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ABSTRACT

Unlike other data modalities such as text and vision, speech
does not lend itself to easy interpretation. While lay people
can understand how to describe an image or sentence via per-
ception, non-expert descriptions of speech often end at high-
level demographic information, such as gender or age. In this
paper, we propose a possible interpretable representation of
speaker identity based on perceptual voice qualities (PQs).
By adding gendered PQs to the pathology-focused Consensus
Auditory-Perceptual Evaluation of Voice (CAPE-V) protocol,
our PQ-based approach provides a perceptual latent space of
the character of adult voices that is an intermediary of abstrac-
tion between high-level demographics and low-level acoustic,
physical, or learned representations. Contrary to prior belief,
we demonstrate that these PQs are hearable by ensembles of
non-experts, and further demonstrate that the information en-
coded in a PQ-based representation is predictable by various
speech representations.

Index Terms— Speech Representation, Speaker Identity,
Perceptual Qualities

1. INTRODUCTION

When a lay person hears a voice, they can quickly identify
certain features, such as whether or not the voice is masculine
or feminine, or old or young [1]. This level of abstraction,
however, does not shed light on the building blocks of a voice.
Intermediate representations of speech are seemingly locked
behind a veil of expertise, time-consuming to understand and
contained to sub-fields. While there have been certain com-
binations of various fields and speech processing, such as
speech pathology and musical vocal training, these combina-
tions have been disconnected and not applied towards creating
a complete representation of speaker identity.

In this work, we holistically consider one such interme-
diate representation from speech pathology: perceptual voice
quality. Prior work has explored the ability of crowdsourc-
ing and machine learning methods to capture these individual
qualities [2, 3], but, to the best of our knowledge, a study
of perceptual qualities’ ability to represent speaker identity
has not been conducted. Perceptual qualities related to voice
atypicality alone lack the ability to provide a comprehensive

latent space of adult voices, since gender information is miss-
ing. As such, we take inspiration from musical and transgen-
der vocal training, supplementing perceptual qualities from
speech pathology with what we call gendered perceptual qual-
ities. Combined with perceptual qualities from the Consen-
sus Auditory-Perceptual Evaluation of Voice (CAPE-V) pro-
tocol [4], we propose a 7-dimensional representation of spo-
ken speaker identity based on perceptual qualities.

A perceptual quality-based representation of speaker
identity provides two benefits currently lacking in other rep-
resentations. Firstly, a perceptual quality-based representa-
tion of speaker identity is low-dimensional and interpretable,
whereby any listener or ensemble of listeners, given minimal
training, can hear the particular aspects of each perceptual
quality. Secondly, the information encoded in subjective
perceptual qualities has an objective basis, containing in-
formation present in varied representations of speech, from
hand-crafted to self-supervised. Perceptual qualities have the
potential to bring to speech processing what it has previously
lacked: a perceivable and descriptive level of abstraction of
the texture of a speaker’s voice.

2. RELATION TO PRIOR WORK

2.1. Perceptual Voice Quality

Defined as the acoustic ”coloring” of an individual’s voice,
perceptual voice quality, hereby referred to as perceptual
quality (PQ), has long been studied in speech language
pathology and processing [5, 6]. From the mood of a voice to
vocal fry and breathiness, perceptual quality consists of the
subjective perceptions of a voice. Perceptual qualities have
long been noted as being important to spoken language pro-
cessing, with prior work noting that voices with uncommon
or pathological perceptual qualities lead to poor performance
for spoken language processing systems if not taken into
consideration [6].

Of particular interest to our work is how perceptual qual-
ity can be used to describe an individual’s voice. In speech
language pathology (SLP), experts will use vocal quality to
perform initial diagnosis of the health of an individual’s voice
[4, 7]. Non-surgical treatment of a voice involves a patient
performing exercises to bring certain perceptual qualities into
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healthy levels [4]. PQs that are highly correlated with dys-
phonic speech are particularly useful for voice rehabilitation,
but others, such as vocal fry, timbre/resonance, and weight,
see application in general voice modification as well. Mu-
sical vocal teachers, SLPs or voice teachers specializing in
voice feminization/masculinization will use these other PQs
to guide students towards target voices [8, 9].

