such models is that they can be trained on unaligned data, using
expectation-maximisation techniques. However, the Markovian
assumption prevents such techniques from explicitly modelling
long-range time dependencies. Although a hierarchical hidden state
structure can successfully model non-local dependencies in the
utterance—such as the Hidden Vector State (HVS) model, which
learns a probabilistic push-down automaton [3, 4, 5]—non-trivial
structures require computationally expensive inference for training
and decoding, and they cannot include a large number of correlated
utterance features.

Discriminative models do not make independence assumptions
over the feature set, which can lead to improved performance [6].
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Support vector machines (SVM) have been used for classifying se-
mantic arguments using syntactic tree features [7], as well as for
classifying semantic production rules whose probability is estimated
from the classifier’s confidence score [8]. Wang & Acero show that
linear-chain conditional random fields (CRF) produce the best re-
sults when converting the SLU problem into a flat sequential la-
belling task [9]. A disadvantage of these discriminative methods
is that they require training utterances to be semantically annotated
at the word-level. Aligning the semantic representation with indi-
vidual words is a time-consuming task, which results in large main-
tenance and portability costs during dialogue system development,
thereby mitigating the attractiveness of data-driven methods over
handcrafted rules. Zettlemoyer & Collins present a grammar in-
duction method that can learn a probabilistic combinatory catego-
rial grammar (PCCG) from utterance-level annotations, by alterna-
tively (a) optimising the grammar’s lexicon using the current PCCG
and (b) refining the PCCG’s weights based on the updated lexicon
[10]. They show that their technique produces state-of-the-art per-
formance on the Air Travel Information System (ATIS) dataset [11].

While keeping the same constraints on the level of semantic an-
notation, this paper presents an efficient yet simple technique that
learns discriminative semantic concept classifiers whose output is
used to recursively construct a semantic tree, without requiring any
alignment information. The next section presents our method in
more detail, while Section 3 evaluates its robustness to speech recog-
nition errors and compares it against results reported by He & Young
[4] and Zettlemoyer & Collins [10] on the ATIS dataset. Finally,
Section 4 concludes with a discussion of future work.

2. METHODOLOGY

This section explains how semantic classifiers can be trained using
unaligned data, and how they are used for parsing unseen utterances.

2.1. Learning semantic tuple classifiers

The input of the learning algorithm presented in this section is a set
of utterances and their corresponding semantic trees. Some limi-
tations on the structure of these trees are discussed in Section 2.4.
As in previous work [3, 10], we rely on a database characteris-
ing entities of interest in the dialogue domain as category/value
pairs (e.g., CITY = New York; see Section 2.3). An important
aspect of our algorithm is the division of each semantic tree into
concept tuples, which consist of a sequence of l semantic concept
nodes linked together within a single branch. For example, the tree
INFORM(FOOD(CHINESE)) contains two tuples of length 2 (i.e.,
INFORM→FOOD and FOOD→CHINESE) and one tuple of length
3 (i.e., INFORM→FOOD→CHINESE). The learning algorithm con-
sists of the following steps:



<s> I want a Chinese restaurant near the NEAR_NAME(railway station) </s>
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Fig. 1. Semantic tree derivation for an utterance in the TownInfo
dataset (see Section 3.1), with positive concept tuple classifications
in darker boxes.

• Input: a set of (utterance, semantic tree) pairs, a maximum
tuple length l and a domain database.

• Output: a set of semantic tuple classifiers and a domain
grammar.

1. Replace database values in the training utterances with cate-
gory labels (e.g., ‘I want to fly from CITY NAME’; see Sec-
tion 2.3).

2. Compute relevant lexico-syntactic features for each utterance
(e.g., n-gram frequency counts with n from 1 to 3).

3. For each distinct tuple of maximum l concepts in the semantic
trees:

(a) Create a dataset associating each training utterance
with a binary class representing whether the tuple oc-
curs in the utterance’s semantic tree.

(b) Train a binary semantic tuple classifier (STC) that pre-
dicts the class—i.e., the tuple—from the feature values.
The root concept (e.g., dialogue act type) is predicted
using a single multi-class classifier.

