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ABSTRACT 
 
Facial expression recognition (FER) is a challenging topic in 
artificial intelligence. Recently, many researchers have 
attempted to introduce Vision Transformer (ViT) to the FER 
task. However, ViT cannot fully utilize emotional features 
extracted from raw images and requires a lot of computing 
resources. To overcome these problems, we propose a 
quaternion orthogonal transformer (QOT) for FER. Firstly, 
to reduce redundancy among features extracted from pre-
trained ResNet-50, we use the orthogonal loss to decompose 
and compact these features into three sets of orthogonal sub-
features. Secondly, three orthogonal sub-features are 
integrated into a quaternion matrix, which maintains the 
correlations between different orthogonal components. 
Finally, we develop a quaternion vision transformer (Q-ViT) 
for feature classification. The Q-ViT adopts quaternion 
operations instead of the original operations in ViT, which 
improves the final accuracies with fewer parameters. 
Experimental results on three in-the-wild FER datasets show 
that the proposed QOT outperforms several state-of-the-art 
models and reduces the computations. 
Codes are available at https://github.com/Gabrella/QOT. 
 
Index Terms—Facial expression recognition, Transformer, 
Quaternion, Orthogonal Feature 
 

1. INTRODUCTION 
 
In recent years, facial expression recognition (FER) has 
drawn much attention in artificial intelligence and computer 
vision. Improving the FER performance contributes to 
various applications such as psychological treatment and 
human-machine interaction. However, the current facial 
expression images are mainly collected from in-the-wild 
scenarios, which brings more challenges to FER than in-the-
lab. Besides, many related works [1-2] have extracted 
features by pre-trained backbones. However, these features 
usually contain much redundant information, which may 
have a negative effect on the final performance. 

To reduce the redundancy among features, Lin et al. [3] 
and Chen et al. [4] employed orthogonal loss to decompose 
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the features into two orthogonal sub-features for multi-task. 
Inspired by their works, we develop the orthogonal feature 
decomposition to map the extracted features into three sets 
of orthogonal sub-features.  

Moreover, some works [5-6] have shown that quaternion 
theory can explore internal correlations between different 
components and reduce the parameters. Gaudet et al. [7] and 
Zhou et al. [5] applied quaternion operations to deal with 
the multichannel images. However, these works [5-7] all 
focused on the correlations between RGB channels. To the 
best of our knowledge, we are the first work integrating 
orthogonal features into quaternion representation. This 
strategy can establish the transformation relationship among 
three orthogonal features as the related works [5-7]. Further, 
quaternion operations such as quaternion fully-connected 
layer and quaternion convolutional layer are able to process 
the orthogonal features holistically rather than separate them 
as independent components. The proposed quaternion 
orthogonal representation encodes the sub-features into a 
more efficient form for further processing. 

In 2021, Dosovitskiy et al. [8] introduced a vision 
transformer (ViT) for image recognition and achieved better 
performance than CNN. Since then, the ViT has been 
widely used to handle computer vision tasks. Many works 
[1], [9] also made efforts to apply ViT to perform the FER. 
However, these methods used the original ViT structure 
directly, which takes up lots of computing resources and 
needs to be further improved. To this end, we propose a 
quaternion vision transformer (Q-ViT) to categorize the 
quaternion orthogonal features into different emotions, 
which effectively improves the final accuracy and reduces 
the parameters and floating-point operations per second 
(FLOPs) compared to ViT.  

In this work, we propose a quaternion orthogonal 
transformer (QOT) for FER. It is evaluated on three in-the-
wild FER datasets and obtains competitive performance. 
Our contributions are summarized as follows: (i) We 
propose an orthogonal feature decomposition to map the 
extracted features to three orthogonal sub-features. (ii) We 
propose the quaternion orthogonal representation, which 
correlates the orthogonal sub-features by quaternion theory. 
(iii) We develop the Q-ViT, which applies quaternion 
operations to deal with quaternion features and reduces the 
computations. 



 
Fig. 1. The overview of the proposed QOT for FER. 

 
2. QUATERNION ORTHOGONAL TRANSFORMER 

 
2.1. Framework overview 
 
Fig. 1 shows the overview of the proposed QOT. The 
original images are fed into the Orthogonal Feature 
Decomposition module to obtain three sets of orthogonal 
sub-features. Then, three sets of orthogonal sub-features are 
integrated to quaternion matrix by Quaternion Orthogonal 
Representation. Finally, the Quaternion Vision Transformer 
processes these quaternion features and outputs the final 
emotional result. 
 
