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ABSTRACT

An increasingly important brain function analysis modality is
functional connectivity analysis which regards connections as
statistical codependency between the signals of different brain
regions. Graph-based analysis of brain connectivity provides
a new way of exploring the association between brain func-
tional deficits and the structural disruption related to brain dis-
orders, but the current implementations have limited capabil-
ity due to the assumptions of noise-free data and stationary
graph topology. We propose a new methodology based on
the particle filtering algorithm, with proven success in track-
ing problems, which estimates the hidden states of a dynamic
graph with only partial and noisy observations, without the
assumptions of stationarity on connectivity. We enrich the
particle filtering state equation with a graph Neural Network
called Sequential Monte Carlo Graph Convolutional Network
(SMC-GCN), which due to the nonlinear regression capa-
bility, can limit spurious connections in the graph. Experi-
ment studies demonstrate that SMC-GCN achieves the supe-
rior performance of several methods in brain disorder classi-
fication.

Index Terms— Brain Connectivity, Sequential Bayesian
Learning, Sequential Monte Carlo, Particle Filtering, Graph
Convolutional Network

1. INTRODUCTION

Functional dynamics include changes in the strength of con-
nections between regions, and also the number of connec-
tions linked to regions. Various works [[1, |2} 3] independently
devised different types of state-space models to explore the
dynamic characteristics of functional activation and applied
them to event-related fMRI data analysis. Brain connectivity
can be quantified by encoding neighbourhood relations into
a connectivity matrix, the rows and columns of which corre-
spond to different brain regions of interest (ROI). This repre-
sentation lends itself to be mapped to a graphical model which
provides means to quantify different topological aspects of
the connectome. Recent years have witnessed an exponen-
tial growth of studies on the applications of Graph Convo-
lutional Networks (GCNs) in neuroscience, in particular in
finding common patterns or biomarkers [4].

The GCN-based methods on fMRI data can be catego-
rized into two subgroups depending on the definition of nodes
in the graph, i.e., population graph-based models and brain
region graph-based models [35]]. These two graph models cor-
respond to two separate tasks for fMRI analysis, the node
classification tasks and graph classification tasks. In popu-
lation graph-based models, the nodes in the graph denote the
subjects and the edges represent the similarity between sub-
jects. PopulationGCN [6] involves representing populations
as a sparse graph in which nodes are associated with imaging
features and edge weights are constructed from phenotype in-
formation (e.g., age, gene, and sex of the subjects). One of
the methods, BrainGNN [4]], conducts an interpretable GCN
model on a brain region graph to understand which brain re-
gions are related to a specific neurological disorder.

Both of these graph-based models only used static func-
tional connectivity information, where pairwise correlations
between regions are calculated using the entire duration of the
fMRI scan. This neglects the fact that brain connectivity is
dynamic, with functional connectivity fluctuating over time.
Dynamic connectivity presents time-varying region connec-
tions as opposed to static connectivity, which is becoming the
frontier in fMRI data discovery [7].

A dynamic system estimation problem requires a dynamic
model estimation method. Sequential Monte Carlo (SMC)
provides a solution to dynamic system tracking problems by
estimating the hidden states of a dynamic system with only
partial and noisy observations and had important success in
various applications [8, 9]. A specific SMC methodology
called Particle Filter (PF) provides an extension to Kalman fil-
tering to nonlinear systems and possibly non-Gaussian time-
series and noise by employing a Monte Carlo sampling ap-
proach to iteratively track the posteriors of hidden variables
of a system of interest using observations under noise. PF was
applied to simulated recordings of electrical and neurovascu-
lar mediated hemodynamic activity, and the advantages of a
unified framework were shown [10]. Ancherbak et al. imple-
ment PF application on gene network dynamics [11]] and Am-
brosi et al. [12] apply PF and vector autoregressive model in
brain connectivity for dynamic modelling. Despite encourag-
ing results obtained with these methods, the graph topological
information is not utilised beyond a linear vector regression
model for hidden variables.



In this work, we provide an extension to the nonlinear
state evolution model while exploiting graph topological in-
formation by utilising a Graph Convolutional Network for
uncovering connectomes from fMRI images of the brain.
Our method, namely Sequential Monte Carlo Graph Convo-
lutional Network (SMC-GCN), applies the particle filter to
graphs with GCN backbone providing dynamic connectivity
robustness and avoiding spurious links. The experiment result
demonstrates that SMC-GCN achieves superior performance
compared to other dynamic connectivity methods for brain
disorder classification.

