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Abstract

Many machine learning methods operate by inverting a neural network at inference
time, which has become a popular technique for solving inverse problems in com-
puter vision, robotics, and graphics. However, these methods often involve gradient
descent through a highly non-convex loss landscape, causing the optimization
process to be unstable and slow. We introduce a method that learns a loss landscape
where gradient descent is efficient, bringing massive improvement and acceleration
to the inversion process. We demonstrate this advantage on a number of methods
for both generative and discriminative tasks, including GAN inversion, adversarial
defense, and 3D human pose reconstruction.

1 Introduction

Original Loss Landscape Learned Loss Landscape

Figure 1: Loss Landscapes Comparison. The loss
landscape of optimization-based inference (OBI) is of-
ten highly non-convex. We propose to learn a smoother
loss landscape through a mapping network to accelerate
the optimization procedure. Plotted from real data.

Many inference problems in machine learn-
ing are formulated as inverting a forward
model F (x) by optimizing an objective
over the input space x. This approach,
which we term optimization-based infer-
ence (OBI), has traditionally been used to
solve a range of inverse problems in vision,
graphics, robotics, recommendation sys-
tems, and security [20, 20, 30, 17, 8, 49, 13].
Recently, neural networks have emerged as
the paramterization of choice for forward
models [35, 42, 1, 39, 61, 54, 11, 63], which
can be pretrained on large collections of
data, and inverted at testing time in order to
solve inference queries.

Optimization-based inference has a number
of advantages over feed-forward or encoder-based inference (EBI) for neural network inversion.
Since there is no encoder, OBI provides flexibility to adapt to new tasks, allowing one to define new
constraints into the objective during inference [11, 2]. When observations are partially missing, OBI
can adapt without additional training [39]. Moreover, OBI naturally supports generating multiple and
diverse hypotheses when there is uncertainty [32, 39]. Finally, OBI has intrinsic advantages for robust-
ness, both adapting to new data distributions as well as defending against adversarial examples [37].

However, the key bottleneck for OBI in practice is the computational efficiency and the speed of
inference. Feedforward models are fast because they only require a single forward pass of a neural
network, but OBI requires many (often hundreds) steps of optimization in order to obtain strong results
for one example. Forward models in OBI are often trained with generative or discriminative tasks, but
they are never trained for the purpose of performing gradient descent in the input space. Consequently,
the loss landscape is often highly non-convex, visualized in Fig. 1 (left). This non-convexity directly
causes the instability and inefficiency of the optimization.
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In this paper, we propose a new framework which allows for faster and stabler optimization for OBI.
Our key insight is to train a mapping network in the latent space that is aware of the optimization
procedure at inference time. Existing optimization over the input space converges slowly, because the
forward model is not designed for a test-time optimization procedure. By first collecting samples
from the optimization trajectories in the latent input space, and then training the mapping network to
minimize the loss on each sample of the trajectories, the mapping network will map each sample, even
on the beginning of the trajectory, to an input that minimizes the loss. In doing this, the landscape
becomes smoother, which allows even a few steps of optimization to obtain high quality results. We
achieve this with an coordinate descent algorithm that first collects samples from the optimization
trajectories in the new input space, then trains the mapping network to minimize the loss on each
sample of the trajectories.

Empirical experiments and visualizations on both generative and discriminative models show that our
method can significantly improve the convergence speed for optimization. We validate our approach
on a diverse set of computer vision tasks, where we achieve up to 34% gain on GAN inversion [1],
18% accuracy gain on adversarial defense [37], and up to 75% performance gain on 3D human pose
reconstruction [42]. In addition, our method converges an order of magnitude faster without loss in
absolute performance. As our approach does not require retraining of the forward model, it can be
compatible to all existing OBI methods with a differentiable forward model and objective function.

The primary contribution of this paper is an efficient optimization-based inference framework. In
Sec. 2, we survey the related literature to provide an overview of forward model inversion problem.
In Sec. 3, we formally define OBI, our method to learn a faster loss landscape for OBI, and a training
algorithm for better generalization and robustness. In Sec. 4, we experimentally study and analyze
the effectiveness of mapping network for OBI. We will release all code and models.

