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Abstract—We propose an irregular repetition slotted
ALOHA (IRSA) based random-access protocol for the binary
adder channel (BAC). The BAC captures important physical-
layer concepts, such as packet generation, per-slot decoding,
and information rate, which are neglected in the commonly
considered collision channel model. We divide a frame into slots
and let users generate a packet, to be transmitted over a slot,
from a given codebook. In a state-of-the-art scheme proposed
by Paolini et al. (2022), the codebook is constructed as the
parity-check matrix of a BCH code. Here, we construct the
codebook from independent and identically distributed binary
symbols to obtain a random-coding achievability bound. Our
per-slot decoder progressively discards incompatible codewords
from a list of candidate codewords, and can be improved by
shrinking this list across iterations. In a regime of practical
interests, our scheme can resolve more colliding users in a slot
and thus achieves a higher average sum rate than the scheme
in Paolini et al. (2022).

I. INTRODUCTION

In recent years, modern random-access protocols [1] have

been developed based on packet-based coding at the users

and successive interference cancellation (SIC) decoding at

the receiver. In particular, irregular repetition slotted ALOHA

(IRSA) [2] employs packet repetitions: active users transmit

multiple copies of their packets in randomly chosen slots of a

fixed-length frame. This creates time diversity and boosts the

throughput with respect to slotted ALOHA. Modern random-

access protocols have been adopted in commercial satellite

communication systems, e.g., DVB-RCS2 [3]. They provide

a practical mean to achieve uncoordinated medium access in

internet-of-things (IoT) applications [4]. Under an “unsourced”

model where all users use the same codebook and the receiver

aims to return an unordered list of messages, slotted ALOHA

and IRSA exhibit a large energy-efficiency gap to random-

coding achievability bounds [5], [6]. This gap can be reduced

by combining IRSA with more advanced multi-user code

constructions and multi-user joint decoding; see, e.g., [7], [8].

Most works on IRSA assume a collision channel where suc-

cessful decoding is achieved only in slots containing a single

packet. This model enables a direct connection between SIC

decoding of IRSA and graph-based iterative erasure decoding

of low-density parity-check (LDPC) codes. This yields in turn

a tractable analysis of the packet loss rate (PLR) and leads

to the definition of a decoding threshold, i.e., the maximum
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average number of active users per slot such that vanishing

PLR can be achieved as the number of slots per frame goes

to infinity. However, this simple model does not capture some

physical-layer concepts such as how a packet is generated, how

packet decoding is performed in a slot, and the information

rate that can be achieved with vanishing PLR.

The binary adder channel (BAC), where users transmit

binary symbols and the receiver observes the noiseless sum

of these symbols, provides a more realistic setting to analyze

IRSA than the collision channel. The BAC resembles the

interference-limited regime where noise is negligible, and

captures the aforementioned physical-layer concepts. Insights

on designing codes for the two-user unsourced BAC were

reported in [9]. In [10], Bar-David, Plotnik, and Rom pro-

posed a coding scheme, which we shall refer to as BPR,

capable of correctly decoding T colliding codewords with

T known a priori. The codebook therein is constructed

as the parity-check matrix of a T -error-correcting binary

Bose–Chaudhuri–Hocquenghem (BCH) code. In [11], Paolini

et al. considered IRSA over the BAC and let users gener-

ate packets from the BPR codebook. A unit pilot symbol,

prepended to each codeword, allows the receiver to infer the

number of active users in a slot. The per-slot decoder can

resolve collisions of up to T users. The decoding threshold

of this scheme follows from that of IRSA with multi-packet

reception (MPR) [12].

In this paper, we propose a new IRSA-based scheme for

the BAC. As in [11], a unit pilot symbol is prepended to

each codeword. However, different from [11], we generate

the remaining symbols in an independent and identically

distributed (i.i.d.) manner from a Bernoulli distribution. This

results in a random-coding achievability bound. Our per-slot

decoder progressively discards incompatible codewords from

a candidate list. This leads to better MPR capability and

higher asymptotic achievable average sum rate than the scheme

in [11] in the regime where the number of bits per user

increases slowly with the number of users and the total number

of bits normalized by the slot length is close to 1. Our decoder

can be further improved by shrinking the candidate list across

iterations.

