
GlueStick: Robust Image Matching by Sticking Points and Lines Together

Rémi Pautrat* 1 Iago Suárez* 2 Yifan Yu1 Marc Pollefeys1,3 Viktor Larsson4

1 Department of Computer Science, ETH Zurich 2 Qualcomm XR Labs Europe
3 Microsoft Mixed Reality and AI Zurich lab 4 Lund University

Abstract

Line segments are powerful features complementary to
points. They offer structural cues, robust to drastic view-
point and illumination changes, and can be present even in
texture-less areas. However, describing and matching them
is more challenging compared to points due to partial oc-
clusions, lack of texture, or repetitiveness. This paper intro-
duces a new matching paradigm, where points, lines, and
their descriptors are unified into a single wireframe struc-
ture. We propose GlueStick, a deep matching Graph Neu-
ral Network (GNN) that takes two wireframes from differ-
ent images and leverages the connectivity information be-
tween nodes to better glue them together. In addition to
the increased efficiency brought by the joint matching, we
also demonstrate a large boost of performance when lever-
aging the complementary nature of these two features in
a single architecture. We show that our matching strat-
egy outperforms the state-of-the-art approaches indepen-
dently matching line segments and points for a wide vari-
ety of datasets and tasks. The code is available at https:
//github.com/cvg/GlueStick.

1. Introduction

Line segments are high-level geometric structures use-
ful in a wide range of computer vision tasks such as
SLAM [20, 88, 48], pose estimation [75], construction mon-
itoring [28, 4], and 3D reconstruction [23, 81, 87]. Lines
are ubiquitous in structured scenes and offer stronger con-
straints than feature points. In particular, lines shine in low-
textured scenes where point-based approaches struggle.

However, compared to keypoints, line segments are often
poorly localized in the image and suffer from lower repeata-
bility. Line segments are also more challenging to describe
since they can cover a large spatial extent in the image and
suffer from occlusions and perspective effects due to view-
point changes. Furthermore, lines often appear as part of
repetitive structures in human-made environments, making

* Authors contributed equally.

(a
)S

up
er

G
lu

e
[5

4]
(b

)O
ur

s
(c

)L
in

eT
R

[8
0]

(d
)O

ur
s

Figure 1: Joint matching of points and lines. Match-
ing feature points often fails in textureless areas (a), while
current line matching methods struggle with large view-
point changes (c). We propose GlueStick, a network jointly
matching points and lines. While none of the methods were
trained on the rotations of (a)(b), line matches can guide
GlueStick while SuperGlue [54] fails, and vice-versa in (d)
where points can complement the line matching. For clarity
reasons, we show here only the correct matches.

classical descriptor-based matching fail. For this reason,
typical matching heuristics such as mutual nearest neighbor
and Lowe’s ratio test [38] are often less effective for lines.

Recently, deep learning has ushered in a new paradigm
for feature point matching using Graph Neural Networks
(GNNs) [54, 64]. This new approach bypasses the need

ar
X

iv
:2

30
4.

02
00

8v
3

 [
cs

.C
V

]
 2

0
O

ct
 2

02
3

https://github.com/cvg/GlueStick
https://github.com/cvg/GlueStick

for matching heuristics or even outlier removal techniques,
thanks to the high precision of the predicted matches [54].
A key component to achieve this is to leverage the posi-
tional encoding of keypoints directly in the network and
to let it combine visual features with geometric informa-
tion [54, 64, 66, 26]. Letting the GNN reason with all fea-
tures simultaneously brings in additional context and can
disambiguate repetitive structures (Fig. 1).

Even though recent advances leveraged similar ideas to
enrich line descriptors [80], directly transferring this GNN
approach to line matching is not trivial. The large ex-
tent of lines and their lack of repeatability make it hard
to find a good feature representation for them. In this pa-
per, we take inspiration from SuperGlue [54] and introduce
GlueStick, to jointly match keypoints and line segments.
Our goal is to leverage their complementary nature in the
matching process. By processing them together in a sin-
gle GNN, the network can learn to resolve ambiguous line
matches by considering nearby distinctive keypoints, and
vice versa. We propose to leverage the connectivity be-
tween points and lines via a unified wireframe structure, ef-
fectively replacing previous handcrafted heuristics for line
matching [82, 56, 35] by a data-driven approach.

Our network takes as input sparse keypoints, lines, and
their descriptors extracted from an image pair, and outputs
a set of locally discriminative descriptors enriched with the
context from all features in both images, before establish-
ing the final matches. Inside the network, keypoints and
line endpoints are represented as nodes of a wireframe.
The network is composed of self-attention layers between
nodes, cross-attention layers exchanging information across
the two images, and a new line message passing module
enabling communication between neighboring nodes of the
wireframe. After the GNN, points and lines are split into
two separate matching matrices and a dual-softmax is used
to find the final assignment of the features. Overall, our
contributions are as follows:

1. We replace heuristic geometric strategies for line
matching with a data-driven approach, by jointly
matching points and lines within a single network.

2. We offer a novel architecture exploiting the local con-
nectivity of the features within an image.

3. We experimentally show large improvements of our
method over previous state-of-the-art point and line
matchers on a wide range of datasets and tasks.

2. Related Work
Line segment detection is a classical problem in com-

puter vision that can be traced back to the Hough Trans-
form [24] and its improvements [41, 19, 84]. Local line seg-
ment detectors [21, 2, 63, 62, 46] are efficient alternatives
that fit segments to local regions with a prominent gradient.

With more computational cost, deep line segment detectors
offer better detection results, in particular for specialized
tasks such as wireframe parsing [25, 86, 77, 83, 78, 76]. In
this work, we train our network with the LSD detector [21],
due to its high accuracy and versatility.

Line segment description is classically performed by
using the image gradients to describe the texture around
each segment locally [70, 72, 82, 69, 35]. More recently,
deep learning models have emerged. Early works mimic
keypoint patch descriptors by extracting a patch around
each line and describing it via a neural network [32, 31, 1].
An alternative approach is to sample points along the line
and to describe them separately [67, 47]. SOLD2 [47] intro-
duces a joint detection and description of line segments, as
well as a mechanism to handle the partial occlusion of lines
during matching. In this paper, we use the (point-based)
SuperPoint [16] dense descriptors, interpolated at the two
line endpoints. While these might not capture the full vi-
sual context of the line, having comparable descriptors for
both points and lines is crucial in our network.

Since descriptor-based matching for line segments is
generally more difficult than for points, several methods in
the literature complemented the descriptor matching with
geometric scene information [34]: global rotation between
images [82]; properties of pairs of matched lines like the
angle between segments, intersection ratios or projection
ratios [82, 70]; line-point invariants [18]; cross-ratio [50]
or consistency with a fundamental matrix estimated from
points [56, 35]. However, estimating the fundamental ma-
trix to perform matching generates a chicken-and-egg prob-
lem, and these heuristics often fail in realistic scenarios. For
this reason, recent point matchers are learning the geometric
relationships between the points of two images, thus implic-
itly learning the underlying epipolar geometry [54].

Matching with transformers. SuperGlue [54] uses a
GNN to process keypoints and their descriptors from two
input images, adding a positional encoding to better disam-
biguate repetitive patterns. Several variations of this method
have been proposed later, with higher efficiency [12, 58] and
with dense predictions [64, 66, 26, 71, 13, 17].

WGLSM [39] combines a CNN and a GNN to match
line segments, but without feature points. In the GNN, each
line is represented with a single node, and the assignation
is solved using a single Sinkhorn matrix. LineTR [80] pro-
poses to use attention inside points sampled for each line to
deal with the line scale changes and occlusions. HDPL [22]
mixes points and lines in the same GNN, each line being
represented with a single node in the GNN. They only use a
single Sinkhorn matrix, allowing point-line assignments.