Prior work in automatic assessment of dysphonia [10]
and emotion recognition [11] have explored the predictabil-
ity of individual perceptual qualities. Deep neural network
approaches to predicting perceptual qualities have been con-
ducted [2, 12], but these have primarily focused on labeled
audio clips of sustained vowels with the goal of predicting
dysphonic voices from spectral features and the waveform
directly. We extend on prior work by demonstrating that
automatic detection of perceptual qualities is possible at a
human level across multiple representations of spoken sen-
tences.

2.2. Representations of Speaker Identity

From speaker verification and identification [13, 14] to voice
conversion [15], an informative representation of speaker
identity is necessary for many problems in speech process-
ing. Across nearly all modern methods, especially those
based in deep learning [16], the highest performing methods
are learned representations that, while containing informa-
tion relevant to speaker identity, lack highly low-dimensional
interpretability of the PQ-based representation proposed here.

3. PERCEPTUAL VOICE QUALITIES

In this section, we describe the collection and interpretability
of perceptual voice qualities. While the space of possible PQs
is vast, we limit our consideration to seven PQs, described
below.

3.1. Perceptual Voice Qualities Database

In clinical settings, perception assists greatly in the early
stages of diagnosis of voice pathologies. Speech Language
Pathologists (SLPs) will often use rating scales like the Con-
sensus Auditory-Perceptual Evaluation of Voice (CAPE-V) to
provide early information on possible voice pathologies an in-
dividual may have [4]. SLPs undergo training to successfully
identify the PQs: strain, loudness, roughness, breathiness,
pitch, and severity [7]. For a complete description of the
CAPE-V vocal qualities, please refer to the original protocol
[4].

While this data is difficult to collect, the Perceptual Voice
Qualities Database (PVQD) serves a publicly available rat-
ings of PQs from the CAPE-V scale [7]. The PVQD includes
296 audio files of around 30 seconds of audio, whereby a
speaker follows the CAPE-V evaluation protocol, and reads

six sentences and produces vowels /a/ and /i/ for 1-2 sec-
onds. The authors behind the PVQD had each audio clip rated
by three separate clinicians across two trials according to the
CAPE-V scale. In this work, we examine five of the six PQs,
excluding severity, which is overall measure of vocal atypi-
cality.

3.2. PVQD+: Collecting Gendered Perceptual Qualities

While the PVQD serves its purposes as a diagnostic tool of
speech pathology, for the purposes of providing a general rep-
resentation of voice, it is incomplete. Information on a voice’s
gender measures of is missing. Attempting to perform ma-
nipulations that are common in speech processing tasks like
voice conversion, such as converting a masculine voice to
a feminine voice, would not be possible with the CAPE-V
scale’s ratings of deviation alone.

As such, we augment the labels with those provided by
three voice teachers, who specialize in transgender voice
training. Current pedagogies in transgender voice modifica-
tion are particularly concerned with two primary PQs: vocal
resonance and vocal weight. These correspond to two phys-
iological differences [17] that distinguish male and female
voices. Perceptual resonance corresponds to the amount of
space above the vocal folds in the vocal tract. More space
causes lower resonant frequencies to be amplified [18], re-
sulting in a deeper timbre, even at high pitches. Perceptual
weight corresponds to the vibratory mass of the vocal folds,
which is correlated with the open quotient, (the proportion
of the glottal cycle during which the vocal folds are open)
and spectral slope (the decline in amplitude from the first
to the Nth harmonic) [19]. These ideas are also often used
in singing lessons for vocalists, but the focus of transgender
voice training on gender lines lends itself to a representation
of spoken voice.

As discussed above, three voice teachers listened to the
subsets of 100 audio clips from PVQD and provided a label of
resonance and weight on a scale 1-100. For resonance, a value
of 1 represented the darkest resonance possible and a value of
100 represented the brightest resonance possible. Similarly
for weight, a value of 1 represented the lightest voice possi-
ble and a value of 100 represented the heaviest voice possible.
Healthy feminine voices were given a resonance value of 90
and a weight value of 10, and the opposite for healthy mascu-
line voices. We note that one voice teacher labeled the entire
dataset, and the two other voice teachers overlap on 25 audio
clips to allow for the calculation of averages and correlations.
We call the extended dataset PVQD+.