Notation: Lowercase boldface letters denote vectors. We

denote random quantities with nonitalic sans-serif letters, e.g.,

a scalar x and a vector xxx, and deterministic quantities with italic

letters, e.g., a scalar x and a vector x. Calligraphic uppercase

letters denote sets, [m : n] stands for the set {m,m+1, . . . , n},

[n] = [1 : n], and 1{·} is the indicator function. The Binomial
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distribution with parameters (n, p) is denoted by Bino(n, p).

II. SYSTEM MODEL

A. Random-Access Over the Binary Adder Channel

We consider a scenario with K users, each active with

probability µ. Hence, the number of active users, Ka, follows

a Bino(K,µ) distribution. The active users send encoded

messages to a receiver over n uses of a stationary memoryless

BAC. Let xxxk be the length-n binary coded sequence trans-

mitted by user k. The received signal is the noiseless sum

of the transmitted sequences, i.e., yyy=
∑

Ka

k=1 xxxk. The receiver

does not know Ka a priori and aims to recover all transmitted

messages.

B. Irregular Repetition Slotted ALOHA

In IRSA, each length-n frame is divided into N slots

and the users are frame- and slot-synchronous. A message is

encoded in a packet (also called codeword) transmitted over

a slot. An active user in a frame sends L identical replicas

of its packet in L slots chosen uniformly without replacement.

Here, L is called the degree of the transmitted packet or the

transmitting user. It follows a probability distribution {ΛL}
with ΛL = P [L = L], which we write using a polynomial

notation as Λ(x) =
∑

L ΛLx
L. IRSA was first proposed for

the collision channel, in which slots containing a single packet

(called singleton slots) always lead to successful decoding,

whereas slots containing multiple packets lead to decoding

failures [2]. For a packet c, both the users and the receiver

employ a common function h(c) to generate the position of

the replicas. See [11, App.] for details. The receiver employs

a SIC decoder that operates as follows. It seeks a singleton

slot, decodes the packet therein, then locates and removes its

replicas. These steps are repeated until no more singleton slots

can be found.

Consider a bipartite graph where variable nodes (VNs)

represent users, check nodes (CNs) represent slots, and VN k
is connected to CN s by an edge if user k transmits in

slot s. Let λL be the probability that an edge is connected

to a degree-L VN. We also use the polynomial notation

λ(x) =
∑

L λLx
L−1. It holds that λ(x) = Λ′(x)

Λ′(1) [13], where

Λ′(x) is the first-order derivative of Λ(x). SIC decoding can

be interpreted as erasure decoding on this bipartite graph:

an edge connected to a VN is revealed if at least another

edge connected to the same VN has been revealed; an edge

connected to a CN is revealed if all other edges connected to

the same CN have been revealed.

III. AN IRSA-BASED SCHEME FOR THE BAC

For the BAC, one can divide a length-n frame into N slots

(assuming that n divides N ) and directly apply the original

IRSA protocol. Define G = E [Ka] /N = µK/N as the

channel load. According to [2, Sec. IV], as K → ∞ and

N → ∞ while G is fixed, the PLR drops at a certain threshold

value as the channel load G increases. That is, all but a

vanishing fraction of the transmitted messages are successfully

decoded if the channel load is below a decoding threshold. The

decoding threshold G∗(Λ) is the maximum value of G such

that p > λ(1 − e−pGΛ′(1)), ∀p ∈ (0, 1]. We next propose a

more advanced IRSA-based scheme based on random coding

and MPR.

A. Encoder

Let n0 + 1 = n/N be the slot length. We generate

a codebook {cm}Mm=1 (M ≤ 2n0) where each codeword

contains a unit pilot symbol followed by n0 i.i.d. binary

symbols, each being 1 with probability ν. (The choice of ν will

be discussed in Remark 1.) An active user selects a codeword

and transmits L copies, with L ∼ Λ(x), of this codeword in L

slots chosen from the N available slots. We next propose two

SIC decoders.

B. Erasure Decoding With Multi-Packet Reception (ED-MPR)

This decoder can resolve collisions in nonsingleton slots.

In each iteration, it goes through all slots. Consider slot s.