In contrast to these methods, we model each line segment
endpoint as a separate node in the GNN. The endpoints are,
in most cases, consistent with the underlying epipolar ge-
ometry, allowing the network to leverage both points and

2

GNNFront-End

D
u
a
l-S

o
ftm

a
x

Im
a
g
e

Line
Message
Passing

Node
Cross-

Attention

Node
Self-

Attention

||

Bilinear
Sampling

||

Bilinear
Sampling

Dense
Descriptors

Keypoints

Line
Endpoints

Merge
Points

Wireframe
Connectivity

Node
Locations

Node
Descriptors

Connect Line
Endpoints

Build Wireframe

x2 xL

Im
a
g
e

Figure 2: Overview of GlueStick. Keypoints, dense descriptors, and lines are extracted from two images, and unified into
two wireframes (front-end). We then enrich the features of the nodes of both wireframes via self, line, and cross-attention
inside a Graph Neural Network (GNN). Finally, points and lines are matched separately via two dual-softmax modules.

lines to disambiguate the matching. In our ablation study,
we show that matching points and line endpoints together
already greatly improves the matching performance.

3. GlueStick

In this section, we show how to combine points and lines
within the same network. The motivation for this is that
each feature can leverage cues from the neighbouring fea-
tures to improve the matching performance. For example,
a line using the surrounding points or vice-versa. Further-
more, the network can automatically discover combinations
of points and lines that are useful for matching, instead of
heuristically mining them as in previous works [35]. Our
architecture, displayed in Fig. 2, consists in three blocks:

1. Front-End: We extract points, lines, and their de-
scriptors with common feature detectors, then combine
them into a single wireframe (Sec. 3.1).

2. GNN: The goal of this block, described in Sec. 3.2, is
to combine the visual and spatial information of each
feature, and to allow interaction between all features,
regardless of their original receptive field. The output
is a set of updated descriptors, enriched by the knowl-
edge of relevant features within and across images, as
well as within nodes connected by a line segment.

3. Dual-Softmax: The final assignation is solved sepa-
rately for points and lines, using two independent dual-
softmax modules [51, 64], as detailed in Sec. 3.3.

3.1. From Points and Lines to Wireframes

The input to our GNN is a set of points, their associ-
ated local descriptors, and a connectivity matrix indicating
which points are connected by a line. The first step is to
establish this connectivity and build the wireframe graph.

We use SuperPoint (SP) [16] to predict keypoints and
a dense descriptor map, and we detect segments with the
general-purpose LSD [21] detector. Keypoints located close

to line endpoints are redundant, so we remove SP keypoints
that are within a small distance d to existing line endpoints.

Furthermore, line segments generated by generic detec-
tors such as LSD are usually disconnected. To give more
structure to the input and to explicitly encourage the net-
work to reason in terms of line connectivity, we merge
close-by endpoints, again with a distance threshold d. This
process lifts the unstructured line cloud into an intercon-
nected wireframe. After this step, each keypoint and line
endpoint is represented as a node in the wireframe, with
different connectivities for each node: 0 for an isolated key-
point, 2 for a corner, etc. We then interpolate the dense
SP feature map at the node locations to equip them with a
visual descriptor. Note that this endpoint merging is mod-
ifying the position of the endpoints but not the number of
lines. For downstream tasks requiring high precision, we
use the original position of the endpoints, to keep the sub-
pixel accuracy of the original detector.

3.2. Attention-based Graph Neural Network (GNN)

A key part of our method is the GNN, which aggre-
gates visual and spatial information to predict a set of en-
riched feature descriptors, that are used to establish the fi-
nal matches via descriptor similarity. Within the network,
each node (either a keypoint, or a line endpoint) is asso-
ciated with an initial descriptor that is based on the visual
appearance as well as the position in the image.

Let A and B be a pair of images. For each image, the
inputs of the network are: a set of nodes p, with coordi-
nates (xp, yp), confidence score sp and visual descriptors
dvis ∈ RD; and a set of line segments l defined as a pair of
nodes (xp, yp) and (x′p, y′p), and with a line score sl. This
line score can be any value returned by the line detector in-
dicating the quality of the line, or simply the length of the
line to put more emphasis on longer lines. The node score
sp is either coming from the keypoint detector, or is equal
to sl when it is a line endpoint.
Positional and Directional Encoding. The first step is to
encode the spatial information of each feature. To this end,

3

GNN xL softmax(·)

so
ftm

a
x
(·)

so
ftm

a
x
(·)

softmax(·)

Lin
e
a
r

Point
matches

Line
matches

Lin
e
a
r

Line Message Passing

+

N
o
d
e
 C

ro
ss-A

tte
n
tio

n

a
v
e
ra

g
e
(·)

Wireframe
Connectivity

Nodes
Location

Nodes
Descriptors

N
o
d
e
 S

e
lf-A

tte
n
tio

n

Figure 3: Graph Neural Network (GNN) architecture. Node features of the wireframe are enriched via several communi-
cation layers. Our Line Message Passing exchanges information between neighboring nodes that are connected together.

we learn two positional encoders (PEp and PEe) with Multi-
layer Perceptron (MLP) that generate a spatial descriptor
dp for each node and an edge-descriptor de for each line
segment originating from this node. A node with connectiv-
ity 3 will for instance get assigned one dp and 3 de (one for
each outgoing line segment). The edge-positional encoding
takes as additional information the offset to the other end-
point of its line segment, allowing it to have access to the
angle and length of the line segment:

dp = PEp([xp, yp, sp]
⊤)

de = PEe([xp, yp, x
′
p − xp, y

′
p − yp, sl]

⊤).
(1)

The spatial-descriptor dp is used to initialize the node fea-
tures, while the edge-descriptors de are used in the line
message passing (see below).
Network Architecture. Our GNN is a complete graph with
three types of undirected edges (See Fig. 2). Self-attention
edges Eself, connect nodes of one image with all the nodes
of the same image. Line edges Eline, connect nodes that
are endpoints of the same line. Cross attention edges Ecross,
connect nodes of one image to the other image nodes.

A node i is initially assigned a feature descriptor fusing
its spatial and visual information: (0)xi = dp

i + dvis
i . This

node descriptor is then iteratively enriched and refined with
the context of all the other descriptors inL iterations of Self,
Line, and Cross layers. Finally, the features of each node
are linearly projected to obtain the output features. The next
paragraphs detail each type of layer.

Self and Cross Layers. Eself and Ecross edges are similarly
defined as in [54]. The m-th feature update is defined by a
residual message passing:

(m+1)xi =
(m)xi + ψm

([
(m)xi||am((m)xi; E)

])
, (2)

where || denotes concatenation, the function ψm is modeled
with an MLP, and am((m)xi; E) is the Multi-Head Attention

mechanism from [68] applied to the set of edges E :

am(xi; E) =
∑

j:(i,j)∈E

softmaxj

(
q⊤
i kj√
D

)
vj , (3)

where the keys kj , queries qi, and values vj are computed
as linear projections of the node features xi and xj . In self-
attention layers, kj and vj will come from the same image,
whereas in cross-attention they will come from the other im-
age. Self-attention allows the network to leverage the con-
text of the full image, and to resolve repetitive structures.
Cross-attention moves corresponding features closer in de-
scriptor space and can search for similar node structures in
the other image to fully leverage spatial information.

Line Message Passing. We describe here our novel Line
Message Passing (LMP) transferring information across the
line edges Eline. By connecting line segments in a wireframe
structure, we allow the i-th node to leverage the local edge
connectivity to the set Ni of neighboring nodes, and to look
for the same type of connectivities in the other image. This
mechanism is enabled by the m-th LMP update which ag-
gregates the information contained in the two endpoint fea-
tures (m)xi and (m)xj and the corresponding endpoint po-
sitional encoding de

j :

(m+1)xi =
(m)xi +

∑
j∈Ni

ϕm([(m)xi||(m)xj ||de
j])

|Ni|
, (4)

where ϕm denotes again an MLP and |Ni| is the number of
neighbors of node i. We use here a simple average across
all neighbors. An attention mechanism could also have been
applied, but we empirically found that it only increased the
complexity of the model, for no gain in performance.