2 Related Work

The different approaches for inference with a neural network can be partitioned into either encoder-
based inference, which is feedforward, or optimization-based inference, which is iterative. We briefly
review these two approaches in the context of our work.

2.1 Encoder-based Inference

Encoder-based inference trains a neural network F to directly map from the output space to the input
space. Auto-encoder based approach [44] learns an encoder that map the input data to the latent
space. [47, 52, 56, 43] learn an encoder from the image to the latent space in GAN. Encoder based
inference requires training the encoder on the anticipated distribution in advance, which is often less
effective and can fail on unexpected samples [16, 25]. In addition, encoder-based method can only
produce one reconstruction for image inpainting [60], even if multiple outcomes can all be true given
the partial input.

2.2 Optimization-based Inference

OBI methods perform inference by solving an optimization problem with gradient-based methods
such as Stochastic Gradient Descent (SGD) [7] and Projected Gradient Descent (PGD) [36]. In
these cases, the objective function specifies the inference task. Besides these methods which use a
point estimate for the latent variable, one can estimate the posterior distribution of the latent variable
through Bayesian optimization, such as SGLD [57].

Gradient based optimization methods have been used to infer the latent code of query samples in
deep generative models like GANs [18] via GAN inversion [28, 23, 48, 66, 1, 3, 6, 21, 41]. Style
transfer relies on gradient based optimization to change the style of the input images [24]. It can also
create adversarial attacks that fool the classifier [14, 9, 38, 50]. Recently, backpropagation-based
optimization has shown to be effective in defending adversarial examples [37].

Recently, constrained optimization was popularized for text-to-image synthesis by [15, 33]. They
search in the latent space to produce an image that has the highest similarity with the given text as
measured by a multi-modal similarity model like CLIP [45]. Test-time constrained optimization is
also related to the idea of ‘prompt-tuning’ for large language models. [31] learn “soft prompts” to
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Figure 2: Method. The left and middle figure show the loss landscape for our latent space and the
original latent space, respectively. While walking to the optimal solution in a few steps is hard in X
space, it can be done in our learned loss landscapes.

condition frozen language models to perform specific downstream tasks. Soft prompts are learned
through backpropagation to incorporate signal from just a few labeled examples (few-shot learning).

A major challenge for optimization-based inference is how to perform efficient optimization in a
highly non-convex space. To address this, input convex model [5] was proposed so that gradient
descent can be performed in a convex space. [53] introduced a method to retrain the generative
model such as it learns a latent manifold that is easy to optimize. When the model cannot be changed
and retrained, bidirectional inference [54] and hybrid inference [66, 65] uses an encoder to provide
a good initialization for the optimization-based inference in a non-convex space. Our method does
not retrain the generative model, but maps the original latent space to a fast loss landscape.

3 Learning Landscapes for Fast Inference

We present our framework to learn a fast loss landscape for optimization-based inference (OBI)
methods. In Sec. 3.1, we will define OBI. In Sec. 3.2, we will introduce our framework as well as the
training objective. In Sec. 3.3, we will describe how to train our model with a coordinate descent
algorithm and an experience-replay buffer.

3.1 Optimization-based Inference

Let F (x) = ŷ be a differentiable forward model that generates an output ŷ given an input variable
x ∈ X . For example, ŷ might be an image, and x might be the latent variables for a generative model.
Given an observation y, the goal of OBI is to find the input x̂ ∈ X such that an objective function
L(ŷ, y) is minimized. Formally, we write this procedure as:

x̂ = argmin
x∈X

L(F (x), y) (1)

When the objective function L and the model F are both differentiable, we can perform the optimiza-
tion over input space X with gradient descent. However, the original forward model has not been
trained to perform gradient descent in the input space. Consequently, the loss landscape is highly
non-convex, making the convergence slow.

3.2 Remapping the Input Space

Instead of operating in the original input space X , we will create a new space Z where gradient
descent is efficient and converges in a small number of iterations. To parameterize Z, we will use a
neural network θ : Z → X that maps from the new space Z to the original space X . The learning
problem we need solve is to estimate the parameters of θ so that there is a short gradient descent path
in Z from the initialization to the solution. Fig. 2 shows an overview of this setup.