The number of active users in this slot, Ks, is called the

slot degree. In the first channel use, the channel output is

identical to Ks, thus the receiver estimates perfectly Ks. The

receiver forms a list Ss of candidate codewords containing all

codewords that could have been transmitted in the slot.1 That

is, Ss = {i ∈ [M ] : s ∈ h(ci)}. Next, the receiver attempts

to resolve the slot by using a per-slot decoder with MPR

capability, which we describe in the next paragraph. If the

slot is resolved, i.e., all transmitted codewords are decoded, the

receiver removes the replicas of these codewords. These per-

slot-decoding and interference-cancellation steps are repeated

until no more resolvable slots can be found.

Per-Slot Decoder: If Ks > 0, the receiver goes through

the remaining channel uses with index j ∈ [2 : n0 + 1] of

the slot and progressively discards incompatible codewords

from the candidate list Ss. Let y(j) be the received signal in

the jth channel use of the slot and c(j) be the jth entry of

codeword c. For each channel use j, if y(j) = Ks, the decoder

discards from Ss all codewords c with c(j) = 0; similarly,

if y(j) = 0, the decoder discards from Ss all codewords

c with c(j) = 1. We use log2 K bits of each codeword to

represent the user’s signature,2 so that different users transmit

different codewords. Therefore, after the discarding process, if

Ks codewords survive, they must be the transmitted codewords

and the slot is resolved. An illustration of this per-slot decoder

is given in Fig. 1. Its MPR capability is analyzed in the

following theorem.

1The candidate lists {Ss}s∈[N] can be computed once and then stored

at the receiver. Storing {Ss}s∈[N], however, requires a large memory if

M is large. Alternatively, the bipartite graph, and thus {Ss}s∈[N], can be
constructed by the receiver and communicated to the users as assumed in [14].
This is possible in systems where users go through an access procedure to
join the network, after which the user population is known to the receiver. In
this case, the receiver can impose a graph structure that allows for efficient
storage.

2In the unsourced model, the user identification task is deferred to upper
layer protocols that spend at least log2 K bits in the overhead of each packet.
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Fig. 1: An example of the transmission and decoding in a slot s with
n0 = 4, Ks = 3, and Ss = {c1, c2, c3, c4, c5, c6}. The decoder
reads Ks from the first (top) entry of the received signal y. It discards
the codewords c3, c5, and c6 from the candidate list Ss since they
are incompatible with the third and/or the fifth entries of y. Only
Ks = 3 codewords remain in Ss. Thus, the slot is resolved.

Theorem 1 (MPR capability): The proposed per-slot decoder

can resolve a degree-U slot with probability

πU = E

[

(

1−
Λ′(1)

N
νAU (1− ν)A0

)M−U
]

(1)

where A0 and AU are random nonnegative integers with joint

probability mass function (PMF) given by

P [A0 = A0,AU = AU ] =
n0!

A0!AU !(n0 −A0 −AU )!

· (1− ν)UA0νUAU (1− (1− ν)U − νU )n0−A0−AU (2)

for A0 +AU ≤ n0. In particular, if ν = 0.5, it holds that

πU = E

[

(

1−
Λ′(1)

N
2−A

)M−U
]

(3)

≥ π′
U ,

(

1−
Λ′(1)

N

(

1− 2−U
)n0

)M−U

. (4)

with A ∼ Bino(n0, 2
1−U ).

Proof: See Appendix A.

Remark 1: Due to symmetry, assume that ν ≤ 0.5. Com-

pared to ν = 0.5, setting ν < 0.5 increases the chance that

all active users transmit 0 and thus creates more discarding

instances. This increases πU for large U . However, setting

ν < 0.5 also increases the probability 1 − ν that a nontrans-

mitted codeword is compatible with the channel output in a

channel use where the channel output is 0. This reduces πU

if U is small. We shall illustrate this trade-off in Section V.

We are interested in the asymptotic regime where M , K ,

N , and n0 all go to infinity and satisfy: i) µK/N = G where

G is the channel load as in conventional analyses of IRSA,

ii) n0 = β log2 M where β−1 = log2 M
n0

≤ 1 is the total

number of bits transmitted per channel use in a slot, and

iii) M = DK1/δ, δ ∈ (0, 1), so that the per-user payload

log2(M/K) is split into a fixed amount of log2 D bits and an

increasing amount of (1/δ − 1) log2 K bits as K grows. We

assume that the per-user payload increases with K because,

if the users transmit a fixed number of bits over an infinite

number of channel uses n0, they achieve zero PLR but also

zero information rate log2(M/K)/n0. We refer to the defined

regime as the (G,D, β, δ)-asymptotic regime. In this regime,

we characterize the MPR capability of the per-slot decoder

and the resulting decoding threshold for ν = 0.5 as follows.

