
HAL Id: hal-00595092
https://hal.science/hal-00595092v1

Submitted on 23 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-algebraic canonical decomposition of multi-way
arrays and joint eigenvalue decomposition

Xavier Luciani, Laurent Albera

To cite this version:
Xavier Luciani, Laurent Albera. Semi-algebraic canonical decomposition of multi-way arrays
and joint eigenvalue decomposition. The 36th International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2011), May 2011, Prague, Czech Republic. pp.4104-4107,
�10.1109/ICASSP.2011.5947255�. �hal-00595092�

https://hal.science/hal-00595092v1
https://hal.archives-ouvertes.fr
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ABSTRACT

A semi-algebraic algorithm based on Joint EigenValue De-
composition (JEVD) is proposed to compute the CP de-
composition of multi-way arrays. The iterative part of the
method is thus limited to the JEVD computation. In addition
it involves less restrictive hypothesis than other recent semi-
algebraic approaches. We also propose an original JEVD
technique based on theLU factorization. Numerical exam-
ples highlight the main advantages of the proposed methods
to solve both the JEVD and CP problems.

Index Terms— Tensor decomposition, CP, PARAFAC,
joint eigenvalue decomposition, non defective matrices.

1. INTRODUCTION

Tensor or multi-way array decompositions are used in nu-
merous application areas such as Psycometrics [1], Biomed-
ical Engineering [2] or Chemometrics [3]. Thanks to its
uniqueness property [4, 5], the CP decomposition (for CAN-
DECOMP/PARAFAC) [1, 6] is probably the most popular
nowadays.

Many iterative algorithms have been proposed to compute
the CP decomposition. One of the most famous resorts to
an iterative Alternating Least Squares (ALS) procedure [6].
However these approaches suffer from classical convergence
problems (local minima, slow convergence or high computa-
tional cost per iteration). Recently, an Enhanced Line Search
(ELS) [7, 8] procedure has allowed to confine this disadvan-
tage but it still exist some simple cases for which any itera-
tive algorithm fails [9]. An other approach is to rephrase the
CP decomposition as a joint diagonalization problem [5, 10,
11]. Notably, the "Closed Form Solution" (CFS) presented in
[10] and [11] resorts to the Joint EigenValue Decomposition
(JEVD) of a set of non-defective matrices. These methods
can be called semi-algebraic since they algebraically rewrite
the CP problem into a more classical matrix problem, which
is then iteratively solved by means of a Jacobi-like procedure.
However such methods generally involve some strongest hy-
pothesis to work. For instance, CFS requires that the rank of
the considered tensor does not exceed two of its dimensions.

We propose here a new formulation of the CP decompo-
sition as a JEVD problem, leading to a novel semi-algebraic
solution, named SALT (Semi-ALgebraic Tensor decomposi-
tion) which does not impose this limitation. At this occa-
sion we first propose an original Jacobi-like JEVD algorithm,

called JET (Joint Eigenvalue decomposition algorithm based
on Triangular matrices).

2. JOINT EIGENVALUE DECOMPOSITION

In the following, the subset ofN included in[x; y] is denoted
by [x; y]N.

The JEVD problem consists in finding an eigenvector ma-
trix A from a set of non-defective matricesM (k) verifying:

∀k ∈ [1;K]N, M (k) = AD
(k)

A
−1

, (1)

where theK diagonal matricesD(k) are unknown. It can
be shown that the JEVD is unique up to a permutation and
a scaling of the columns ofA within conditions on matrices
D(k) [12].

Although it is encountered in other contexts such as 2-D
DOA estimation [13], few authors have addressed the JEVD
problem. Two main kinds of Jacobi-like algorithms have been
developed based on either theQR factorization [14] or the
polar decomposition [15, 16, 17] ofA.

We propose here a third Jacobi-like approach, based on
theLU factorization of the eigenvector matrix and we show
that the iterative optimization is then reduced to the search for
only one triangular matrix.

Definition 1 A unit matrix is a matrix whose all the diagonal
elements are equal to 1.

Definition 2 An elementary triangular matrix L(i,j)(a) is a
unit triangular matrix whose non-diagonal components are
zero except the (i, j)-th one, which is equal to a.

A generalization of theLU factorization easily shows
that any non-singular square matrixA can be factorized as
A = LV ΛΠ whereL is a unit lower triangular matrix,V is
a unit upper triangular matrix,Λ is a diagonal matrix andΠ
is a permutation matrix. Thereby, due to the indeterminacies
of the JEVD problem, the matrixA solving (1) can be chosen
of the formA = LV without loss of generality. The JEVD
problem is then reduced to find a unit lower triangular matrix
L and a unit upper triangular matrixV verifying:

∀k ∈ [1;K]N, L−1
M

(k)
L = V D

(k)
V

−1
, (2)

where theK matricesR(k) = V D(k)V −1 are upper trian-
gular. As a consequenceL performs the joint triangulariza-
tion of matricesM (k). Let us propose a Jacobi-like procedure
to identify it, based on the following lemma:



Lemma 1 Any unit lower triangular matrix L of size (N ×

N) can be factorized as a product of M = N(N − 1)/2
elementary lower triangular matrices.