2. METHODOLOGY

2.1. Particle Filtering

Given the system model:

zo ~ po(z)
Ty = gt(xt_l,vt), fort Z 1, (1)
ot = he(zy,wy), fort > 1

where v; and w; are the system transition and observa-
tion noise, g; and h; are functions of system. Consider a
Markov process with the state transition probability given
by p(x¢|xi—1) where z; is the state at the timestamp ¢. For
every transition, we receive an observation o; described by
the observation probability of p(o;|x;). After a sequential
of observations o;—1.7 = {01, ...,0r}, particle filtering es-
timates the posterior probability p(zr|ot=1.7) of the state
x7 conditioned on the sequence of observations. Particles
are sequentially updated with three steps: First is the state
transition step with the previous posterior state and transition
model,

P($t|01:t—1) = /P($t|xt—1)l)($t—1\01:t—1)d5€t—1 2)

Then is the state update step with the current observation and
transition state,

plot|z)p(xi]o1:1—1)
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as well as the weight update following the proposal density
q(+) rather than the posterior observation p(-).

k k p(0t|$f)p(xf|$f_1)
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The last is the resampling step. To avoid the degeneracy prob-
lem, particles need to resample K from the discrete distribu-
tion of (w? ' 1) k=1:x and reset weights to uniform distribution
1/K.

2.2. Sequential Monte Carlo Graph Convolutional Net-
work

Most of the existing work utilizes linear state updates for uni-
form or multivariate variables. In this work, we apply particle
filtering on graphs where the observables are the node fea-
tures while the state variable is the graph structure. Unlike
classical particle filtering usage, we use a nonlinear model
for state changes for which we utilize a Graph Convolutional
Network. In this setup, since the state variables are graphs,
the particles become graphs themselves to which weights are
assigned. Rather than vectors, graphs are sampled forming
graph particles. The overall architecture is shown in Fig. [T}

2.2.1. Graph Construction

For initialization, graph particles are sampled from the ROI
time series with the length I' timestamps. Each graph parti-
cle X¥ = {A¥ FF} is constructed by the node of ROIs de-
fined by a specific atlas. The adjacency matrix A is computed
by partial correlations between ROIs for the sparse weighted
connection between nodes and the feature embeddings F' cor-
responding to each ROIs are the correlation computation be-
tween ROIs for further transition and observation steps.

To construct a sequence of dynamic graph observations,
we utilize the popular sliding window approach [13]. Given
a window length T, and stride S, the T = |Tp.x — ['/S]
windows are constructed. Each observation O; = {A;, F;}
has the same construction with states.

2.2.2. State Transition

We make the GCN model for state transition, motivated by
the Particle Filtering Network [14]] replacing the observation
model using CNN for visual localization. For the state transi-
tion step, each graph particle at timestamp ¢ — 1 will feed into
the GCN backbone as the next state estimation where the sys-
tem noise is simulated by different graph particles. It is the
prior calculation for the next timestamp ¢ state, the same as
the GCN learning and prediction. The state transition equa-
tion is shown as follows:

X}|0},_, = GCN(X_,|O%,_4;0) (5)

where 6 is the learnable parameter in GCN with shared pa-
rameters during 7" timestamp transition and observation. Any
specific convolution operation including Chebyshev polyno-
mials [15] or simple GCN convolution [16] can be applied to
the GCN model.

2.2.3. State Update

The state update step is the posterior calculation that the in-
put graph particle at the timestamp ¢ X f is updated by the
current observation O,. Firstly, the adjacency matrices are
aggregated by the top-K largest observation adjacency A =
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Fig. 1. Overall Architecture of SMC-GCN for Dynamic Brain Connectivity. (a) The fMRI time series is split into 7" time series by sliding

window approach [13] for graph construction. After that, K graph particles {X k

k=1:K
t=0:T

with initial particle weights w* = 1 /K are

constructed. (b) K graph particles are fed into SMC-GCN simultaneously for state transition acquiring priors for the next timestamp X f_,_l,
following the state observation by Ofﬂ and resampling over time. Each timestamp outputs the readout classification result.

AF(X) + TopK(A:(O)) and the feature matrices are modi-
fied to FF = FF(X) o FF(O) with the Hadamard product.
The state update aggregation is shown as follows:

Xt|01:t = AGGREGATE(Ot, Xt|01:t71) (6)

In the absence of intermediate probability density for
graph observation, we have used discriminative function
f(Oy, X¥) to up/down-weight the state. This function dis-
criminates the differences in node features between observa-
tions and predicted states. First, it aggregates the neighbour
features using K nearest neighbours and then makes the
comparison with the predicted state.

} @)

log p(Oy,,|XF) denote the log-likelihood of the measure-
ment at node v and time ¢. Since it is discriminatively trained
to optimize the end task, it performs the same function as
p(o|x) in particle filtering.

> logp(Oy | XT)

veVY

f(Ot,X,]f) = exp{

Wk = wfﬂf(ouxf)
¥ =
Ekwf—lf(otyxf)

The 3, wF | f(Oy, X¥) is the normalization term.
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2.2.4. Soft Resampling

For the particle filtering resampling step, the weights are
adjusted to the uniform distribution. Since this is a non-

differentiable operation, we adopt the differentiable soft-
resampling strategy [[14]. Specifically, we sample new par-
ticles from the convex combination of particle weights and
uniform distribution,

1k _ pt(k) — U)f
t @(k)  oawf+(1-a)l/K

where o € [0,1] is a tunable parameter. This differentiable
approximation provides non-zero gradients for the full parti-
cle chain with a trade-off between the desired sampling dis-
tribution (o« = 1) and the uniform sampling distribution (o« =
0).