3.3. Dual-Softmax for Points and Lines

Recent works [51, 64] show that dual-softmax approach
obtains similar or better results than the usual Sinkhorn al-
gorithm [60, 54], being also more efficient. We observed

4

Figure 4: Line matching with order-agnostic endpoints.
We consider the maximum score assignment between the
two possible configurations of endpoint matching.

similar behaviour in our experiments and opted for the dual-
softmax assignment. GlueStick provides both point and line
matches in a single forward pass. We match nodes and
lines separately through two independent dual-softmax as-
signments. On the one hand, all nodes (keypoints and line
endpoints) are matched against each other using the final
features output by the GNN: fAi ∈ RD for node i in image
A and fBj ∈ RD for node j in image B. Each element of
the assignment matrix Sp is formed by:

Sp
ij = (fAi)⊤fBj . (5)

We add a dustbin row and column at the end of Sp, filled
with a learnable parameter representing the threshold below
which a node is considered unmatched, as [54] also does.
We then apply softmax on all rows and all columns, and
compute their geometric mean:

Sp
final =

√
softmaxrow(Sp)⊙ softmaxcol(Sp). (6)

Where ⊙ means the element-wise product. Given this final
assignation matrix, we keep the mutual nearest neighbors
that have a matching score above a given threshold η.

On the other hand, lines are matched in a similar way,
except that each line is represented by its two endpoints fea-
tures fs ∈ RD and fe ∈ RD. To make the matching agnostic
of the endpoint ordering, we take the maximum of the two
configurations in the line assignation matrix (see Fig. 4):

Sl
ij = max

((
fAs

)⊤
fBs +

(
fAe

)⊤
fBe ,(

fAs
)⊤

fBe +
(
fAe

)⊤
fBs

)
.

(7)

Finally, we get Sl
final by applying the dual-softmax of Eq. 6

and match lines with mutual nearest neighbors.

3.4. Ground Truth Generation

A challenging task in line matching is to generate high-
quality labels handling line fragmentation, assignation, and
partial visibility. To obtain the Ground Truth (GT) point
matches Mp, we use the same methodology as in [54]. In a

nutshell, we leverage camera poses and depth to re-project
keypoints from one image to another, and we add a new
match whenever a re-projection falls within a small neigh-
borhood of an existing keypoint.

For lines, we also leverage depth, but with a more com-
plex setup. Let images A and B contain M and N line seg-
ments indexed by A := {1, . . . ,M} and B := {1, . . . , N}.
We will denote the generated GT line matches Ml =
{(i, j)} ⊂ A × B. For each segment lAi detected on image
A, we sample K points

[
xA
i,1, . . . ,x

A
i,K

]
along it. A point is

considered invalid if it has either no depth or its projection
xB
i in the other image has no depth. A point is also con-

sidered non-valid if it is occluded. We detect these cases by
comparing the depth d(Xi) of the unprojection Xi in 3D of
point xA

i with its expected depth dB in image B:

Occluded =
|d(Xi)− dB |

dB
> Tocclusion, (8)

where Tocclusion defines the tolerance threshold of depth vari-
ations. Segments with more than 50% of invalid points are
labeled as IGNORE and will not affect the loss function.

Next, we generate a closeness matrix CB ∈ NM×N

keeping track of how many sampled points of line i in A
are reprojected close to a line j in B:

CB
i,j =

K∑
k=1

1
(
valid(xB

i,k) ∧ d⊥
(
xB
i,k, l

B
j

)
< Tdist

)
, (9)

where 1(·) is the indicator function and d⊥(·, ·) the perpen-
dicular point-line distance. Tdist is a distance threshold in
pixels that controls how demanding the GT is. CA is de-
fined analogously, and thus, we can define a cost matrix C
with a minimum overlap threshold Toverl:

Ci,j =

{
∞, if CA

i,j < Toverl ∨CB
j,i < Toverl

−CA
i,jC

B
j,i, otherwise.

(10)

Last, we solve the assignation problem defined by C with
the Hungarian algorithm [29]. The resulting assignations
(i, j) ∈ Ml are the MATCHED features, whereas all the
valid entries I ⊆ A and J ⊆ B that were not assigned are
labeled as UNMATCHED.

3.5. Loss Function

A classical approach for descriptor learning is to ap-
ply the triplet-ranking-loss [6, 61] with hard negative min-
ing [43]. However, repetitive structures are often present
along lines, which may produce detrimental hard negatives.
We resort instead to minimizing the negative log-likelihood
of point and line assignments Sp

final and Sl
final:

L =
NLL(Sp

final,Mp) + NLL(Sl
final,Ml)

2
, (11)

5

where for an assignment matrix A and GT matches M:

NLL(A,M) =−
∑

(i,j)∈M

logAi,j (12)

−
∑
i∈I

logAi,N+1 −
∑
j∈J

logAM+1,j .

4. Experiments
We pre-train our model on pairs of images synthetically

warped by a homography, using the one million distrac-
tor images of [49], increasing the difficulty of the homo-
graphies gradually and speeding up convergence. We then
fine-tune the model on MegaDepth [36] that contains 195
scenes of outdoor landmarks. We select image pairs with a
minimum overlap of 10% of 3D points and resize each to
640 × 640 px. The wireframe threshold d to merge nodes
is set to 3 pixels, and to generate the GT: Tocclusion = 0.1,
Tdist = 5, and Toverl = 0.2. Our GNN contains 9 blocks of
[self-attention, line message passing, cross-attention], and
the matching threshold is set to η = 0.2. Features inside
the network have size D = 256. We optimize our network
using Adam with learning rate 10−4 for the homography
pre-training and 10−5 for MegaDepth. To limit computa-
tional cost during training, we set a maximum number of
1000 keypoints and 250 line segments per image. Training
takes 10 days on 2 NVIDIA RTX2080 GPUs.

4.1. Baselines

In the following, we compare GlueStick with several
state-of-the-art line matchers: the handcrafted Line Band
Descriptor (LBD)* [82], the self-supervised SOLD2 [47],
the transformer-based LineTR [80], and the learned
L2D2 [1] descriptors. SOLD2 uses its own detector since
it is integrated with the descriptor. For all the other
methods we use LSD [21]. We also compare to PL-
Loc [80], the point-line matcher combining SuperPoint [16]
and LineTR [80]. Whenever possible, we also compare
to two additional point-based matchers: ClusterGNN [58]†

and LoFTR [64].

4.2. Ablation Study

Line segments are especially challenging to match in 3D
due to occlusions, background changes, or partial visibil-
ity. We advocate for a proper evaluation of line matching
covering these scenarios. Our ablation study is thus led on
the ETH3D [57] dataset, an indoor-outdoor dataset of mul-
tiple scenes with GT LiDAR depth, and poses. We use the
13 scenes of the training set of the high-resolution multi-
view images (downsampled by a factor of 8) , and sample
all pairs of images with at least 500 GT keypoints in com-
mon, similarly as in [47]. We apply the same methodology

*We use the authors’ code instead of the binary version from OpenCV.
†We reuse the numbers of the paper as the code is not publicly available.

P L W LMP AP (↑)

SG + Endpts ✓ ✓ 54.5
SG + W ✓ ✓ ✓ 67.6
SG + LMP ✓ ✓ ✓ 69.9
GlueStick-L ✓ ✓ ✓ 64.0
GlueStick ✓ ✓ ✓ ✓ 72.6

(a) Ablation study

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

LBD: 26.8
SOLD2: 32.8
LineTR: 37.4
L2D2: 14.2
GlueStick: 72.6

(b) Comparison to SOTA

Figure 5: Ablation study and comparison to the state of
the art (SOTA) on the ETH3D dataset [57]. We compute
the line matching precision-recall curves and average preci-
sion (AP), displayed in the legend. (a) We compare several
variations of our method using points (P), lines (L), wire-
frame connectivity (W), and Line Message Passing (LMP).
(b) GlueStick surpasses all SOTA line matchers.

as in Sec. 3.4 to compute the GT line matches. Given this
GT, we can compute the precision-recall curve of the line
matching by ordering lines by decreasing matching score.