The proof is skipped due to the lack of space. Now by taking
into account that elementary lower triangular matrices com-
mute, (2) and lemma 1 yield:

∃ {xm}m∈[1;M]N such that, ∀k ∈ [1;K]N,
R

(k) =

M
∏

m=1

(

L
(m)(xm)

)

−1

M
(k)

M
∏

m=1

L
(m)(xm), (3)

where each indexm corresponds to a distinct couple (i, j)
(1 ≤ j < i ≤ N ). As a consequence, ideally, we have to
found onlyM parametersxm to triangularize theK matrices
M (k). Instead of simultaneously identifying theseM param-
eters, a Jacobi-like procedure will repeat several sequence of
M sequential optimizations until convergence, each optimiza-
tion with respect to only one parameter. A sequence ofM op-
timizations is generally called a sweep. Thereby, we then look
for a matrixL of the formL =

∏Ns

ns=1

∏M
m=1 L

(m,ns)(xns
m ),

whereNs is the number of sweeps.

∀(k,m, ns) ∈ [1;K]N,×[2;M ]N,×[1;Ns]N, we define:

M
(k,0,1) = M

(k) (4)

M
(k,1,ns) =

(

L
(1)(yns

1 )
)

−1

M
(k,M,ns−1)

L
(1)(yns

1 ) (5)

M
(k,m,ns) =

(

L
(m)(yns

m )
)

−1

M
(k,m−1,ns)L

(m)(yns
m )

(6)

A natural way to compute the optimal(m,ns)-th parameter
xns
m is given by:

∀(m,ns) ∈ [1;M ]N,×[1;Ns]N, xns
m = Argminy

ns
m

(ζm,ns (yns
m )) ,

with:

ζ
m,ns (yns

m ) =

K
∑

k=1

N−1
∑

q=1

N
∑

p=q+1

(

M
(k,m,ns)
p,q

)2

.

Components ofM (k,m,ns) are deduced from those of
M (k,m−1,ns) within only a few computations. This is an
advantage of using elementary triangular matrices. Indeed,
(4)-(6) yield:

∀(k,m, ns) ∈ [1;K]N,×[1;M ]N,×[1;Ns]N,

M
(k,m,ns)
p,q = M

(k,m−1,ns)
p,q if p 6= i andq 6= j,

M
(k,m,ns)
p,q = −y

ns
m M

(k,m−1,ns)
j,q +M

(k,m−1,ns)
p,q

if p = i andq 6= j,

M
(k,m,ns)
p,q = y

ns
m M

(k,m−1,ns)
p,i +M

(k,m−1,ns)
p,q

if p 6= i andq = j,

M
(k,m,ns)
i,j = − (yns

m )2 M
(k,m−1,ns)
j,i +M

(k,m−1,ns)
i,j

+y
ns
m

(

M
(k,m−1,ns)
i,i −M

(k,m−1,ns)
j,j

)

.

Consequentlyζm,ns can be expressed as a fourth degree
polynomial in variableyns

m and thus easily minimized by

computing the roots of its derivative. Finally,L is estimated
by sequentially minimizing theNsM criteria ζm,ns and we
deduce the estimate of each upper triangular matrixR(k)

from (2).
We now show how the unit upper triangular matrixV can

be algebraically computed from the set of matricesR(k) =

V D(k)V −1. Such a computation is achieved component by
component. The relationship betweenR(k), V andD(k)

yields:

∀(i, j) ∈ [1;N ]2N, (R(k)
V
)

i,j
=

(

V D
(k)

)

i,j
.

So we have∀k ∈ [1;K]N, ∀(i, j) ∈ [1;N ]2N with i < j:

(

D
(k)
j,j −R

(k)
i,i

)

Vi,j =

j
∑

p=i+1

R
(k)
i,p Vp,j . (7)

SinceD(k) is actually the diagonal matrix of eigenvalues
of R(k) and sinceR(k) is a triangular matrix, the diagonal
components ofD(k) are known and equal to the diagonal
components ofR(k). Then the left-hand side of (7) becomes
(

R
(k)
j,j −R

(k)
i,i

)

Vi,j . Now, let:

a
(i,j)
k = R

(k)
j,j −R

(k)
i,i and b

(i,j)
k =

j
∑

p=i+1

R
(k)
i,pVp,j

be thek-th components of vectorsa(i,j) andb(i,j), respec-
tively. Then (7) can be rewritten as follows:

∀(i, j) ∈ [1;N ]2N, i < j, Vi,j a
(i,j) = b

(i,j)
.