4. If not provided, construct a domain grammar that matches all
trees in the training set.

2.2. Parsing algorithm
Figures 1 and 2 illustrate the parsing process for the two evaluation
domains presented in Section 3.1. The algorithm consists of the fol-
lowing steps:

• Input: an utterance, the semantic concept classifiers, the do-
main grammar and database.

• Output: the semantic tree of the input utterance.

1. Replace database values in the utterance with category labels.
2. Compute the utterance’s features and filter out those not seen

during training (e.g., unseen n-grams).
3. Run all semantic tuple classifiers (STC) on the utterance’s

features, set T equal to the set of positively classified tuples.
4. Initialise the output semantic tree as the predicted root, and a

variable r pointing to the root concept. Then recursively do
either:

<s> I want to fly from CITY_NAME-0(Boston) to CITY_NAME-1(New York) </s>
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Fig. 2. Semantic tree derivation for an utterance in the ATIS dataset
(see Section 3.1), with a maximum tuple length of 3. Indexed clas-
sifiers are used to retrieve non-enumerable database category labels
from the utterance, such as CITY NAME.

(a) High precision mode: For each tuple t of T whose root
has the same concept as r, append t’s child to r in the
semantic tree and remove t from T. Start over recur-
sively by setting r equal to t’s terminal node.

(b) High recall mode: Start with (a). Then, for each re-
maining tuple t of T that is dominated by the concept
r in the domain grammar, append t to r in the seman-
tic tree. Start over recursively by setting r equal to t’s
terminal node.

5. Associate each of the tree’s terminal node corresponding to
a database category label with the corresponding value in the
utterance (e.g., CITY NAME becomes New York).

The output of this algorithm is a semantic tree of the utterance,
with terminal concepts associated with database values. In high pre-
cision mode, the algorithm relies only on the outputs of the classifiers
to expand the tree (e.g., FOOD→CHINESE can only be appended if
the FOOD concept is already part of the tree), whereas in high re-
call mode the tree can be expanded as long as the result matches
the domain grammar (e.g., FOOD→CHINESE can be appended to
INFORM if this combination has been seen during training). We use
the high recall mode throughout this paper, since it performs better
on our datasets.

The maximum tuple length l parameter effectively controls the
trade-off between (a) the accuracy of individual classifiers and (b)
the non-ambiguity of the tree reconstruction process. For example,
classifiers returning a full branch (l = ∞) make the reconstruc-
tion process trivial at the expense of classification accuracy, whereas
classifiers returning individual semantic concepts (l = 1) produce
ambiguous parses. Additionally, smaller tuples generalise better to
branches that are not seen during training.

2.3. Learning instances of a database category
While our method relies on a domain database to scale to a large
set of possible concept values, it prevents the learning algorithm
from correctly parsing synonyms of such values (e.g., ‘city centre’
or ‘downtown’ for the AREA→CENTRAL tuple). To address this
issue, we divide the set of database attribute concepts into (a) enu-
merable and (b) non-enumerable attributes. The number of values



of an enumerable attribute is bounded regardless of the number of
entities in the database (e.g., the TYPE attribute in Figure 1 is only
associated with RESTAURANT, HOTEL and BAR), whereas non-
enumerable attributes can take any number of values (e.g., CITY
in Figure 2). In our algorithm, only non-enumerable values are
replaced by their database category, whereas enumerable values are
included explicitly in the semantic representation. At decoding time,
non-enumerable values are associated with the database value that
has the largest word overlap with the utterance.

In some application domains, the user can refer to multiple val-
ues of the same database category within a single utterance. In this
case, the value extraction process becomes ambiguous. A solution
is to number identical categories sequentially in each utterance (e.g.,
‘from CITY NAME-0 to CITY NAME-1’) and learn a classifier for
every indexed concept (e.g., TOLOC→CITY→CITY NAME-1 in
Figure 2). When parsing an utterance, each concept with index i
is associated with the ith category label in the utterance. We use
indexed classifiers on the ATIS dataset (see Section 3.1).