We formulate an objective by rolling out the gradient updates on z, where we write zt ← zt−1 +
λ ∂L
∂zt−1

as the tth update with a step size of λ. For gradient descent in space Z to be efficient, the goal
of our introduced θ is to move every step zt as close as possible to the global minima:

θ̂ = argmin
θ

E(z,y)

[
T∑
t=0

L(F (θ(zt)), y)

]
where zt =

{
0, t = 0

zt−1 + λ ∂L
∂zt−1

, t > 0
(2)
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Figure 3: Landscape Learn-
ing. An optimization trajec-
tory {zt}5t=0 collected is used
to train θ. zi that corresponds
to a higher Li will yield a
higher gradient when training
θ. Optimization over mul-
tiple steps along the trajec-
tory causes θ to learn patterns
of trajectories and create a
smoother loss landscape.

We visualize this process with a toy example in Fig. 3. Gradient updates on θ w.r.t multiple steps zt
along a trajectory will cause the loss value on each step to be lowered. By learning the parameters of
θ across many examples, θ can learn the patterns of optimization trajectories in X . For example, θ
can learn to estimate the step size in X and dynamically adjust it to each example. Moreover, θ can
learn to smooth non-convex regions in the landscape.

Once we obtain θ̂, we do inference on a new example y through the standard optimization-based
inference procedure, except in Z space now. Given the observation y, we find the corresponding x̂
through the optimization:

x̂ = θ̂(ẑ) where ẑ = argmin
z∈Z

L(F (θ̂(z)), y) (3)

When the inverse problem is under-constrained, one can infer multiple hypotheses for x̂ by repeating
the above optimization multiple times with a different random initialization for z0.

3.3 Training

We use coordinate descent (CD) in order to train θ jointly with estimating z for each example in the
training set. Specifically, we first fix parameters of θ and collect N optimization trajectories of z,
each with length T . Adopting the same terminology from the robotics community for learning on
continuous states [40], we term this a experience replay buffer. Subsequently, we randomly sample
data from this buffer and train θ to optimize the loss function. We alternate between these two steps
for a fixed number of iterations with gradient descent for both. Depending on the application, the
training time for θ varied from one hour to one day using a four GPU server. Please see the appendix
for more implementation details.

We also experimented with an online version of the training algorithm, where we update θ immediately
after one update to z. However, in our experiments, we found this resulted in a slower convergence
rate. We show these comparisons in the ablation experiments.

4 Experiments

The goal of our experiments is to analyze how well our proposed method can be applied to various
existing OBI methods to improve the optimization efficiency. We demonstrate application of our
method to three diverse OBI methods in computer vision, including both generative models and
discriminative models. For each OBI method, the inference-time optimization objective of the
baseline and ours can be written as:

Baseline: x̂ = min
x∈X

L(F (x), y), Ours: ẑ = min
z∈Z

L(F (θ(z)), y) (4)

Next, we provide the specific implementation of the loss term L for each application, along with
quantitative and qualitative results. We also perform experiments to understand the loss landscape in
Sec. 4.4 and perform ablations on different parts of our approach in Sec. 4.5.

4.1 GAN Inversion

We first validate our method on StyleGAN inversion [1]. We take a pretrained generator of StyleGAN
[27] denoted as F . Let y be an observed image whose input variable we are recovering, we optimize
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(a) GAN Inversion
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Figure 4: Optimization Performance. We visualize the trends of optimization performance com-
pared with the baseline. In GAN Inversion (Left), we evaluate all models on test splits of CelebA-HQ
[26] and LSUN-cat [62] (OOD) with loss defined in Eq. 5. Since encoder-based inference doesn’t
involve optimization, we use a flat line to represent it. We perform 2000 steps of gradient descent for
all models except encoder-based models. In 3D Human Pose Reconstruction (Right), we evaluate
all models on test splits of GRAB [51] and PROX [19] (OOD) with loss defined in Eq. 6. We perform
200 steps of gradient descent for all models. For each step, we plot the average loss value of test splits.

the objective of Eq. 4 where the loss can be written as,

L(ŷ, y) = Llpips(ŷ, y) + ||ŷ − y||22 (5)

where Llpips is a perceptual similarity loss introduced in [64], ŷ = F (x̂) for baseline and
ŷ = F (θ(ẑ)) for ours. We train θ on the train split of CelebA-HQ[26] dataset and evaluate on
CelebA-HQ validation split for in-distribution experiments and LSUN-Cat[62] for distribution
shifting (OOD) experiments. We compare the results from our method against the state-of-the-art
encoder-based GAN inversion model [47].