Theorem 2 (Asymptotic lower bound on MPR capability

and decoding threshold): Let ν = 0.5. In the (G,D, β, δ)-
asymptotic regime, it holds that

lim
N→∞

πU ≥ π̄U

=











0, if U > − log2(1− 2−(1−δ)/β),
(1−2−U )β log2 D

exp(µ−1DGΛ′(1)) , if U = − log2(1− 2−(1−δ)/β),

1, if U < − log2(1− 2−(1−δ)/β).

(5)

Furthermore, the decoding threshold G∗(Λ) is lower bounded

by the largest value of G such that

p > λ

(

1−e−GΛ′(1)p

T̄ED-MPR−1
∑

u=0

π̄u+1

u!
(pGΛ′(1))u

)

, ∀p ∈ (0, 1],

(6)

where

T̄ED-MPR =
⌊

− log2
(

1− 2−(1−δ)/β
)⌋

(7)

is a lower bound on the maximum number of resolvable users

in a slot.

Proof: See Appendix B.

Remark 2: The regime of interest corresponds to a small

β, so that the users collectively transmit close to 1 bit per

channel use in a slot. Furthermore, aiming for massive IoT

applications where a large number of devices transmit small

data volumes [15], we are interested in δ close to 1, so that the

per-user payload increases slowly with the number of users.

Remark 3: In [11], Paolini, Valentini, Tralli, and Chiani

consider a similar IRSA-based scheme, which we shall refer

to as PVTC. While our random-coding scheme uses an i.i.d.

binary codebook, [11] employs the BPR codebook [10], which

is constructed as the parity-check matrix of a BCH code. This

construction applies to D = 1 and β being a positive integer. If

β is not an integer, one can apply the PVTC scheme designed

for ⌊β⌋. This allows the per-slot decoder to resolve slots of

degree up to TPVTC = ⌊β⌋, i.e., πU = 1{U ≤ ⌊β⌋}. Currently,

there is no efficient decoder that attempts to resolve slots of

degree higher than ⌊β⌋ for this scheme. The capability to do

so has not been discussed in [10], [11]. It is easy to show that










T̄ED-MPR > TPVTC, if δ > 1 + β log2(1− 2−⌊β⌋−1),

T̄ED-MPR < TPVTC, if δ < 1 + β log2(1− 2−⌊β⌋),

T̄ED-MPR = TPVTC, otherwise.

(8)

Therefore, if δ > 1+β log2(1−2−⌊β⌋−1), our per-slot decoder

resolves more colliding users than the PVTC scheme. This

corresponds to the regime of interest noted in Remark 2, i.e., β
is small and δ is close to 1, as we shall illustrate in Section V.

C. Erasure Decoding on the Full Graph (ED-FG)

In the decoder introduced in Section III-B, while decoding

in a slot s, the candidate lists of all other slots remain

unchanged. Notice that if a codeword c is incompatible with at

least one of the slots in h(c), it cannot have been transmitted,



and thus can be removed from Ss, ∀s ∈ h(c). Based on this

observation, we augment the per-slot discarding decoder as

follows. For each slot, after the discarding process, the decoder

removes each discarded codeword from the candidate lists for

all associated slots. In this way, we shrink the candidate list in

a slot, and thus increase the probability of resolving the slot

in later iterations.

Consider a full graph that contains all M codewords as VNs.

This is identical to the original graph if all codewords have

been transmitted. The decoder has knowledge of this full graph

but initially cannot distinguish between VNs corresponding

to transmitted and nontransmitted codewords. The aforemen-

tioned improved decoder can be equivalently interpreted as

erasure decoding on this full graph. Specifically, from the CN

perspective, an edge is revealed if the corresponding codeword

is either resolved (i.e., we know it has been transmitted) or it

is incompatible with the channel output (i.e., we know it has

not been transmitted). From the VN perspective, if an edge has

been revealed, we know whether the corresponding codeword

has been transmitted. Thus all other edges are also revealed.