Thereby, the identification ofVi,j in the least square sense is
given by:

∀(i, j) ∈ [1;N ]2N, i < j, Vi,j =
a(i,j)T b(i,j)

‖a(i,j)‖2
. (8)

The use of (8) requires to scan the values ofi from j− 1 to 1
for a given value ofj. Indeed,b(j−1,j) only depends onVj,j

which is equal to 1. Consequently, from (8), we can compute
Vj−1,j , then we deduceb(j−2,j) and so on. Columns ofV
are obtained by repeating this process for allj in [1;N ]N. We
finally computeA fromL andV .

3. A SEMI-ALGEBRAIC CP DECOMPOSITION

The CP decomposition states that for anyQ-th order tensor
(or Q-way array)T = (Ti1,·,iQ) of size (I1 × · · · × IQ), it
exists a minimal integerR such thatT can be exactly decom-
posed as:

Ti1,··· ,iQ =

R
∑

r=1

X
(1)
i1,r

· · ·X
(Q)
iQ,r, (9)

whereX(q) defines theq-th "factor" matrix of size(Iq ×R).
R is called the tensor rank. The problem is thus to find theQ
factor matrices fromT .



Tensor dimensions can be merged in order to store all ten-
sor entries in a single "unfolding" matrix. Obviously, there
are many possible unfolding matrices. This choice has an im-
pact on the identifiability conditions and on the performances
of the CP method. We defineπb

a = IaIa+1 · · · Ib. Let T (P )

be the(πP
1 × πQ

P+1) unfolding matrix ofT given by:

∀(m,n) ∈ [1;πP
1 ]N × [1;πQ

P+1]N, T (P )m,n = Ti1,··· ,iQ ,
(10)

with:

m = i1 +

P
∑

q=2

(iq − 1)πq−1
1 ; n = iP+1 +

Q
∑

q=P+2

(iq − 1)πq−1
P+1.

Any unfolding matrix ofT can be merely obtained by per-
muting the tensor dimensions and varying theP value. Then
by using the Khatri-Rao product denoted by⊙ and after some
straightforward computations, (9) can be rewritten as:

T (P ) = Y (P,1)

X
Y (Q,P+1)

X

T
,

with:

Y
(b,a)

X
= X

(b) ⊙X
(b−1) ⊙X

(b−2) ⊙ · · · ⊙X
(a)

, (b > a).

As the SALT method is considered,T (P ) has to be of rank
R (hypothesisH1). LetUSV T be the singular value decom-
position ofT (P ), truncated at orderR. Thus it exists a non
singular square matrixW of size(R ×R) such that:

Y
(P,1)

X
= UW and Y

(Q,P+1)

X

T = W
−1

SV
T

. (11)

Recalling thatY (Q,P+1)

X
= X(Q)

⊙ Y (Q−1,P+1)

X
and using

the definition of the Khatri-Rao product,Y (Q,P+1)

X

T can be
seen as an horizontal block matrix:

Y
(Q,P+1)

X

T =
[

φ
(1)

Y
(Q−1,P+1)

X

T

, · · · ,φ(IQ)
Y

(Q−1,P+1)

X

T

]

,

(12)
whereφ(1), · · · ,φ(IQ) are theIQ diagonal matrices built

from theIQ rows of matrixX(Q). As a consequence, (11)
and (12) yield:

SV
T =

[

Γ
(1)T

, · · · ,Γ(IQ)T
]

,

whereΓ(i) = Y
(Q−1,P+1)
X

φ
(i)
W T for any i ∈ [1; IQ]N.

All matricesΓ(i) and matrixY (Q−1,P+1)

X
are of size(πQ−1

P+1 ×

R). Assuming that these are full column rank (hypothe-
sis H2), then they all admit a Moore-Penrose matrix in-
verse denoted by♯. Thereby, we can define for any couple
(i1, i2) belonging to[1; IQ]2N:

Θ
(i1,i2) = Γ

(i1)♯Γ
(i2),

= W
−T

φ
(i1)♯Y

(Q−1,P+1)♯

X
Y

(Q−1,P+1)

X
φ

(i2)W
T

,

= W
−T

Λ
i1,i2W

T

,

whereΛ(i1,i2) = φ(i1)♯φ(i2) are diagonal matrices. As a
result, W−T performs the JEVD of the set of matricesΘ
which are full rank. Assuming thatX(Q) has at least two

rows whose entries are non-zero (hypothesisH3), this subset
is not empty andW−T can thus be estimated by the JET algo-
rithm. Then one can immediately deduceY (P,1)