Quantitative Results. From Fig. 4a, we see that in all experiments, optimization in our space Z
consistently outperforms the baseline from the first optimization step to after convergence. This gap
in performance is even larger when evaluated on OOD data. This suggests that the improvement
in performance is not caused by memorizing the training data. Note that our image reconstruction
performance after only 2 steps of optimization is able to outperform or be on-par with the baseline at
20 steps of optimization, resulting in a 10-fold improvement in efficiency. Even after convergence
(after 2000 optimization steps), our reconstruction performance improves over the baseline by 15%
for in-distribution evaluation and 10% for OOD evaluation. When compared with encoder-based
GAN inversion [47], our method achieves better reconstruction after 11 steps of optimization for
in-distribution data and 3 steps for OOD data.

Qualitative Results. From Fig. 8, we can see that our method already shows improvements on
in-distribution data - it can almost perfectly reconstruct details like fine hair strands, the cap on the
person’s head, the object in the person’s mouth as well-as the text on it. Interestingly, our method is
able to discover and reconstruct latents for cats while the encoder-based model fails miserably as
shown in Fig 8. The performance on OOD data truly highlights the benefits of our method. We also
visualize how the face generations evolve over the process of optimization in Fig. 5. We can see that
in just 4 steps, our method is already able to reconstruct coarse features such as face orientation, skin
tone and hair color, while the baseline has hardly deviated from the initialization in regard to any of
these features. Further, in Fig. 7 we visualize reconstructions from partial observations where only
the center of the face (row 1) or everything other than the mouth (row 2) is visible. We can see a
variety of feasible possibilities for the hidden regions (e.g., different hairstyles, lip colors, expressions,
etc) showcasing the diversity of the new latent space.

4.2 3D Human Pose Reconstruction

In addition to image generation, our framework also works for 3D reconstruction. For this, we use
VPoser [42] – a variational autoencoder [29] that has learnt a pose prior over body pose. VPoser
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Figure 5: Optimization Process for GAN Inversion. Comparing optimization process of our
method and the baseline in order to reconstruct the ground truth image. Left shows the results from
the baseline where optimization is done in the original input space X . Middle shows the results
from our method where optimization is done in our space Z. Right column contains the ground truth
image to each example. Each row corresponds to the same example.

Ground Truth

Step 0 Step 2 Step 4 Step 6Step 0 Step 2 Step 4 Step 6

OursVPoser

Figure 6: Optimization Process for 3D Human Pose Reconstruction. Results shown are for
out-of-distribution PROX dataset for sitting (Top) and standing (Bottom) poses.

was trained on SMPL-X body pose parameters y ∈ R63 obtained by applying MoSh [34] on three
publicly available human motion capture datasets: CMU [12], training set of Human3.6M [22], and
the PosePrior dataset [4].

We take a pretrained VPoser decoder denoted as F . Our trained mapping network θ projects a vector
from the new input space z ∈ Z to a vector in the original VPoser decoder’s input space x ∈ X .
Similar to GAN Inversion, we optimize the objective of Eq. 4, where the loss function between
predicted and ground truth pose parameters is,

L(ŷ, y) = ||ŷ − y||22 (6)

where ŷ = F (x̂) for the baseline and ŷ = F (θ(ẑ)) for ours. For training θ, we use the GRAB
dataset [51] which contains poses of humans interacting with everyday objects. We construct splits
for novel video sequences – thus the test split will contain a seen human subject but a potentially
unseen pose / demonstration by that subject. We evaluate on this test split for in-distribution
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Partial GT Reconstruction from Random Initializations

Figure 7: Diversity of Masked Reconstructions. We visualize reconstructions for partially observ-
able inputs from random initializations. The masked regions are not considered for loss computation,
i.e., the gradient is set to be zero. By optimizing only on the partial observation, we obtain diverse,
feasible solutions for the hidden regions.

experiments and on the PROX dataset [19] for OOD experiments, which contains poses of humans
interacting in 3D scenes (e.g., living room, office, etc).