2.2. Orthogonal Feature Decomposition 
 
To reduce the redundancy among features, we develop the 
orthogonal feature decomposition to map the extracted 
features into three orthogonal sub-features. As shown in Fig. 
1, we first choose the pre-trained ResNet-50 as the backbone 
to extract emotional feature 7 7 2048F × ×∈  from a raw image. 
Then, we add three individual 1×1 convolutional layers at 
the end of the backbone to generate three compact features 

7 7 64iU × ×∈ , 1, 2,3i = . Next, we apply the Global Average 
Pooling (GAP) and SoftMax operations to transfer iU  to 
vectors 64iv ∈ . Finally, we introduce an orthogonal loss 

orthoL  to force the intermediate features iU  and iv  to be 
orthogonal. Moreover, the Cross-Entropy loss is combined 
with the orthogonal loss to fine-tune the modified backbone. 
The orthogonal loss and the combined loss are expressed as 
follows: 
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where n is the number of vectors. ⋅  denotes the absolute 
value operator and 2|| ||⋅  represents the L2 norm. λ  is the 
hyper-parameter that balances the two loss functions. 

2.3. Quaternion Orthogonal Representation 
 
Quaternion representation has been wildly used in color 
image processing. The existing works usually put RGB 
channels of an image into the imaginary parts of the 
quaternion matrix, which is expressed as follows: 
 

 ( , ) ( , ) ( , ) ( , )Q x y x y G x y B x yR i j k+ +=         (3) 
 
where ( , )R x y , ( , )G x y  and ( , )B x y  are the red, green, 
and blue channel values, respectively. 

However, few works try to integrate orthogonal features 
into quaternion representation. In our work, we develop the 
quaternion orthogonal representation to maintain the internal 
dependencies between different orthogonal features. To be 
specific, three orthogonal features are assigned to three 
imaginary parts of the quaternion matrix, respectively. 
Moreover, to balance three decomposed orthogonal features, 
the average features of orthogonal features are set as the real 
part of the quaternion matrix. Therefore, the quaternion 
orthogonal representation can be expressed as 
 

 1 2 3( , ) ( , ) ( , ) ( , ) ( , )x y x y x y x y x yQ Ave f f fi j k+ += +       (4) 
 
where 1( , )x yf , 2 ( , )f x y  and 3 ( , )f x y are three orthogonal 
features. ( , )Ave x y  is the average feature of them. The 
proposed quaternion orthogonal representation aims to 
correlate the orthogonal features and make the extracted 
information more efficient.  
 
2.4. Quaternion Vision Transformer 
 
In this work, we extend the ViT to the quaternion domain 
and develop a quaternion vision transformer (Q-ViT) for 
classification. As shown in Fig. 1, the overall framework of 
Q-ViT follows that of the ViT and it makes several crucial 
improvements on the key components. These improvements 
include channel patch encoder, quaternion multi-head self-



attention (Q-MHSA) and quaternion convolution feed-
forward network (QC-FFN).  

Different from the patch encoder in ViT, channel patch 
encoder splits input features into patches along the channel 
axis. For instance, the quaternion feature H W Cq × ×∈  is 
first reshaped to 2D patch ( )H W Cq ×⋅∈  and then encoded 
to C  number of flattening sequences H Wq ⋅ , where H  and 
W  are the height and width of the feature map, H W⋅  is 
the sequence length and C  is the channel number. In this 
work, H  and W  are set to 7 and C  is set to 64. Moreover, 
to retain the channel positional information, 1D position 
embedding H Wp ⋅  is added to H Wq ⋅ . It is worth noting that 

H Wq ⋅  is a quaternion sequence and H Wp ⋅ is also a 
quaternion number. Their output sequences are finally fed 
into the Q-MHSA. 

Q-MHSA is produced with quaternion operations, which 
handle quaternion features with a quarter of parameters 
compared to ordinary operations of ViT [8]. The quaternion 
operations mainly contain quaternion fully-connected layer 

( )QFC ⋅  and quaternion convolution layer ( )QConv ⋅ . The 
fully-connected layer is seen as a special one-dimensional 
convolutional layer. Both of them follow the rule of 
quaternion multiplication. For instance, the quaternion 
matrixes Q  is convolved with the quaternion kernel g  can 
be formulated as: 
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where ⊗  is the Hamilton product.  