We compare several variations of our method in Fig. 5a.
SG + Endpts refers to the pre-trained outdoor model of Su-
perGlue [54] to match the line endpoints, and use our pro-
posed line association of Sec. 3.3 agnostic to the ordering
of endpoints. SG + W is similar, but with our proposed
wireframe preprocessing connecting line segments together.
SG + LMP represents a SuperGlue backbone with the ad-
dition of our Line Message Passing (LMP), but no wire-
frame preprocessing. Finally, GlueStick-L is our proposed
model without keypoints and matching lines only. The av-
erage precision (AP) shows that both the wireframe pre-
processing and LMP bring a large boost of performance
on the SuperGlue baseline. Their combination - our pro-
posed model GlueStick - obtains the highest performance.
GlueStick-L loses performance, but remains competitive,
showing that the line matching is not relying only on points.

4.3. Line Matching Evaluation on ETH3D

We compare our method with previous state-of-the-art
line matchers on the ETH3D dataset [57], and show the
blatant superiority of GlueStick in Fig. 5b. It recovers al-
most 80% of the GT line matches, whereas the best pre-
vious methods do not manage to reach 50% of recall. At
equivalent recalls, it outperforms the previous best method,
LineTR, by more than 15% in precision, and is almost dou-
bling the AP. This major improvement is due to the possi-
bility of leveraging points in the matching, and to the rich
signal provided by the wireframe structure. Note that Glue-
Stick without points (in Fig. 5a), is still significantly bet-
ter than other pure line matchers. It obtains good results
thanks to the inclusion of a graph matching strategy com-
bining appearance similarities and geometric consistencies.
Despite having powerful descriptors, L2D2 and SOLD2 ob-

6

tain worse results, because they neither use scene points nor
geometric consistency between matches.

In terms of run time, GlueStick is also competitive. It
runs in 258 ms on average on the images of ETH3D (around
775×515 pixels), which is similar to the execution time of
SuperGlue of 235 ms. Other line matchers are even slower,
with 419 ms for SOLD2 and 304 ms for LineTR.

4.4. Homography Estimation

We evaluate our method on the task of homography es-
timation. While HPatches [5] is the most popular dataset,
it is now very saturated [54, 64], and contains few struc-
tural lines that would be necessary to properly estimate a
homography. Thus, lines do not help much to improve the
current performance obtained by point methods. Never-
theless, GlueStick ranks first among all considered meth-
ods on HPatches. We show these results in the supple-
mentary material. To circumvent this, we implement two
meaningful experiments evaluating the homography estima-
tion task in real-world scenarios: relative pose from planar
surfaces (Sec. 4.4.1), and relative pose with pure rotations
(Sec. 4.4.2).

4.4.1 Dominant Plane on ScanNet

ScanNet [14] is a large-scale RGB-D indoor dataset with
GT camera poses, which pictures some hard cases for fea-
ture points with low texture, and where lines are expected
to provide better constraints. We use the same test set of
1500 images as in [54], where the overlap between im-
age pairs is computed from GT poses and depth. For each
image pair, we match them with different state-of-the-art
point, line, and point-line matchers. We then use a hybrid
RANSAC [55, 10] to estimate a homography from these
feature correspondences. This is a common way to ini-
tialize SLAM systems [44]. Since the GT homography is
not known, we rely on the GT relative pose to evaluate the
quality of the retrieved homography, as was done in previ-
ous works [7]. The relative pose corresponding to the pre-
dicted homography can be extracted using [40]. We report
the pose error, computed as the maximum of the angular
error in translation and rotation [79, 8, 54], as well as the
corresponding pose AUC at error thresholds 10 / 20 / 30 de-
grees error. Note that this evaluation is valid regardless of
the plane selected by each method to estimate the homogra-
phy: all planes lead to the same relative pose.

The results are shown in Tab. 1. It can be seen first that
GlueStick matching points only obtains better results than
SuperGlue. This shows that our re-trained network is able
to match and even outperform SuperGlue network for key-
point matching. Secondly, when matching lines only, Glue-
Stick significantly exceeds the previous state of the art for
line matching. This demonstrates that leveraging context

Pose error (↓) Pose AUC (↑)

Points
SuperGlue (SG) [54] 18.1 15.6 / 29.8 / 39.4
LoFTR [64] 16.8 15.8 / 30.9 / 41.4
GlueStick 15.7 17.4 / 32.8 / 42.9

Lines

LBD [82] 49.2 3.7 / 8.2 / 13.4
SOLD2 [47] 55.6 4.9 / 10.8 / 16.1
LineTR [80] 51.6 4.5 / 11.0 / 16.8
L2D2 [1] 60.0 2.8 / 6.5 / 10.5
SG + Endpts (no KP) 36.0 7.1 / 15.0 / 22.2
GlueStick 27.6 9.4 / 20.0 / 28.6

Points
+ Lines

PL-Loc [80] 26.2 12.2 / 24.1 / 32.2
SG + Endpts 17.1 17.5 / 31.8 / 41.2
GlueStick 14.1 19.3 / 35.4 / 46.0

Table 1: Homography estimation on ScanNet [14]. We
first estimate a homography based on point-only, line-only
or points+lines matches, then decompose it into the corre-
sponding relative pose. We report the median pose error in
degrees, as well as the AUC at 10◦ / 20◦ / 30◦ error.

0.0 0.1 0.2 0.3 0.4 0.5
Angular error (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
im

a
g
e
s

L2D2 (AUC: 0.666)

SOLD2 (AUC: 0.384)

LineTR (AUC: 0.307)

LBD (AUC: 0.681)

PL-Loc (AUC: 0.859)

SG (AUC: 0.860)

GlueStick-P (AUC: 0.860)

GlueStick-L (AUC: 0.701)

GlueStick-PL (AUC: 0.890)

Figure 6: Camera rotation estimation in SUN360 [74].
We show the cumulative angular error for all pairs of im-
ages. We report the AUC up to an error threshold of 0.5◦.

from neighboring lines and being aware of their intercon-
nection is highly beneficial. Finally, we obtain the best re-
sults overall when combining points and lines. The net-
work can leverage both kinds of features and may rely more
on the accurate points on well-textured images, while using
lines in scenarios with scarce points.

4.4.2 Pure Rotations on SUN360

We also evaluate our method in estimating pure camera ro-
tations, which are the cornerstone of some applications such
as image stitching, or visual-guided sensor fusion. We use
the SUN360 [74] dataset containing 360º images. From
each original 360º image, we crop 10 pairs of perspective
images (640×480 pixels) with a field-of-view of 80º. Pairs
are randomly sampled with an angular difference in range
± [50◦, 70◦] for yaw and ± [0◦, 30◦] for pitch. We first ex-
tract the local feature matches, then we estimate a rotation
using Hybrid RANSAC [55, 10]. We evaluate the angular
error between the predicted and GT relative rotations.

In Fig. 6, GlueStick-PL (with points and lines) obtains
the best results because lines help to match pairs where
there is not enough texture. Specifically, long lines can be

7

detected very precisely, thus contributing to an accurate es-
timation. Point-based methods (SG and GlueStick-P) obtain
already 3 points less of AUC. PL-Loc [80] is ranked fourth
because it effectively uses points and lines, though indepen-
dently and without spatial reasoning for point matches.

4.5. Visual Localization

We introduce here the downstream task of localizing a
query image, given the known poses of database images.
We follow the pipeline of LIMAP [37], which integrates
line features into hloc [53, 52]. We use NetVLAD [3] for
image retrieval, detect SuperPoint [16] feature points and
LSD [21] lines, and match these features with either Super-
Glue [54] + a line matcher, or with GlueStick. We use the
GT depth to back-project lines in 3D: points are sampled
along each line, un-projected to 3D, and a 3D line is fit to
these un-projected points. We use the solvers of [30, 85, 33]
to generate poses from a minimal set of 3 features (3 points,
2 points and 1 line, 1 point and 2 lines, or 3 lines), then
combine them in a hybrid RANSAC [55, 10] to recover the
query camera poses.