2.4. Limitations

While our method is based on a relatively simple framework, it is im-
portant to note some of its limitations. First, our parsing algorithm
does not align semantic constituents with individual words that are
not in the database. For example, the semantic tree in Figure 2 does
not indicate what words are governed by FROMLOC. However, we
believe this is not an issue in practice since dialogue managers typ-
ically do not make use of alignment information for words that are
not database values.

Our method can scale to large semantic representations while
keeping the number of possible classifiers to a maximum of |C|l,
where C is the set of possible semantic concepts and l the tuple
length. However, a second limitation is that none of the tuple classes
should have identical child concepts (e.g., FROMLOC→CITY and
TOLOC→CITY), since they can produce ambiguous anchor points
in the tree. This issue can be overcome by increasing the value of the
parameter l, as we do in our experiments on the ATIS dataset (see
Section 3.1).

Since our method can require to run up to |C|l classifiers on the
input utterance, the computational cost of our approach at run-time
is limited by the number of distinct tuples in the training data. Using
approximately 250 linear support vector machine classifiers imple-
mented in Java on a Quadcore Pentium 2.4 GHz, each utterance was
parsed in less than 200 ms on average, for both evaluation datasets.
We thus believe our method is suitable for real-time dialogue.

3. EVALUATION

This section evaluates our method on two distinct domains, and
compares our results with previous state-of-the-art techniques and a
handcrafted rule-based parser.

3.1. Datasets

Our first dataset consists of tourist information dialogues in a ficti-
tious town (TownInfo). The dialogues were collected through user
trials in which users searched for information about a specific venue
by interacting with a dialogue system in a noisy background. These
dialogues were previously used for training dialogue management
strategies [12, 13]. The semantic representation of the user utterance
consists of a root dialogue act type and a set of slots which are ei-
ther unbound or associated with a child value. For example, ‘What is

the address of Char Sue?’ is represented as REQUEST(ADDRESS
NAME(Char Sue)), and ‘I would like a Chinese restaurant’ as
INFORM(FOOD(CHINESE) TYPE(RESTAURANT)). Since the
TownInfo database is relatively small, all categories are treated as
enumerable. The TownInfo training and test sets respectively contain
8396 and 1023 transcribed utterances. The maximum tuple length l
is set to 2 to optimise classification accuracy. The data includes the
transcription of the top hypothesis of the ATK speech recogniser,
which allows us to evaluate the robustness of our models to recog-
nition errors (word error rate = 34.4%). We also compare our mod-
els with the handcrafted Phoenix grammar [14] used in the trials
[12, 13]. The Phoenix parser implements a partial matching algo-
rithm that was designed for robust spoken language understanding.

In order to compare our results with previous work [4, 10],
we apply our method to the Air Travel Information System dataset
(ATIS) [11]. This dataset consists of user requests for flight informa-
tion (see example in Figure 2), and a database of concept examples.
We use 5012 utterances for training and parameter tuning. As in
previous work, we test our method on the 448 utterances of the
NOV93 dataset, and the evaluation criteria is the F-measure of the
number of reference slot/value pairs that appear in the output se-
mantic tree (e.g., FROMLOC.CITY = New York). He & Young
detail the test data extraction process in [3]. Since the ATIS database
is relatively large, all categories are treated as non-enumerable.1

Since many semantic trees contain multiple identical concepts, the
maximum tuple length parameter is set to 3 to avoid ambiguous
anchor points (see Section 2.4).

3.2. Feature set and learning algorithm

Although any set of lexical, syntactic and semantic features can be
used to train the classifiers, we report our first results using n-gram
frequency counts computed over the training utterances. Before
computing the features, occurrences of non-enumerable database
values and numbers are replaced with a generic label. With a maxi-
mum n-gram size of 3, we compute a maximum of 16,160 features
for the TownInfo dataset and 13,185 features for the ATIS dataset.
We do not report results using word stemming as they did not show
any improvement, and we leave supervised feature selection as
future work.