In Q-MHSA, we first utilize three individual ( )QFC ⋅  to 
transform quaternion sequence q  to quaternion query Q , 
quaternion key K  and quaternion value V  as Eq. (6). 
Then, the self-attention is computed by Hamilton product 
instead of scaled dot product in ViT, which is shown as Eq. 
(7). The ComponentSoftmax operation means that Softmax 
operation on each component of the quaternion. Next, the 
self-attentions are concatenated and mapped to a multi-head 
quaternion matrix by ( )QFC ⋅ as Eq. (8). Finally, the multi-
head quaternion features from the Q-MHSA are sent to QC-
FFN for further processing. The whole computing process 
of Q-MHSA can be formulated as: 
 

( ) ( ) ( ); ;q vkQ QFC K QFC V QFCq q q= = =             (6) 
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( )1( ) 8,..., ,jMultiHead QFC Concat head head j= =     (8) 
 
where ( )Concat ⋅  represents the concatenation operation.  

To better capture local features, we also introduce the 
( )QConv ⋅  to QC-FFN. To be specific, the quaternion 

features are normalized by layer normalization and then fed 
into the QC-FFN. The QC-FFN consists of quaternion 
convolution, GELU activation and layer normalization. The 
computation of QC-FFN is as follows: 
 

( )X LayerNorm MultiHead=                                     (9) 
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where LayerNorm  represents layer normalization, QConv  
is quaternion convolution and GELU [10] is activation 
operation. X  and outX  are input and output of QC-FFN. 

In the classification part, the quaternion matrix outX  is 
reshaped and passed through the &Add LayerNorm . Next, 
the quaternion features are flattened into a 1D vector. It is 
connected to quaternion multi-layer perception (Q-MLP) 
and a fully-connected layer ( )FC ⋅  for final classification.  
 

3. EXPERIMENTS 
3.1. Dataset 
 
SFEW dataset [11] is comprised of static frames from 
different movies, which has been divided into training set 
(958 samples), validation set (436 samples) and test set (372 
samples). Because the labels of test set are not released, we 
evaluate the models on the validation set as other works. 
RAF-DB dataset [12] is comprised of facial expression 
images from the Internet. In our work, we choose the seven 
basic emotions including 12271 training samples and 3068 
test samples to evaluate the model. AffectNet dataset [13] 
contains 450000 annotated facial expression images. In this 
work, we only use the seven basic emotions including 28000 
training samples and 3500 test samples. Each emotion has 
4000 training samples and 500 testing samples.  
 
3.2. Implementation Details 
 
The QOT is implemented by Tensorflow on Python 3.8 
platform, using a computer server running Linux with Intel 
Core i7 3.4GHz CPU with an NVIDIA GeForce GTX 
1080Ti GPU. First, the ResNet-50 pre-trained on the MS-
Celeb-1M dataset is used to be the backbone and three 
individual convolutional layers are added at the end of this 
backbone. Next, the orthogonal loss and Cross-Entropy loss 
are combined to fine-tune the modified backbone and obtain 
three sets of orthogonal sub-features. These orthogonal 
features and their average feature are then integrated into a 
quaternion matrix. Finally, the quaternion matrixes are fed 
into Q-ViT. There are many hyperparameters in Q-ViT that 
need to be set. In this work, N in Q-ViT is set to 4, M in 
QC-FFN is set to 2 and L in Q-MLP is set to 2.  
 



3.3. Visualization Results 
 
To intuitively show the performance of QOT, we utilize the 
t-SNE method to visualize the experimental results. Fig. 2 
visualizes the latent features produced by the baseline 
ResNet-50 (row I) and QOT (row II). The different color 
dots represent different emotions. Obviously, QOT is more 
capable of separating the data into seven compact clusters 
than the baseline. Moreover, we also apply the confusion 
matrix to show the recognition results of each expression. 
Fig. 3 shows that QOT can predict most expressions except 
a few disgust and fear expressions. 
 

 
Fig. 2. T-SNE visualization results of baseline (row I) and QOT (row II). 

 

 
Fig. 3. Confusion matrixes of QOT on three datasets. 