IV. INFORMATION RATE

As log2 K bits are allocated for the user’s signature, the

information rate of each user is R = log2(M/K)
n bits per

channel use. The average sum rate is thus given by Rsum =
E [Ka]R = µK log2(M/K)

n . It follows from the frame structure

that

Rsum =
µK

N
·
log2(M/K)

1 + n0
. (9)

The next theorem characterizes the asymptotic average sum

rate achievable with vanishing PLR.

Theorem 3 (Achievable average sum rate): In the

(G,D, β, δ)-asymptotic regime, an IRSA-based scheme with

degree distribution Λ(x) and decoding threshold G∗(Λ) can

achieve the following average sum rate with vanishing PLR

lim
K→∞

Rsum =
1− δ

β
G, (10)

for every D > 0, β ≥ 1, δ ∈ (0, 1), and G ≤ G∗(Λ).
Proof: In the considered asymptotic regime, the average

sum rate is Rsum=G · log2(M/K)
1+n0

=G · (1/δ−1) log2 K+log2 D

1+ β
δ log2 K

→
1−δ
β G. By definition of the decoding threshold G∗(Λ), for any

channel load G ≤ G∗(Λ), the PLR vanishes.

V. NUMERICAL RESULTS

We numerically evaluate the random-coding bound on the

performance of our proposed decoders and compare it with

the original IRSA and the PVTC scheme [11]. We consider

D = 1 to enable a comparison with the PVTC scheme. In

Fig. 2, we plot the PLR (obtained via Monte-Carlo simulation)

achieved with these schemes as a function of the channel

load G = µK/N for ν = 0.5, N = 200, µ = 0.2, and

Λ(x) ∈ {x2, x3}. For our scheme, we implemented the per-slot

discarding decoder. We set M = K1/δ, n0 = β log2 M with
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Fig. 2: The PLR achieved with our scheme, original IRSA, and the
PVTC scheme for ν = 0.5, N = 200, µ = 0.2, µK/N = G,

M = K1/δ , and n0 = β log2 M with (β, δ) = (2, 0.9).

(β, δ) = (2, 0.9), and increase K . We observe that our pro-

posed scheme with ED-MPR (Section III-B) significantly out-

performs the original IRSA and the PVTC scheme. The PLR

can be further reduced notably with ED-FG (Section III-C).

For example, to achieve a PLR of 10−4 with Λ(x) = x2, our

scheme with ED-MPR and ED-FG can support around 52%
and 91% more users per slot in average, respectively, than the

PVTC scheme.

The advantage of our scheme over the PVTC scheme for

the considered setting comes from the capability to resolve

more colliding users. To illustrate this, we consider a similar

setting as in Fig. 2(a) with (β, δ,Λ(x)) = (2, 0.9, x2) and

plot in Fig. 3 the probability of resolving degree-U slots, πU ,

and its lower bound π′
U , given in Theorem 1. We assume that

µ−1G = 2.5, i.e., N = K/2.5. The PVTC scheme resolves

slots of degree up to β = 2. For finite K , our scheme with ED-

MPR resolves most of degree-2 slots, and can further resolve

slots of higher degrees. As K becomes large, with ν = 0.5,

π′
U converges to 1

{

U ≤ T̄ED-MPR

}

with T̄ED-MPR = 4 obtained

using (7). This agrees with Theorem 2. With ν = 0.1, our

scheme resolves high-degree slots with higher probability but

low-degree slots with lower probability. This is due to the

trade-off mentioned in Remark 1. For Λ(x) ∈ {x2, x3}, the

majority of the slots have low degree, thus ν = 0.5 leads to

lower PLR than ν 6= 0.5.

Hereafter, we focus on the (G,D, β, δ)-asymptotic. In this

regime, the PVTC scheme can resolve slots of degree up to

TPVTC = ⌊β⌋, while our scheme with ED-MPR guarantees to

resolve slots of degree up to T̄ED-MPR given in (7). In Fig. 4,

we depict the regions of (β, δ) where either TPVTC or T̄ED-MPR

is larger, or they are equal, as characterized in (8), for ν = 0.5.

We see that our scheme with ED-MPR resolves more colliding

users than the PVTC scheme if β is small and δ is close to

1. (We have seen in Fig. 3 that this is the case for (β, δ) =
(2, 0.9).) As noted in Remark 2, this is the regime of interest.