These features are used to train support vector machine classi-
fiers (SVM), as they were shown to generalise well on various nat-
ural language processing tasks requiring a large, sparse set of corre-
lated features [15, 7, 8]. We only report results with linear kernel
SVMs trained using the LibSVM package [16], as early experiments
showed that using other kernels did not improve performance. The
maximum n-gram size (1 ≤ n ≤ 3) as well as the SVM misclas-
sification cost parameters are optimised individually for every tuple
classifier, by performing multiple cross-validations on the training
data.2

3.3. Results

Results for both datasets are shown in Table 1. The model accu-
racy is measured in terms of the percentage of correctly classified
dialogue act types, as well as the F-measure of the slot/value pairs.
Both the slot and the value must be correct to count as a correct
classification. The dialogue act type is the root of the output tree,
whereas slot/value pairs are trivially extracted from the branches

1We also add all possible time values to the database so that our model
can generalise to arbitrary times.

2All other parameters are set to their default values.



Parser DA Prec Rec F
TownInfo dataset with transcribed utterances:
STC 94.92 97.39 94.05 95.69
Phoenix 94.82 96.33 94.20 95.26
TownInfo dataset with ASR output:
STC 85.15 94.03 83.73 88.58
Phoenix 74.73 90.28 79.49 84.54
ATIS dataset with transcribed utterances:
STC 92.63 96.73 92.37 94.50
He & Young (2006) – – – 90.3
Z & C (2007) – 95.11 96.71 95.9

Table 1. Dialogue act classification accuracy (DA), slot/value preci-
sion (Prec), recall (Rec) and F-measure for the ATIS and TownInfo
test datasets. Semantic tuple classifiers (STC) are compared with
a handcrafted Phoenix parser, as well as results reported by He &
Young and Zettlemoyer & Collins (Z & C) on the same test set.

(e.g. FROMLOC→CITY→New York becomes FROMLOC.CITY
= New York). Results on the TownInfo domain show that the se-
mantic tuple classifiers (STC) trained and tested on transcribed ut-
terances perform slightly better than the handcrafted Phoenix gram-
mar. Classifiers trained and tested on the automatic speech recogni-
tion (ASR) output show a large improvement over the handcrafted
grammar, for both the dialogue act accuracy (10.42% improvement
with 85.15% accuracy) and the F-measure (4.04% improvement with
F=88.58%).

Concerning the ATIS dataset, Table 1 shows that the STC al-
gorithm produces a 92.63% dialogue act accuracy and a 94.50% F-
measure, which represents a 4.2% improvement over results reported
by He & Young using the HVS model on the same test set [4], but
1.4% lower compared with Zettlemoyer & Collins’ PCCG model
[10].

4. DISCUSSION AND FUTURE WORK

This paper presents a new data-driven method for semantic parsing
that can learn from unaligned semantic trees, thus allowing for faster
data collection and dialogue system deployment. Results show that
STCs outperform a handcrafted rule-based parser previously used
for collecting dialogue data [12, 13], for both clean utterances and
noisy speech recognition outputs. Our method also also improves
on the HVS model [4] on the ATIS dataset, and it performs only
1.4% worse than more complex iterative grammar induction tech-
niques [10]. It is important to note that the latter requires handcraft-
ing domain-independent parsing rules in the initial grammar lexicon
(e.g., PCCG lexicon entries for wh-words).

While we test our parsing technique on two non-trivial datasets,
future research should study whether the STC algorithm can scale to
arbitrarily large semantic trees, and address limitations on the tree
structure (see Section 2.4). Additionally, commercial dialogue sys-
tems typically need to detect thousands of database concepts, each
of which can be expressed in different ways. While our method cur-
rently relies on a database to extract non-enumerable values, we are
planning to investigate named entity tagging techniques that do not
require word-aligned data. As recent research on data-driven dia-
logue systems has focused on modelling uncertainty to improve de-
cision making [12, 13], an important future work is to extend our
technique to return a distribution over semantic trees based on clas-
sification confidence scores, e.g. by mapping the SVM classification

margin to a probabilistic value. Finally, while we show that simple
n-gram features are robust to noise, we are currently investigating
whether higher level syntactic and semantic features can improve
performance despite recognition errors.
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