Along with those reported in the original PVQD, we re-
port the intra-class correlation (ICC) for expert ratings of res-
onance and weight in Table 1. ICC is a common metric for
measuring inter-rater reliability [7]. We see that the expert
ICC of both resonance and weight are the maximum and min-
imum of the ICCs for all PQs, respectively. We note that the
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(a) Resonance
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(b) Weight
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(c) Strain
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(d) Loudness
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(e) Roughness
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(f) Breathiness
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(g) Pitch

Fig. 1: Average Expert Rating (x-axis) vs. Average Non-Expert Rating (y-axis) across perceptual qualities.

high inter-rater reliability for resonance is unsurprising, given
that vocal tract size is highly correlated with gender. Weight
is less clear. While an ICC of 0.77 still suggests high inter-
rater agreement, weight having the lowest agreement among
experts suggests that labelling weight is a more difficult task.
Regardless, these results demonstrate the high agreement of
experts on the gendered perceptual qualities resonance and
weight.

3.3. Can Non-Experts Hear Perceptual Qualities?

A common statement from voice teachers and speech lan-
guage pathologists is that hearing perceptual qualities re-
quires training [20, 21]. The obstacle of expertise calls into
question the utility of perceptual qualities as a representation
of speaker identity, since collecting additional labels would
be a costly and time-consuming task [2]. Recent work has
demonstrated that non-experts can accurately label the overall
atypicality of a voice [3], but no work has explored the ability
of non-experts to label specific perceptual qualities. If non-
experts can accurately label PQs, collecting a large-scale and
high-quality dataset of perceptual qualities and using percep-
tual qualities as an evaluation metric of speaker modification
systems would be possible.

In this section, we test the ability of non-experts to ac-
curately rate the PQs of PVQD voice clips. Using the Ama-
zon Mechanical Turk (AMT), we ask 6 workers with mas-
ter’s qualifications to rate the clips using the CAPE-V proto-
col, and the resonance and weight as described in Section 3.2.
Workers are provided two examples for each perceptual qual-
ity, one example being low in that quality (ex. No Strain) and
the other being high in that quality (ex. High Strain). Due to
cost constraints, workers labeled only 150 audio clips of the
296 audio clips in PVQD.

The results of the AMT experiments are very promising

for the ability of non-experts to hear perceptual qualities. As
Table 1 demonstrates, average non-expert ratings achieve a
correlation 0.77 with average expert ratings, with the low-
est correlations being 0.68 and 0.67, for resonance and loud-
ness respectively (loudness was often conflated with audio
clip volume, not inherent loundess of the voice). Other PQs,
especially breathiness with a correlation of 0.87, are easier for
non-experts to hear and rate. In terms of agreement with ex-
perts, non-experts achieve a surprising level of performance.

While the correlation is remarkably high between non-
experts and experts, RMSE, as reported in Figure 2, suggests
a high-level of deviance between non-experts and experts.
While experts have an average standard deviation amongst
themselves of 10.47, average non-expert RMSE with expert
ratings is 23.45, slightly over twice that of experts.

The RMSE between non-expert and expert ratings sug-
gests a potential flaw in rating ability of non-experts, but
visualizing the average non-expert ratings vs. average ex-
pert ratings, reported in Figure 1 reveals non-expert biases
across PQs. For CAPE-V PQs, which are all measures of
deviance, non-experts consistently overrate speech clips as
having higher levels of deviance. But, for those clips that
experts label as having high levels of deviance, non-experts
will always label as having high-levels of deviance as well.
Regarding the gendered PQs of resonance and weight, we
see higher levels of deviation between non-expert and expert
ratings, but similar trends hold. Non-experts appropriately
label voices with high-values of a perceptual quality with a
high-value, and vice-versa.