Finally, we compare in Fig. 5 the average sum rate R̄sum =
1−δ
β G∗(Λ) achievable with vanishing PLR in the (G,D, β, δ)-
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Fig. 5: The achievable average sum rate R̄sum = 1−δ
β

G∗(Λ) with

vanishing PLR in the (G,D, β, δ)-asymptotic regime with D = 1,
δ = 0.9, ν = 0.5, and Λ(x) = x2.

asymptotic regime by the original IRSA, the PVTC scheme,

and our scheme with ED-MPR. For our scheme, G∗(Λ) is

replaced by the lower bound in Theorem 2. We consider

δ = 0.9 and Λ(x) = x2. As expected, the original IRSA

with single-packet reception achieves the lowest sum rate. Our

scheme significantly outperforms the PVTC scheme when β
is small.

VI. CONCLUSION

We discussed an IRSA-based random-access scheme for the

binary adder channel. In a slot, the active users transmit a pilot

symbol followed by i.i.d. binary symbols. We proposed a per-

slot decoder that discards incompatible codewords from a list

of candidate codewords, and an improved decoder that shrinks

this list across iterations. Our scheme resolves more colliding

users per slot and thus achieves a higher sum rate than the

state-of-the-art scheme proposed in [11], in the regime where

the per-user payload increases slowly with the number of users,

and the total number of bits transmitted per channel use in a

slot is close to 1. A subject for future work is the asymptotic

analysis of the improved decoder.

APPENDIX A

PROOF OF THEOREM 1

Consider a degree-U slot. Let A0 and AU be the set of

channel uses in this slot where the channel output is 0 and

U , respectively. Let A0 = |A0| and AU = |AU |. After some

manipulations, we can derive the joint PMF of A0 and AU as

in (2).3 Let L0 be the number of nontransmitted codewords

associated with the slot. The slot is resolved if none of these

L0 nontransmitted codewords survive the discarding process. A

nontransmitted codeword survives if its entries in all positions

in A0 ∪AU agree with the channel outputs, i.e., the entries in

positions in AU are 1 and the entries in positions in A0 are 0.

The probability of this event is νAU (1 − ν)A0 . It follows that

the probability πU that the slot is resolved is

πU = EL0,A0,AU

[

(

1− νAU (1 − ν)A0
)L0

]

. (11)

To compute the PMF of L0, notice that a generic codeword is

associated with Λ′(1) slots in average. Thus the probability

that a generic codeword is associated with a given slot is

Λ′(1)/N . Therefore, the probability that L out of M − U
nontransmitted codewords are associated with a given slot is

given by

P [L0 = L] =

(

M − U

L

)(

Λ′(1)

N

)L(

1−
Λ′(1)

N

)M−U−L

.

It follows that

E
[

xL0
]

=
∑

L

(

M − U

L

)(

Λ′(1)

N
x

)L(

1−
Λ′(1)

N

)M−U−L

=
(

1−
Λ′(1)

N
(1− x)

)M−U

. (12)

Next, by setting x = 1−νAU (1−ν)A0 in (12) and by using (11),

we obtain (1). If ν = 0.5, (3) follows directly from (1) by

noting that A0 + AU ∼ Bino(n0, 2
1−U ). Finally, by applying

Jensen’s inequality, we lower-bound πU in (3) by π′
U =

(

1−
Λ′(1)
N E

[

2−A
])M−U

=
(

1− Λ′(1)
N (1 − 2−U )n0

)M−U
.

3We treat the codewords as independent although they are required to be
distinct. The probability of generating two identical codewords is (ν2 +(1−
ν)2)n0 , which is negligible for large n0.



APPENDIX B

PROOF OF THEOREM 2

We shall show that the lower bound π′
U converges to π̄U

in the (G,D, β, δ)-asymptotic regime. First, by applying the

inequalities z
1+z ≤ ln(1+z) ≤ z, ∀z > −1, with z = −Λ′(1)

N x,

and after some manipulations, we obtain that

exp

(

−M−U
N Λ′(1)x

1− Λ′(1)x/N

)

≤
(

1−
Λ′(1)

N
x
)M−U

≤ exp
(

−
M − U

N
Λ′(1)x

)

. (13)

Next, let µK/N = G, M = DK1/δ, and n0 = β log2 M .