Quantitative Results. For SMPL-X human pose reconstruction experiment, the results follow a
similar trend as GAN inversion, with massive improvement in both convergence speed and final
loss values after convergence (see Fig. 4b). Our method outperforms the baseline by 19% for
in-distribution evaluation and 11% for OOD evaluation.

Qualitative Results. In Fig. 6 we visualize how the human pose reconstructions evolve over the
process of optimization. Here, we observe that the reconstructions from steps 0 to 6 of the baseline
are similar for both examples. On the other hand, our method caters to fast convergence for the
varying examples, highlighting the general, yet efficient properties of our search space. Further, in
Fig. 7 we visualize reconstructions from partial observations where the only joints visible are that of
the upper body (row 3) or lower body (row 4). We obtain a wide range of feasible possibilities for the
hidden joints demonstrating the diversity of the latent space.

4.3 Defending Adversarial Attacks

Our method is also applicable to discriminative models. A state-of-the-art defense [37] for adversarial
attack optimizes the self-supervision task at inference time, such that the model can dynamically
restore the corrupted structure from the input image for robust inference. Following the existing
algorithm implementation, we optimize the input image via our method by minimizing the following
discriminative loss function:

L(F (r+ a), y) = L(F (θ(z) + a), y) = Ei,j
[
−y(s)ij log

exp(cos(fi, fj))∑
k exp(cos(fi, fk))

]
+ λ||θ(z)||22, (7)

where a is the adversarial attacks that we aim to defend against, r = θ(z) is our additive defense
vector to optimize, fi are the contrastive features produced by the neural network F from the ith

image instance, and y
(s)
ij is the indicator for the positive pairs and negative pairs.

After obtaining the mapping network θ and the input variable ẑ, the prediction is ŷ = F ′(a+ θ(z)),
where F ′ is the classification model. Note that the a self-supervision loss is optimized as a proxy

7



Optimization Steps
No 1 step 3 steps 5 steps

Model Type Optimization Baseline Ours Baseline Ours Baseline Ours

RO [46] 31.99 34.62 44.65 36.77 44.23 38.38 43.43
AWP [58] 35.61 39.54 51.39 42.81 51.67 44.96 51.05
MART [55] 35.66 39.77 51.77 42.50 51.77 45.42 50.96
SemiSL [10] 29.78 34.53 52.11 37.27 51.23 40.93 49.83

Table 1: Experiment on improving adversarial robust accuracy. Our goal is to defend 200 steps of
L2 = 256/255 norm bounded attack [36], where the attack’s step size is 64/255. Our baseline is the
SOTA test-time optimization-based defense [37], which minimizes the loss of self-supervision task.

In-Distribution Out-of-Distribution

Encoder Ours Ground Truth Encoder Ours Ground Truth

Figure 8: Comparison Against Encoder-Based Inference. Left shows the results on the test split
of CelebA-HQ; Right shows the results on the LSUN-cat dataset.

for increasing the robust classification accuracy. In addition, we add a L2 norm decay term for the
generated noise z to avoid generating reversal vector that is too large.

Quantitative Results. We evaluate our method on four popular pretrained robust models [46, 55,
58, 10] on CIFAR-10 dataset. The results in [37] require many steps to optimize the objective to
improve the adversarial robustness, which slows down the inference by hundreds of times than the
original forward pass. Ideally, we desire test-time optimization that can adapt to the attacked images
in just one step, causing the minimal delay at inference time. In Table 1, our method outperforms
the gradient descent method in [37] by up to 18% robust accuracy using a single step, providing
a real-time robust inference method. Note that our method converges after 1 step of optimization,
demonstrating the effectiveness of our approach.