Datasets. We compare our method to other baselines on
two datasets. The 7Scenes dataset [59] is a famous RGB-D
dataset for visual localization, displaying 7 indoor scenes
with GT poses and depth. It is however limited in scale,
and most scenes are already saturated for point-based local-
ization. One scene remains extremely challenging for fea-
ture points: the Stairs scene, as illustrated in Fig. 7. Due to
the lack of texture and repeated steps of the stairs, current
point-based methods are still struggling on this scene [9].
We report median translation and rotation error, as well as
the percentage of successfully recovered poses under a 5 cm
/ 5◦ threshold. InLoc [73, 65] is a large-scale indoor dataset
with GT poses and depth, with two test scenes: DUC1 and
DUC2. It is challenging for point-based methods due to
images with low texture and large viewpoint changes. We
report the pose AUC at 0.25m / 0.5m / 1m and 10◦.

Results. The results can be found in Tab. 2. GlueStick
with points only is able to surpass SuperGlue, confirming
the strong matching performance of isolated keypoints al-
ready. In particular, GlueStick obtains an improvement of
44% in pose accuracy over SuperGlue on Stairs. Adding
line features significantly improves the performance for
Stairs and brings a small improvement on InLoc as well.
This demonstrates the importance of lines in texture-less
areas and with repeated structures. Combining points and
lines in a single network allows GlueStick to reason about
neighboring features and can thus beat the other methods
that are independently matching points and lines.

5. Conclusion
Matching points across two views and matching line seg-

ments are traditionally treated as two separate independent

7Scenes [59] InLoc [65]

T / R err. Acc. DUC 1 DUC 2

P

SuperGlue [54] 4.7 / 1.25 53.4 48.5 / 68.2 / 80.3 53.4 / 75.6 / 82.4
ClusterGNN [58] - - 47.5 / 69.7 / 79.8 53.4 / 77.1 / 84.7
LoFTR [64] 4.4 / 0.95 53.9 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
GlueStick 4.4 / 1.21 55.4 49.0 / 70.2 / 84.3 55.0 / 83.2 / 87.0

P+L

SOLD2 [47] 3.2 / 0.83 75.8 44.9 / 69.7 / 79.8 54.2 / 75.6 / 80.2
LineTR [80] 3.7 / 1.02 66.6 46.0 / 67.2 / 76.3 53.4 / 77.1 / 80.9
L2D2 [1] 4.1 / 1.15 55.8 46.5 / 68.7 / 80.3 51.9 / 75.6 / 79.4
SG + Endpts 3.1 / 0.81 75.6 45.5 / 71.2 / 81.8 45.5 / 71.2 / 81.8
GlueStick 2.9 / 0.79 79.7 47.5 / 73.7 / 85.9 57.3 / 83.2 / 87.0

Table 2: Visual localization on 7Scenes [59] and In-
Loc [65]. We report the median translation (cm), rotation
error (deg), and pose accuracy at a 5 cm / 5◦ threshold for
the scene Stairs of 7Scenes, and the pose AUC at 0.25m /
0.5m / 1m and 10◦ error for InLoc. GlueStick ranks first
both for points-only (P) and point-line (P+L) results.

Su
pe

rG
lu

e
[5

4]

L
in

eT
R

[8
0]

G
lu

eS
tic

k

G
lu

eS
tic

k

Figure 7: Correct matches on 7Scenes Stairs [59]. Lines
can guide the point matching in very challenging scenarios
with low texture and repeated patterns.

problems. In this work, we challenge this paradigm and
present GlueStick, a learned matcher that jointly establishes
correspondences between points and lines. By processing
both types of features together, the network is able to prop-
agate strong matches of either type to neighboring features
that might have less discriminative appearance.

In our experiments, we show an improved matching per-
formance across the board, for both points and lines. In
particular for line matching, GlueStick provides a signifi-
cant leap forward compared to the current descriptor-based
state of the art. The key insight in our work is that line seg-
ments do not appear randomly scattered in the image, but
rather form connected structures. This connectivity is ex-
plicitly encoded and exploited in our network architecture.
Finally, we show that the improved matches we obtain di-
rectly translate to better results in downstream tasks such as
homography and camera pose estimation.

Acknowledgement
We would like to thank P.E. Sarlin and P. Lindenberger

for their great support, as well as L. Cavalli, J.M. Buena-
posada, and L. Baumela for helping to review this paper.
V. Larsson was supported by the strategic research project
ELLIIT.

8

Supplementary Material

In the following, we provide additional details regard-
ing GlueStick, our point-line matcher. Appendix A offers
a visualization of the generation of our line ground truth.
Appendix B gives additional insights and ablation studies
motivating our choices. Appendix C specifies some experi-
mental details to reproduce our experiments and brings ad-
ditional results. Appendix D shows matching results, as
well as failure cases of our method. Finally, Appendix E
provides visualizations of the attention for various kinds of
nodes.

A. Ground Truth Generation

Designing a line matching ground truth (GT) is challeng-
ing, due to partial occlusions and lack of repeatability of
line detectors. We provide here some visualizations of the
GT generation process.

Fig. 8 shows an example of the ground truth between two
images. Line segments can be either MATCHED (green),
UNMATCHED (red), or IGNORED (blue). The latter case
happens when the depth along the line is too uncertain or
when its reprojection in the other image is occluded. The
generation process is also illustrated in Fig. 9 for one pair
of line segments. The advantage of the proposed method
is that it recovers a large number of matches for each pair
of images, providing a strong matching signal. In compar-
ison to the method proposed in [1] which does robust 3D
reconstruction of line segments, our method is faster and
simpler. By avoiding the 3D line reconstruction step, we
can train in larger scenes with potentially noisy depth, like
the MegaDepth dataset [36].

B. Additional Insights on GlueStick

In this section, we give extra insights and motivations for
our design choices.
Choice of the Line Segment Detector. In all our train-
ing and experiments, we used the Line Segment Detector
(LSD) [21] to extract line segments. For a certain applica-
tion, such as indoor wireframe parsing [25], learned meth-
ods largely overtake classic ones [15, 62, 76, 78]. However,
learned methods struggle to generalize this power to other
contexts, tasks, or types of images. For this reason, we have
chosen LSD as the generic method to train GlueStick. Fur-
thermore, we believe that our line pre-processing, turning
an unordered set of lines into a connected graph, is bene-
ficial to make the endpoints more repeatable across views,
thus potentially making LSD more repeatable.

We ran a small experiment to compute the line repeata-
bility of different line detectors on the HPatches [5] and
ETH3D [57] datasets. We define line repeatability for a

(a) GT line assignations, shown as MATCHED, UNMATCHED, and
IGNORED.

(b) Each color identifies a match (i, j) ∈ Ml of the GT.

Figure 8: Ground truth (GT) line assignations. Exam-
ples of GT line matches. Note that blue lines are located
in uncertain regions and depth discontinuities, and they are
ignored during training.

HPatches ETH3D

#Lines Rep. (%) #Lines Rep. (%)

LSD [21] 307 68.72 578 47.49
ELSED [62] 243 64.66 464 48.03
HAWP [78] 366 60.86 420 38.69
SOLD2 [47] 167 65.49 332 39.86
F-Clip [15] 139 72.91 444 50.90
LETR [76] 95 70.65 311 47.70

Table 3: Line segment detection comparison. We com-
pare different line segment detectors in terms of their re-
peatability in the HPatches [5] and ETH3D [57] datasets.

pair of images as the percentage between the number of
line correspondences and the number of lines in the pair
of images [42]. We establish line correspondences between
images with the protocol defined in Sec. 3.4 of the main
paper and Appendix A. Tab. 3 shows that the learned base-
line F-Clip [15] obtains the highest repeatability, but detects
few lines, due to the fact that it was trained on the ground
truth lines of the Wireframe dataset [25]. On the contrary,
LSD provides the best trade-off in terms of repeatability and
number of lines. Thus, this good trade-off, as well as its low
localization error and versatility, make LSD a very suitable
choice for our approach.