Setting x = (1− 2−U )n0 in (13), we obtain

exp

(

−DK1/δ−U
µK/G Λ′(1)(1− 2−U )

β
δ log2 K+β log2 D

1− Λ′(1)(1− 2−U )
β
δ log2 K+β log2 DG/(µK)

)

≤ π′
U

≤ exp

(

−
DK1/δ − U

µK/G
Λ′(1)(1− 2−U )

β
δ log2 K+β log2 D

)

.

As K → ∞, one can verify that both the lower bound

and upper bound above converge to π̄U given in (5). We

conclude that π′
U → π̄U , and thus πU ≥ π̄U , in the considered

asymptotic regime.

It follows from Lemma 1 in Appendix C that for a scheme

that resolves a collision of U users with probability π′
U , the

decoding threshold is given by the largest value of G such

that (6) holds. Our scheme resolves collisions with higher

probability, thus achieves a lower PLR, and in turn a higher

decoding threshold.

APPENDIX C

IRSA WITH PROBABILISTIC MPR

The existing analyses of IRSA with MPR, such as [12], as-

sume that the receiver can resolve a collision with probability 1
if the number of colliding users is at most T , and the collision

is unresolved otherwise. With degree distribution Λ(x) = x,

this is also called T -fold slotted ALOHA [5]. In this appendix,

we extend the decoding threshold analysis of IRSA with MPR

in [12] to a more general setting where a collision of U users is

resolved with probability π
(N)
U that depends on the number of

slots per frame, N . This result can be of independent interest.

Lemma 1: Consider IRSA with N slots per frame, degree

distribution Λ(x), and MPR capability where a collision of U

users is resolved with probability π
(N)
U . Assume that π

(N)
U →

π̃U as N → ∞. The decoding threshold G∗ of this scheme is

the largest value of G such that

p > λ

(

1− e−GΛ′(1)p
T−1
∑

u=0

π̃u+1

u!
(pGΛ′(1))u

)

, ∀p ∈ (0, 1].

(14)

where λ(x) = Λ′(x)/Λ′(1) and T = max{u : π̃u > 0}.

Proof: Consider a degree-L VN. Let p be the probability

that an edge is unknown, given that each of the other L − 1
edges has been revealed with probability 1− q in the previous

step. Since the edge is revealed whenever at least one of the

other edges have been revealed, we have that p = qL−1. Next,

consider a degree-L CN. Here, q denotes the probability that

an edge is unknown, given that each of the other L− 1 edges

has been revealed with probability 1− p in the previous step.

By assumption, the edge is revealed with probability π
(N)
u+1 if

the number of unrevealed edges among the other L− 1 edges

is u. Therefore, 1 − q =
∑L−1

u=0 π
(N)
u+1

(

L−1
u

)

pu(1 − p)L−u−1.

According to a tree analysis argument, by averaging the

expressions of p and q over the edge distributions, we can

derive the evolution of the average erasure probabilities during

the i-th iteration as

pi =
∑

L

λLq
L−1
i−1 = λ(qi−1), (15)

qi =
∑

L

ρL

(

1−

L−1
∑

u=0

π
(N)
u+1

(

L− 1

u

)

pui (1− pi)
L−u−1

)

= 1−
∑

u : π
(N)
u+1>0

π
(N)
u+1

u!
pui ρ

(u)(1− pi), (16)

where ρL is the probability that an edge is connected to a

degree-L CN, ρ(x) =
∑

L ρLx
L−1, and ρ(u)(x) is the uth or-

der derivative of ρ(x). As N → ∞, ρ(x) = e−GΛ′(1)(1−x), and

it follows that ρ(u)(x) = (GΛ′(1))ue−GΛ′(1)(1−x). Further-

more, π
(N)
u+1 → π̃u+1. Therefore, with T = max{u : π̃u > 0},

qi = 1−

T−1
∑

u=0

π̃u+1

u!
pui (GΛ′(1))ue−GΛ′(1)pi (17)

= 1− e−GΛ′(1)pi

T−1
∑

u=0

π̃u+1

u!
(piGΛ′(1))u. (18)

By combining (15) and (18), we obtain

pi = λ

(

1− e−GΛ′(1)pi−1

T−1
∑

u=0

π̃u+1

u!
(pi−1GΛ′(1))u

)

. (19)

The decoding threshold G∗ is the largest value of G such that

{pi} is a decreasing sequence, i.e., pi−1 > pi for all i. The

inequality (14) ensures this property.
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