4.4 Loss Landscape

To understand the underlying cause of the significant improvement in optimization brought by our
mapping network θ, we visualize in Fig. 9 the loss landscape for performing optimization in the
original input space X , and our projected space Z. To generate this visualization, we first perform 20
steps of optimization on the validation dataset to collect a set of recovered latents. We then perform
principle component analysis (PCA) on these recovered latents to obtain two principle directions.
Finally, for individual examples, we evaluate the loss for vertices on a meshgrid spanned by the two
principle directions.

From the visualization, we can see that the loss landscapes of the baseline are highly non-convex
and contain points whose loss are significantly higher than its neighboring regions, while our loss
landscapes are significantly smoother, with the “spikes” removed. Besides, our loss landscapes also
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Figure 9: Visualizing Loss Landscape (Uncurated). Visualizing the loss landscape of StyleGAN
inversion spanned by two principle directions. Top row shows 4 examples of the loss landscapes
corresponding to our space Z. Bottom row shows the loss landscapes corresponding to the original
input space X for the same 4 examples.

Number of Steps Full Model Without CD and Buffer Random θ Baseline

In-distribution 20 3.082 3.583 4.417 4.456
OOD 20 4.932 5.127 5.135 5.292
In-distribution 200 1.964 3.034 2.723 2.569
OOD 200 3.498 4.756 3.823 4.617

Table 2: Ablation Study on Mapping Network. Number of Steps indicates the number of optimiza-
tion steps performed during inference. Evaluation metric consistent with 4.

tend to be steeper than the baseline ones. These two phenomena directly cause our method to perform
gradient descent faster and stabler.

4.5 Ablation Study

In this section, we present an ablation study by removing the proposed coordinate descent scheme
and the experience replay buffer. We also compare against a θ that is randomly initialized. From
Table 2, we discovered that for in-distribution, coordinate descent and training of theta improves
the optimziation performance by 14% and 30% respectively. Such gap becomes 35% and 28% for
evaluation on 200 steps. For OOD data, the advantage is furthered enlarged as shown in Table 2.

One surprising result we discovered experimentally is that OBI under a randomly initialized mapping
network θ consistently outperforms the baseline. We believe this is due to the fact that adding a
Gaussian distribution to an underlying latent distribution of StyleGAN is beneficial in smoothing out
loss landscape, making it easier to perform OBI. Similar random projection can also be found in [59].

5 Conclusion

This paper presents a method to accelerate optimization-based inference to invert a forward model.
We propose an approach that learns a new space that is easier than the original input space to optimize
with gradient descent at testing time. Our experiments and analysis on three different applications
in computer vision have shown that by learning this mapping function, optimization becomes more
efficient and generalizes better to out-of-distribution data. Through quantitative and qualitative
analysis, we found that such improvement in optimization performance comes from a smoother loss
landscape. Since optimization-based inference has many advantages over encoder-based inference,
we believe methods to accelerate them will have many impacts in a variety of applications.

Acknowledgements: This research is based on work partially supported by the NSF NRI Award
#1925157, NSF STC LEAP, the DARPA MCS program, and the DARPA CCU program. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the sponsors.
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A Algorithm

Accompanying Section 3.3, we provide a detailed coordinate ascent training algorithm with an
experience replay buffer:

Algorithm 1 Learning Mapping Network θ

1: Input: Ground truth y, step size λz and λθ, number of buffers B, number of data samples in a
buffer N , number of optimization steps for each sample T , loss function L, and forward model
F .

2: Output: Learned mapping network θ
3: Randomly initialize a mapping network θ
4: for b = 1, ..., B do
5: Initialize Experience Replay Buffer [{zt,i}Tt=1]

N
i=1

6: for i = 1, ..., N do
7: z0 ← 0
8: for t = 1, ..., T do
9: l← L(F (θ(z)))

10: zt ← zt−1 + λz
∂l

∂zt−1

11: zt,i ← zt
12: end for
13: end for
14: for j = 1, ..., T ·N do
15: Randomly sample z from previously collected buffer
16: l← L(F (θ(z)))
17: θj ← θj−1 + λθ

∂L
∂θj−1

18: end for
19: end for
20: Return θ

B Implementation Details

We will released all code, models, and data. Here we describe our implementation details for the
above algorithm.