©))

2.3. Graph Particle Classification

Lastly, we seek a flattening operation to preserve informa-
tion about the input graph in a fixed-size representation. Con-
cretely, to summarize the output graph of the convolutional
global pooling block, we use both mean and max pooling:

2k = mean(HY)||max (HT) (10)

where H is the hidden embeddings during each transition
GCN, with mean and max operating elementwisely, and ||
denotes concatenation. To retain information on a graph in
a vector, we concatenate both mean and max summarization
for a more informative graph-level representation. The final
prediction is submitted to an MLP to obtain the graph classi-
fication with particle weights as average results.

K

Jre =Y w"-MLP(zf)
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Table 1. Comparison of Cross-Validation Results on ABIDE Dataset

Method Accuracy Sensitivity Specificity AUC

SVM 61.87(£0.36) 65.74(£0.24) 69.54(£0.26) 67.74(£0.71)
RF 60.58(£0.58) 52.30(£0.91) 74.36(£0.83) 65.31(£0.24)
GCN 68.28(£0.84) 60.25(£0.63) 71.54(%0.46) 71.96(£0.53)
GAT 66.24(£0.73)  63.21(£4.76) 69.45(%£0.78) 69.87(£0.47)
BrainGNN | 70.66(£0.56) 67.30(£0.99) 71.98(£1.44) 72.71(£0.87)
SMC-GCN | 73.64(1+0.98) 70.06(£1.56) 73.48(4+1.28) 75.29(£1.01)

Cross-entropy loss is used in the final classification for all
timestamps 7'

3. EXPERIMENTS

3.1. Dataset

We apply our model to the large and challenging database for
binary classification tasks. The Autism Brain Imaging Data
Exchange (ABIDE) database [[17] aggregates data from dif-
ferent acquisition sites and openly shares functional MRI and
phenotypic data of 1112 subjects from across 20 international
sites. To ensure a fair comparison with the previous works,
we use the same preprocessing pipeline, the Configurable
Pipeline for the Analysis of Connectomes (C-PAC), with
band-pass filtering and no global signal regression. We take
the 871 subjects that passed manual quality control checks
from three expert human reviewers and further prune the data
with less than 160 time steps to a final total of 578 samples.
We use the Havard-Oxford (HO) atlas for ROI splitting. The
resulting class distribution is 287 subjects with ASD to 291
healthy controls.

3.2. Experiment Setting

We utilize a stratified 5-fold cross-validated training proce-
dure with a data split of 60% training, 20% validation, and
20% testing during hyperparameter tuning. The stratifica-
tion occurs over both class (ASD and HC) and site (one of
17 scanning locations), in an attempt to minimize the effects
of the different scanning parameters on our All training and
testing are conducted on one NVIDIA RTX 3090 GPU. We
use two layers of Chebyshev convolution with polynomials
K = 3. We train our model using the Adam optimizer with
the learning rate of 0.01 and the batch size is set to 12. The
sliding window size is 100 and the stride is fixed for times-
tamp 7" = 20. The number of particles is K = 30.

The 5-fold cross-validation results of our methods are
presented in Table 1, with classification performance com-
pared to previous results. The baseline models consist of
machine learning methods including SVM, Random Forest
(RF) and graph based approaches including GCN, Graph At-
tention Networks (GAT) [18]] and BrainGNN [4]. We achieve
superior performance among baseline models.
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Fig. 2. Number of Particles Performance

3.3. Ablation Study

We mainly focus on the number of particles ablation. For tra-
ditional particle filtering algorithms, particles sampled from
pdf perform better when the particle number explodes. So for
graph particles, we sample 10 to 50 particles in experiments
due to training graph size. The results are shown in Table 2,
with smooth growth of the accuracy and AUC score, while
the training time is doubled, compared to number = 10. Since
no thresholds appear when the particle number grows, we will
further investigate the efficiency with the growth of the parti-
cle number for sampling approximation.

4. CONCLUSION

In this work, we have extended the classical particle filtering
to a broader interpretation where the particles could corre-
spond to graphs or other data embedding structures. We have
further enriched the learning process with neural networks
leading to the the Sequential Monte Carlo Graph Convolu-
tional Network (SMC-GCN). This work has been motivated
by the need to follow brain dynamics and has been used to
model sequential connectivity in brain disorders. The method
demonstrates superior performance compared to the baseline
methods. Our future work will explore other applications of
the SMC-GCN model with other dynamic graph topologies
and its capacity for the growth of particles.
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