We provide in Fig. 11 additional visualizations of line
segments for two traditional methods: LSD [21] and

9

(a) 3D Visualization of a scene in ETH3D [57], with the depth associated with each
point and the camera poses. (b) GT Matching result

Figure 9: Visualization of the ground truth (GT) generation. To check if a pair of line segments lAi and lBj correspond
to each other, we sample points along the segment: cyan points in the right image of (a). Points are lifted using depth and
re-projected in the second image: green points in the left image of (a). We use the number of points that lie close to the
segment in the second image to build each entry CB

i,j of the cost matrix. Together with the reciprocal matrix CA we define
an assignation problem whose solution is our GT shown in (b).

ELSED [62], and two learned methods: SOLD2 [47] and
HAWP [78]. While traditional ones sometimes detect noisy
lines (for example in the sky), learned ones are often biased
towards their training set and do not generalize very well to
different settings, such as outdoor images.

However, it is important for GlueStick to generalize and
perform well with other line segment detectors. In Fig. 10
we run GlueStick using either LSD or SOLD2 [47] lines,
and we evaluate the precision-recall of both methods on the
ETH3D dataset [57]. The latter are generic lines extracted
by a deep network, with strong repeatability and low local-
ization error [47]. It can be seen from the precision-recall
curves that 1) our GlueStick model trained on LSD lines
is able to generalize to other lines such as SOLD2 [47],
and 2) the performance is slightly better with LSD lines.
This is reasonable, since GlueStick was already trained on
these lines. In summary, we chose LSD as base detector
for downstream tasks since it remains one of the most accu-
rate detector currently available, by directly relying on the
image gradient at a sub-pixel level.

Effect of the Fine-tuning. Again in Fig. 10, we compare
our final GlueStick model with its pre-trained version on ho-
mographies, GlueStick - H. The plot shows that pre-training
on homographies is already sufficient to get very high per-

Figure 10: Additional ablation study on the ETH3D
dataset [57]. We report the precision-recall curve of the
line matching, as well as Average Precision (AP) in the leg-
end. Our final GlueStick model running with LSD [21]
lines is compared to its pre-trained version on homogra-
phies (GlueStick - H), and the final model using SOLD2

lines [47] (GlueStick - SOLD2 lines).

formance on ETH3D - better than the previous state-of-the-
art line matchers. Fine-tuning on MegaDepth [36] with real

10

(a) LSD [21] (b) ELSED [62] (c) SOLD2[47] (d) HAWP [78]

Figure 11: Comparison of line segment detectors. Learned methods such as SOLD2 [47] and HAWP [78] may not general-
ize well in all situations, such as outdoors. Traditional ones such as LSD [21] and ELSED [62] produce a lot of overlapping
segments and sometimes noisy ones. We decided to use LSD for its high versatility and accuracy.

11

100 101 102 103

Number of keypoints
30
40
50
60
70
80
90

100
Pe

rfo
rm

an
ce

 (i
n

%
)

Precision
Recall
AP

Figure 12: Analysis of the dependence on keypoints. We
run GlueStick on 1000 image pairs warped by a homog-
raphy (taken from the 1M distractor images of [49]), with
varying numbers of keypoints, and report the precision, re-
call and Average Precision (AP) of the line matching. Glue-
Stick robustly matches lines even when few or no keypoints
are present.

viewpoint changes can however further improve the robust-
ness of our matcher, as demonstrated by the stronger per-
formance of the final model.
Dependence on Point Matches. When jointly matching
two kinds of features, one caveat is often that one type of
feature takes the lead and the other relies mainly on the first
one. While we know from SuperGlue [54] that point-only
matching is already very strong on its own, we show here
that our architecture is very robust to the absence of key-
points and that line-only matching is still possible. We ran
an evaluation of the precision, recall, and average precision
(AP) of the line matching on 1000 validation images of our
homography dataset (images taken from the 1M distractor
images of [49]), and tested different maximum numbers of
keypoints per image. The results showed in Fig. 12, high-
light that our line matching is extremely robust to the lack of
keypoints. The precision remains indeed constant, and the
recall and AP are decreasing by at most 5% when switch-
ing from 1000 keypoints to no keypoints. Thus, this study
confirms that our matcher can be used in texture-less areas
where no keypoints are present, and is still able to match
lines with high accuracy.
Impact of the Line Length. While we adopted a line repre-
sentation based on the endpoints, one may wonder whether
GlueStick can handle very long lines, and how it performs
with respect to the line length. We studied this on the
ETH3D [57] by categorising lines into three categories of
length (in pixels): Short ([0, 50)), Medium ([50, 150)), and
Long ([150,+∞)). The results are shown in Fig. 13. It can
be seen that the best performance is obtained for long lines,
showing that GlueStick is still able to match lines even with-
out context in the middle of the line. This result is due to

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

Short: 44.2
Medium: 84.1
Long: 94.8

Figure 13: Analysis of the impact of line length. We run
GlueStick on the ETH3D dataset [57] and evaluate sepa-
rately the matching of Short, Medium, and Long lines. The
best performance is obtained for long lines, as they are more
stable than short ones. GlueStick can thus match long lines
even with an endpoint representation.

the fact that long lines are more stable across views, while
short ones are often noisy and not very repeatable.
Robustness to Small Image Overlaps. The image over-
lap and scale changes between images can play a large
role in matching. To study the effect of image overlap on
GlueStick, we revisited our line matching experiment on
the ETH3D dataset [57] and separated the pairs of images
into three categories of image overlap: Small ([0, 0.33)),
Medium ([0.33, 0.66)), and Large ([0.66, 1]). Overlap is de-
fined as the proportion of pixels falling into the other image
after reprojection. It is computed symmetrically between
the two images, and the minimum of the two values is kept.
Results are available in Fig. 14. While the performance nat-
urally decreases with smaller overlaps, GlueStick maintains
a strong performance on such hard cases.

C. Experimental Details
In this section, we first provide additional baselines to the

experiment on ScanNet for homography and relative pose
estimation. Secondly, we give details and visualizations of
the pure rotation estimation between two image pairs, and
its application to image stitching. Thirdly, we provide a
comparison of methods on homography estimation on the
HPatches dataset [5]. Finally, we give the full results of
visual localization on the 7Scenes dataset [59], though the
performance on most scenes is already saturated.

C.1. Relative Pose through Homographies

The experiment in Tab. 1 of the main paper was meant to
evaluate the quality of homographies retrieved from points,
lines or points+lines features. Homographies were evalu-

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

Small: 63.1
Medium: 71.9
Large: 79.5

Figure 14: Analysis of the impact of the image over-
lap. We run GlueStick on the ETH3D dataset [57] and
classify image pairs into three categories: Small, Medium,
and Large overlap. While the performance of GlueStick de-
creases with smaller overlaps, it is able to maintain a high
performance for all kinds of overlaps.