B.1 GAN Inversion

Mapping network θ is implemented with a 3-layer MLP. The input dimension (dimension of Z space)
is the same as the output dimension (dimension of X space). For each intermediate output, we apply
a Leaky ReLu function with a negative slope of 0.2 as an activation function. Hidden dimension of
the MLP is 1024. For optimizing z (collecting optimization trajectories), we use an Adam optimizer
with a learning rate of 0.1. For training the mapping network θ, we use an AdamW optimizer with a
weight decay of 0.1 with a learning rate of 0.0001. We used the following parameter set, T = 20,
N = 256, B = 500. For baseline, we use the implementation of [1] provided here. The pretrained
weights of StyleGAN converted to PyTorch are also provided in the same link.

B.2 3D Human Pose Reconstruction

Mapping network θ is implemented with a 3-layer MLP. The input dimension is 128 (dimension
of Z) and the output dimension is 32 (dimension of X). For each intermediate output, we apply a
Leaky ReLu function with a negative slope of 0.2 as an activation function. Hidden dimension of
the MLP is 512. For optimizing z (collecting optimization trajectories), we use an Adam optimizer
with a learning rate of 0.1. For training the mapping network θ, we use an AdamW optimizer with
a weight decay of 0.1 and a learning rate of 0.005. We use the following parameter set, T = 200,
N = 40960, B = 500. For a fair comparison with the baseline, we tried a range of learning rate for
x ∈ X {0.5, 0.1, 0.05, 0.01, 0.001} and select the best performing configuration for comparison.

14

https://github.com/zaidbhat1234/Image2StyleGAN


B.3 Defending Adversarial Attacks

Mapping network θ is implemented with a 3-layer MLP. The input dimension is 3072 (dimension of
Z) and the output dimension is 3072 (dimension of X). For each intermediate output, we apply a
Leaky ReLu function with a negative slope of 0.2 as an activation function. Hidden dimension of
the MLP is 3072. For optimizing z (collecting optimization trajectories), we use an Adam optimizer
with learning rate 0.2/255. For training the mapping network θ, we use an AdamW optimizer with
learning rate of 0.0001 and a weight decay of 0.1. We use the following parameter set, T = 5,
N = 5120, B = 70. For the regularization term λ that constrains the amplitude of the additive
defense vector, we use λ = 1. We use random start instead of zero start for initializing the attack
reversal vector.

C Limitations

Optimization-based inference has intrinsic advantages to robustness, accuracy, and flexibility, which
comes at the cost of additional computation time during inference. Encoder-based methods will
usually perform faster because they only require a single forward pass of a neural network, while our
approach requires several computational passes in both the forward and backward (gradient) direction.
We believe that for many applications this trade-off will be desirable, especially in cases where
accuracy is more important than speed. Our approach aims to minimize this additional computational
overhead brought by optimization-based inference, and our experiments on multiple datasets show
the significant computational savings compared to other optimization-based inference methods.

Unlike many other optimization-based inference algorithms, our approach also requires a training
step in order to fit a suitable landscape, which requires both training time and training data. However,
we believe this overhead is insignificant for most applications and we have designed our neural
networks to be efficient. For example, θ is relatively lightweight, making its training time fairly
marginal compared to the training of the forward model F . In all our experiments, we found that the
training time of θ is orders of magnitudes faster than the training time for F .

D Societal Impact

Optimization-based inference has a wide variety of applications broadly in computer vision, robotics,
natural language processing, assistive technology, security, and healthcare. Since our proposed
method provides significant acceleration to these inference techniques, we expect our work to find
positive impact in these applications, where speed, accuracy, and robustness are often critical.

Our algorithm is compatible with many different types of forward models – as long as a gradient can
be calculated – including neural networks. However, learned forward models are known to acquire
and contain biases from the original dataset. Our approach will also inherit the same biases. While
our approach to inference offers some advantages to out-of-distribution data, it does not mitigate
nor correct biases. The datasets in our experiments are likely not representative of the population,
and consequently also contain biases. We acknowledge these limitations, and applications of this
method should be mindful of these limitations, especially in potentially sensitive scenarios. As the
community continues to address biases in models and datasets, our method can be applied to these
models in the future too.
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