X
andY (Q,P+1)

X

from (11).
At this stage, columnr of Y (P,1)

X
can be reshaped into

a P -th order, rank-1 tensorY (1,P )

Xr
whose factor vectors are

ther-th columns of theP matricesX(1), · · · ,X(P ), respec-
tively. Thereby a simple rank-1 HOSVD [18] ofY (P,1)

Xr
pro-

vides their estimation. In the same way, the columnr of
Y (Q,P+1)

X
can be reshaped in a(Q−P )-th order, rank-1 tensor

Y (Q,P+1)

Xr
whose factor vectors are ther-th columns of matri-

cesX(P+1)
· · ·X(Q), which can be estimated from the rank-

1 HOSVD ofY (Q,P+1)

Xr
. Finally, we have just to repeat both

operations for all ther values to solve the problem.
We must choose a permutation of the tensor dimensions

and aP value that ensureH1, H2 andH3. This set of condi-
tions is necessary and sufficient to compute the CP decompo-
sition using the SALT algorithm. It is worth mentioning that
these conditions become weak for high order arrays. Notably,
at orders higher than 3, the rank of the considered tensor is not
required to exceed two of its dimensions contrary to the CFS
algorithm. Note thatH1 andH2 imply R ≤ min(πP

1 , π
Q−1
P+1).

Even if several candidates often fulfill the conditions, we rec-
ommend to choose a value ofP and a permutation of the ten-
sor dimensions that give matricesT (P ) andY (Q−1,P+1)

X
with

the highest maximal rank. In practice, this usually leads to
maximize min(πP

1 , π
Q−1
P+1 ).

4. NUMERICAL RESULTS

4.1. Performances comparison of the JET algorithm

The JET algorithm is compared to the sh-rt [15] and JUST
[16] methods by means of Monte-Carlo (MC) simulations.
Entries of the eigenvectorA and diagonal matricesD(k) are
randomly drawn according to a standard normal distribution.
A Gaussian white noise is added to the matrix set to be jointly
diagonalized. Algorithms are evaluated according to a nor-
malized root mean squared error on the estimated eigenvector
matrix, denoted byrA. We vary the SNR from10 dB to 70
dB whereasK andN are fixed to10 and5, respectively. The
median value ofrA obtained from the 100 MC runs is plotted
on figure 1(a). It appears that at10 dB, JET and sh-rt provide
very closed results. Conversely, beyond10 dB, the JET algo-
rithm consistently outperforms both techniques based on the
polar decomposition.

4.2. Performance comparison of the SALT algorithm

We have compared SALT with the CFS and ALS with ELS
(ELSALS) algorithms. Implemented versions of SALT and
CFS resort to the JET algorithm to solve the JEVD prob-
lem. The ELS procedure is run every 3 ALS iterations.
Each algorithm gives for each factor matrix a normalized
root mean squared estimation error whose median values are
computed from 100 MC experiments and denoted byr

(q)
X .

Our estimation criterionrX is then: rX = 1
Q

∑Q
q=1 r

(q)
X .
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Fig. 1. JEVD and CP decomposition algorithm comparison. Evolution of the estimation errors.

The SALT algorithm should be particularly interesting in two
cases: when some columns in the factor matrices are almost
collinear and/or when the tensor order is high. In the first
case, iterative algorithms have difficulties to avoid localmin-
ima. This is highlighted by our first simulation, namely the
CP of a third order tensor of size (4 × 4 × 4) and rank 3.
Two columns of the random factor matrices are correlated.
A white Gaussian noise is added and we vary the SNR from
100 to 10 dB. rX values are plotted on figure 1(b). We also
notice that SALT performs slightly better than CFS. In the
second case one can take benefit of the tensor dimensions to
easily ensure the necessary conditions and choose the more
suitable unfolding matrixT (P ). This is pointed out by our
second simulation for which we consider8-th order tensors
whose all dimensions are equal to 3. The SNR is set to50
dB, factors are uncorrelated, the SALT parameterP is set to
4 and we vary the tensor rank from 2 to 8. Results are plotted
on figure 1(c). In this case, CFS cannot go beyond rank 3
because of its necessary condition while ELSALS provides
very poor results beyond rank 4. Conversely, SALT gives
satisfying results whatever the considered rank.

5. CONCLUSION

Our contribution is twofold. Indeed we have proposed a
new semi-algebraic approach for the CP decomposition along
with an original JEVD algorithm. Combined together, these
methods define a reliable CP decomposition algorithm called
SALT. Simulation results show i) the efficiency of our JEVD
algorithm and ii) that SALT can overcome standard CP de-
composition algorithms in several situations, notably in the
case of high order tensors or when two or more factors are
correlated.
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