Pose error (↓) Pose AUC (↑)

Pose from H
SuperGlue (SG) [54] 18.1 15.6 / 29.8 / 39.4
LoFTR [64] 16.8 15.8 / 30.9 / 41.4
GlueStick 14.1 19.3 / 35.4 / 46.0

Pose from E
SuperGlue (SG) [54] 8.6 30.5 / 46.0 / 54.1
LoFTR [64] 11.7 23.6 / 39.6 / 48.4
GlueStick 8.4 30.9 / 46.8 / 55.1

Table 4: Using essential matrices instead of homogra-
phies on ScanNet [14]. While our experiment on ScanNet
is meant to evaluate homographies, we display here the re-
sults that would be obtained when using essential matrices
to get a relative pose, instead of homographies. We report
the median pose error in degrees, as well as the AUC at
10◦ / 20◦ / 30◦ error. Essential matrices are naturally more
robust and obtain better results when evaluated on relative
pose estimation.

ated by decomposing into the corresponding relative pose
and evaluating the latter on the ScanNet dataset [14]. For
the sake of completeness, we also report here the results
that would be obtained with a more efficient method to ob-
tain the relative pose: the 5-point algorithm to obtain the
essential matrix [45], later decomposed as a relative pose.
Tab. 4 demonstrates that the quality of relative poses re-
trieved through essential matrices is much higher than with
homographies - as could be expected. GlueStick remains
nevertheless the top performing method among all base-
lines. Note that we use here the outdoor models for all
methods, for fairness reasons as GlueStick was only trained
on outdoor data.

C.2. Pure Rotation Estimation

In this section, we describe the details of the pure rota-
tion algorithm used to perform the experiment of Sec. 4.4.2
of the main paper. Inside a Hybrid RANSAC [11], we de-
sign minimal and least square solvers to estimate the rota-
tion based on points, lines, or a combination of both.

Images are cropped from the panorama images of
SUN360 [74] and projected with a calibration matrix K ∈
R3×3. Fig. 15 shows some examples. The relation between
both images is defined by:

xB = KRK−1xA, (13)

where R ∈ SO(3) is the rotation matrix between the cam-
eras. Thus, we can calibrate the features detected on each
image, multiplying them by K−1. This way, we only have
to robustly estimate the 3 Degrees-of-Freedom (DoF) of the
rotation.

Point features are sampled uniformly, and lines are sam-
pled proportionally to the square root of their length to give
priority to larger lines. The probability of choosing one type
of feature is proportional to its number of matches. For ex-
ample, if a pair has 60 point matches and 40 line matches,
the probability of choosing a point is 60% and 40% for
lines.

The minimal solver randomly chooses 2 feature matches
(point-point, point-line, or line-line) and estimates the ro-
tation based on them. This can be seen as aligning 2 sets
of 3D vectors. Homogeneous points are already 3D vectors
going from the camera center to the plane Z = 1. To get a
vector from a line segment with homogeneous endpoints xs

and xe we use its line-plane normal n = xs × xe. To make
the method invariant to the order of the endpoints, we force
the normals of the segments to have a positive dot product.
This simple heuristic works as long as the sought rotation is
less than 180◦. Therefore, we can obtain a 3D vector from
any of the types of features. For two (or more) correspon-
dences, the optimal rotation can then be found with SVD
using the Kabsch algorithm [27].

We provide a more extensive table of results than in the
main paper in Tab. 5, as well as visual examples of the point
and line matches obtained by GlueStick, and the resulting
image stitching output in Fig. 15.

C.3. Homography Estimation in HPatches

HPatches [5] is one of the most frequently used datasets
to evaluate image matching. It contains 108 sequences
where the scene contains only one dominant plane, with 6
images per sequence. Each sequence has either illumination
or viewpoint changes. Similarly as in [54], we compute
a homography from point and/or line correspondences and
RANSAC, and compute the Area Under the Curve (AUC)
of the reprojection error of the four image corners. We re-
port the results for thresholds 3 / 5 / 10 pixels. We also

13

(a) Point matches (b) Line matches (c) Image stitching results

Figure 15: Examples of GlueStick matches on image pairs of SUN360 [74]. We provide the point and line matches, as
well as the stitching of the two images using the resulting matches.

Rotation error (↓) AUC (↑)

Avg Med 0.25º 0.5º 1º 2º 5º 10º

LineTR [80] 60.37 10.80 0.239 0.307 0.366 0.414 0.455 0.474
LBD [82] 19.57 0.054 0.593 0.681 0.736 0.768 0.790 0.799
SOLD2 [47] 23.74 0.308 0.232 0.384 0.515 0.609 0.682 0.713
L2D2 [1] 18.31 0.056 0.578 0.667 0.725 0.765 0.795 0.808
GlueStick-L 8.79 0.070 0.579 0.701 0.780 0.830 0.869 0.885

SG [54] 0.135 0.052 0.730 0.860 0.929 0.964 0.985 0.992
GlueStick-P 0.230 0.052 0.729 0.860 0.928 0.963 0.984 0.991

PL-Loc [80] 0.338 0.050 0.733 0.859 0.927 0.961 0.982 0.989
GlueStick-PL 0.327 0.039 0.789 0.890 0.943 0.970 0.986 0.991

Table 5: Pure rotation estimation on SUN360 [74].
We estimate a rotation based on point-only, line-only, or
points+lines matches. We report the average and median ro-
tation error in degrees, as well as the Area Under the Curve
(AUC) at 0.25 / 0.5 / 1 / 2 / 5 / 10 degrees error.

compute the precision and recall of the ground truth (GT)
matches obtained by the GT homography.

We report the results in Tab. 6 and Fig. 16. HPatches is
clearly saturated and the precision/recall metrics are already

very high for point-based methods. Note the strong perfor-
mance of GlueStick on line matching, with an increase by
nearly 10% in precision compared to the previous state of
the art. Regarding point-based methods and homography
scores, GlueStick obtains a very similar performance as the
previous point matchers SuperGlue [54] and LoFTR [64],
and ranks first (with a very small margin) in terms of ho-
mography estimation. In addition to the fact that HPatches
is saturated, it contains also very few structural lines that
could have been useful to refine the homography fitting.
Thus, the improvement brought by line segments is not sig-
nificant here.

C.4. Visual Localization on the Full 7Scenes Dataset

As stated in the main paper, 7Scenes [59] is a rather
small-scale dataset for visual localization, which is already
largely saturated for point-based methods. Adding line seg-
ments into the pipeline can improve the results only in a
few scenes such as Fire, Office and mostly on Stairs. We
demonstrate this in Tab. 7, where we used the same setup as
described in the main paper. While all methods obtain close

14

AUC (↑) Points (↑) Lines (↑)

3px 5px 10px P R P R

L

L2D2 [1] 43.73 55.98 69.39 - - 55.55 38.76
SOLD2 [47] 26.60 36.41 48.82 - - 80.57 77.43
LineTR [80] 42.90 55.74 69.26 - - 78.78 58.74
LBD [82] 46.82 59.13 71.82 - - 82.73 56.38
GlueStick-L 46.61 61.45 76.32 - - 90.27 76.69

P
SuperGlue [54] 66.21 77.77 88.05 98.85 97.44 - -
LoFTR [64] 66.15 75.28 84.54 97.60 99.38 - -
GlueStick-P 65.88 77.41 87.72 98.85 97.08 - -

P+L PL-Loc [80] 60.03 71.44 83.08 90.80 77.60 80.33 50.35
GlueStick-PL 66.88 78.14 88.12 98.00 94.86 89.54 80.44

Table 6: Homography estimation in HPatches [5]. We
report the Area Under the Curve (AUC) of the cumulative
error curve generated by the re-projection error of the four
image corners at different thresholds (3px, 5px, 10px), as
well as the precision (P) and recall (R) of the matches.

Figure 16: HPatches [5] cumulative error curve. We re-
port the percentage of images where the homography is cor-
rectly predicted for various pixel error thresholds.

results on such a saturated dataset, GlueStick is slightly
ahead of the baselines, and largely outperforms them on the
most challenging scene, Stairs.

D. Qualitative Examples
D.1. Feature Matches

Fig. 17 displays some examples of line matching on the
ETH3D dataset [57]. We plot in green the correct matches
and in red the incorrect ones. Thanks to its spatial reason-
ing in the GNN and context-awareness, GlueStick is consis-
tently matching more lines and with a higher precision than
previous works. This is in particular true for scenes with
repeated structures, such as the one in the right column,
where the descriptors of SOLD2[47] and L2D2[1] do not
have context from neighboring lines, and can only match a
few lines.