 
3.4. Experimental Results 
 

To verify the effectiveness of QOT, we conduct ablation 
studies of the quaternion module, orthogonal features and 
ViT module, respectively. The accuracies, parameters and 
FLOPs of comparative models are shown in Table I.  First, 
we remove the quaternion module from QOT and construct 
an Ortho-ViT for ablation experiments. The comparative 
results show that quaternion module in QOT contributes to 
improving the accuracies by 1.83%, 0.89% and 0.11% on 
SFEW, RAF-DB and AffectNet, respectively. Moreover, 
quaternion modules in QOT also reduce the Params and 
FLOPs compared to Ortho-ViT. Then, we remove 
orthogonal features from QOT and construct Q-ViT for 
comparison. From the results, orthogonal features contribute 
to obtaining 27.39%, 14.12% and 14.83% higher accuracies 
on three datasets. Finally, we remove the ViT module from 
QOT and construct Ortho-CNN for comparison. Without the 

ViT module, the accuracies drop by 4.81%, 1.03% and 
1.89% on three datasets. Generally, the three modules all 
contribute greatly to the QOT. 
 

TABLE I. THE ABLATION STUDIES OF QOT. 
Method SFEW RAF-DB AffectNet Params FLOPs       
Q-ViT 35.14% 75.85% 52.54% 7.04M 10.53M       

Ortho-CNN 57.72% 88.94% 65.48% 23.90M 4.15G       
Ortho-ViT 60.70% 89.08% 67.26% 21.59M 21.58M       

QOT 62.53% 89.97% 67.37% 7.04M 10.53M       
 

We also compare QOT with several state-of-the-art 
methods on three datasets. The results are shown in Table II, 
which demonstrates that QOT generally achieves higher 
accuracies with fewer computation resources. Specifically, 
compared with FDRL [16] on SFEW, QOT achieves 0.37% 
higher accuracy. Although QOT doesn’t reach the minimum 
number of parameters, it still reduces the number of FLOPs 
and obtains the highest accuracy. Compared with VTFF [1], 
which also applies a ViT with CNN features, QOT obtains 
1.83% and 5.52% higher accuracies on RAF-DB and 
AffectNet. Compared with MA-Net [14], QOT gets 1.57% 
and 2.84% higher accuracy on RAF-DB and AffectNet. The 
comparison results demonstrate that QOT is cost-efficient 
both in performance and computation complexity. 
 

TABLE  II. ACCURACIES OF QOT AND OTHER STATE-OF-THE-ART METHODS 

Datasets Methods Year Accuracy Params FLOPs 

SFEW 

ViT [8] 2021 32.91% 21.59M 21.58M 
Baseline 2016 52.05% 23.52M 4.13G 

MA-Net [14] 2021 59.40% 50.54M 3.65G 
CS-GResNet [15] 2022 60.55% 2.80M 1.72G 

FDRL [16] 2021 62.16% - - 
QOT 2022 62.53% 7.04M 10.53M 

RAF-DB 

ViT [8] 2021 74.76% 21.59M 21.58M 
Baseline 2016 87.39% 23.52M 4.13G 

MAPNet [17] 2022 87.26% - - 
VTFF [1] 2022 88.14% 51.8M - 

MA-Net [14] 2021 88.40% 50.54M 3.65G 
QOT 2022 89.97% 7.04M 10.53M 

AffectNet 

ViT [8] 2021 51.14% 21.59M 21.58M 
Baseline 2016 64.37% 23.52M 4.13G 
VTFF [1] 2022 61.85% 51.8M - 

MAPNet [17] 2022 64.09% - - 
MA-Net [14] 2021 64.53% 50.54M 3.65G 

QOT 2022 67.37% 7.04M 10.53M 
 

4. CONCLUSION 
 

This paper proposes a quaternion orthogonal transformer 
(QOT) for FER in-the-wild. It proposes the orthogonal 
feature decomposition to extract features and decompose 
them into three orthogonal sub-features. Then, the 
quaternion orthogonal representation correlates the 
orthogonal features by quaternion theory. Finally, Q-ViT 
classifies quaternion features into emotions and reduces the 
computations. The QOT has achieved the SOTA accuracy 
with 62.53%, 89.97% and 67.37% on SFEW, RAF-DB and 
AffectNet, respectively. 
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