Further training or better explanation is most likely re-
quired to improve non-expert and expert agreement on the
gendered PQs. These results, however, have shown that the
ability of non-experts to hear perceptual qualities with mini-
mal prompting is remarkably high and the promise of collect-
ing mass perceptual quality data is well within reach.

3



Rater Resonance Weight Strain Loudness Roughness Breathiness Pitch Average
Non-Experts 0.68 0.76 0.81 0.67 0.79 0.87 0.79 0.77

Experts 0.91 0.77 0.83 0.87 0.79 0.83 0.86 0.84

Table 1: Correlation of Non-Expert Labels with Expert Labels. A measure of inter-rater agreement, Intra-class Correlation
Coefficient, is reported for Expert Labels.
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Fig. 2: Test RMSE of various rating methods when compared
with the average expert rating for each perceptual quality.
Standard Deviation reported for expert ratings.

4. CAN OBJECTIVE FEATURES PREDICT
SUBJECTIVE QUALITIES?

While prior work has demonstrated the capability of pre-
dicting perceptual qualities directly from waveform and mel-
spectrograms [2, 12], in this section, we explore the univer-
sality of perceptual qualities across all various representations
of speech: acoustic, physical, and self-supervised.

4.1. Random Forest Regression

Given the highly non-linear relationship and high-dimensionality
of various representations, we trained random forest regres-
sors on a 60-20-20 train-validation-test split on PVQD+,
finding that linear models such as Lasso resulted in lower
performance. Hyperparameters for random forests were fine-
tuned on the 20% validaiton set.

4.2. Feature Sets

Three feature sets are used in the random forest regression
models. For the acoustic features, we use ComParE 2016
feature set, which consists of a combination of functionals
computed over prosodic, spectral, and sound quality-based
features [22]. For the physical features, we use the Elec-
tromagnetic articulography (EMA) representation of speech,
which tracks movement of articulators with midsagittal x, y
coordinates of jaw, lips, and tongue positions [23]. For the
self-supervised features, we use the 7th layer of a pre-trained

HuBERT model, which distills speech into a 1024-dimension
learned representation via training on masked audio samples
[24].

4.3. Results

The test RMSE for the above representations are reported in
Figure 2. Due to the lack of data, RMSE for resonance and
weight is reported against only one voice teacher’s ratings.

Across all three representations, several trends become
clear. On average, all random forests across feature sets pre-
dict expert ratings with lower error than non-expert humans.
Additionally, for CAPE-V PQs, ComParE and HuBERT fea-
tures both achieve RMSE lower than inter-expert standard de-
viation, with the exception of Loudness for ComParE. EMA
sees lower RMSE for two of the five CAPE-V PQs, and sim-
ilar performance for both breathiness and strain.

While the models performed well for most of the CAPE-
V PQs, the models failed to achieve similar performance on
the gendered PQs. Considering the reliance of resonance
and weight on laryngeal and source information (Section
3.2), EMA’s lack of such information justifies its poor per-
formance. Given the excellent performance of ComParE
and HuBERT features on the CAPE-V perceptual qualities,
however, the performance drop for resonance and weight is
surprising. While the performance is still better than that of
non-experts (save for EMA and weight), we expect that this
performance drop is in part due to the lack of labels for the
entirety of the PVQD dataset.

5. DISCUSSION AND FUTURE WORK

Perceptual qualities are a perceivable and predictable repre-
sentation of speaker identity. With minimal examples, non-
experts can label perceptual qualities with remarkable corre-
lation to expert labels. Across multiple speech representa-
tions, perceptual qualities are predictable, and, for CAPE-V
PQs, at an error that is lower than inter-expert variation.

While the current work points at the ability of perceptual
qualities to capture information about speaker identity, future
work is needed to explore the limits of perceptual qualities.
To what extent can PQ-based representations uniquely iden-
tify a voice? Can perceptual qualities be used to guide speech
synthesis or voice conversion? Many questions on percep-
tual quality’s applications remain, but the perceivability and
ubiquity of perceptual qualities promises to bring unseen in-
terpretability and flexibility to speech processing systems.
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