D.2. Visualization of the Camera Pose Estimation

We visualize the reprojection of points and lines on the
scene Stairs of the 7Scenes dataset [59] in Fig. 18. We plot

in green the points and lines that were originally detected
in 2D, and re-project in red the corresponding 3D features
using the estimated camera pose. The reprojections of Glue-
Stick are almost perfectly aligned compared to the ones of
hloc [53, 52], highlighting the quality of the poses retrieved
by our method.

D.3. Failure Cases and Limitations

While jointly matching keypoints and lines in the same
matching network helps disambiguating many challenging
scenarios, GlueStick may still underperform in some sce-
narios. We list in the following some limitations of our
method, and report some failure cases.
Limitations. Currently, the main performance bottleneck
of GlueStick lies in the line segment detection. While this
field has seen great advances in recent years, existing line
detectors are still not as repeatable and accurate as point
features, making the line matching more challenging. Par-
tially occluded lines are also a potential issue for GlueStick,
as it represents lines with their two endpoints. However,
we observed a surprisingly good robustness of GlueStick to
partially occluded lines, probably thanks to the neighboring
points and lines that are not occluded. Note that it is also
possible to equip GlueStick with a similar mechanism as in
SOLD2 [47], by sampling several points along the line seg-
ments, and matching them with the Needleman-Wunsch al-
gorithm. We tried this option and observed a small increase
in performance (notably in areas with occluded lines), but
at the cost of higher running time. Therefore, we did not
incorporate this feature in our final method.

Another issue is that points and lines are still detected
with different methods for now. Thus, three networks / al-
gorithms need to be run to detect and describe keypoints,
detect lines, and finally match them. Jointly detecting
and describing points and lines would be an interesting fu-
ture direction of research. Furthermore, the extraction of
discrete features such as points and lines is usually non-
differentiable, such that one cannot get a fully differentiable
pipeline going from the feature extraction to their matching.
Enabling such end-to-end training could potentially make
features better specialized for matching.

Finally, our current supervision requires ground truth
correspondences of points and lines across images (usu-
ally obtained through reprojection with depth and camera
poses). Other supervision signals such as epipolar con-
straints and using two-view geometry would be an interest-
ing direction of improvement in the future.
Failure cases. We display in Fig. 19 a few examples of
scenarios where GlueStick may still fail or underperform.
First, in scenes with repeated patterns, GlueStick is able to
find a consistent matching, but can be displaced by one pat-
tern if there is no additional hint to disambiguate the trans-
form between the two images. This is for example the case

15

Points Points + Lines

SuperGlue [54] LoFTR [64] GlueStick - P SOLD2 [47] LineTR [80] L2D2 [1] SG + Endpts GlueStick - PL

Chess 2.4 / 0.81 / 94.5 2.5 / 0.86 / 93.8 2.4 / 0.80 / 94.3 2.4 / 0.82 / 94.4 2.4 / 0.81 / 94.5 2.4 / 0.83 / 94.5 2.4 / 0.82 / 94.6 2.4 / 0.82 / 94.5
Fire 1.9 / 0.76 / 96.4 1.7 / 0.66 / 96.8 2.0 / 0.78 / 96.6 1.6 / 0.69 / 96.8 1.6 / 0.69 / 97.0 1.6 / 0.69 / 96.4 1.7 / 0.69 / 97.2 1.7 / 0.69 / 97.4

Heads 1.1 / 0.74 / 99.0 1.1 / 0.78 / 98.2 1.1 / 0.74 / 99.2 1.0 / 0.72 / 99.4 1.1 / 0.75 / 99.1 1.0 / 0.73 / 99.3 1.1 / 0.74 / 99.2 1.0 / 0.74 / 99.4
Office 2.7 / 0.83 / 83.9 2.7 / 0.83 / 82.0 2.7 / 0.83 / 83.6 2.6 / 0.80 / 84.7 2.6 / 0.79 / 84.4 2.6 / 0.81 / 83.9 2.6 / 0.79 / 84.4 2.6 / 0.79 / 84.6

Pumpkin 4.0 / 1.05 / 62.0 3.9 / 1.12 / 62.4 3.9 / 1.04 / 62.2 4.0 / 1.07 / 60.2 4.0 / 1.08 / 61.5 4.0 / 1.05 / 61.3 4.0 / 1.06 / 61.2 4.0 / 1.06 / 61.5
Red kitchen 3.3 / 1.12 / 72.5 3.3 / 1.14 / 73.8 3.3 / 1.12 / 72.8 3.2 / 1.15 / 72.6 3.3 / 1.15 / 72.6 3.2 / 1.14 / 72.9 3.2 / 1.14 / 72.8 3.2 / 1.13 / 73.0

Stairs 4.7 / 1.25 / 53.4 4.4 / 0.95 / 53.9 4.4 / 1.21 / 55.4 3.2 / 0.83 / 75.8 3.7 / 1.02 / 66.6 4.1 / 1.15 / 55.8 3.1 / 0.81 / 75.6 2.9 / 0.79 / 79.7

Total 2.9 / 0.94 / 80.2 2.8 / 0.91 / 80.1 2.8 / 0.93 / 80.6 2.6 / 0.87 / 83.4 2.7 / 0.90 / 82.2 2.7 / 0.91 / 80.6 2.6 / 0.86 / 83.6 2.5 / 0.86 / 84.3

Table 7: Visual localization on the full 7Scenes dataset [59]. We report the median translation error (cm) / median rotation
error (deg) / pose AUC at a 5 cm / 5 deg threshold. Most scenes are already saturated for point methods, and lines can hardly
make a difference.

L
B

D
[8

2]
SO

L
D

2
[4

7]
L

in
eT

R
[8

0]
L

2D
2

[1
]

G
lu

eS
tic

k

Figure 17: Line matches examples on ETH3D [57]. We display correct line matches in green and incorrect ones in red for
several state-of-the-art line matchers.

on 7Scenes Stairs [59], when the camera is only seeing sev-
eral steps, and it is unclear which step should be matching

with which one in the other image.

Secondly, GlueStick has not been trained for large rota-

16

hloc [53, 52] GlueStick

Figure 18: Camera pose estimation visualizations. We compare the originally detected keypoints and lines (in green)
with the re-projected points and lines using the estimated camera pose (in red), for hloc [53, 52] with SuperPoint [16] +
SuperGlue [54] and our method. The reprojections of GlueStick align almost perfectly with the 2D detections, showing a
high quality estimated pose.

tions beyond 45◦ and often fails in these scenarios. The pre-
training with homographies was done with rotations lower
than 45◦, and real viewpoint changes are rarely with such
rotations. Nonetheless, a simple fix is to rotate one of the
two images by 0◦, 90◦, 180◦ and 270◦, match it with the
other image, and keep the best matching among the four.

Finally, a challenging scenario happens when the images
have low texture in combination with symmetric structures.
The former makes visual descriptors less reliable, while the
latter makes it harder to disambiguate matches from the spa-
tial context. The performance is then degraded in such sit-
uations. Having access to sequential data and feature track-
ing may help solving such cases.

E. Attention visualization

We display the attention for some nodes in Fig. 20. This
visualization is obtained by taking the attention matrix at
various cross layers, averaging it across all heads, and tak-
ing the top 20 activated nodes. Green lines are used for
nodes with connectivity greater than 0 (i.e. line endpoints),
and cyan for nodes that are isolated keypoints. It can be
seen from the left column that keypoint attention is leverag-
ing the line structure to look for the right points along the
line. In the right column, we can see that line endpoints can
benefit from both keypoint and line endpoint attention. The
attention is initially looking broadly at the image, before
gradually focusing on the corresponding node in the other
image. Thus, both points and line endpoints can comple-
ment each other to disambiguate the matching process.

17

(a) Repeated patterns: GlueStick finds consistent line matches, but displaced by one step.

(b) GlueStick is not trained on large rotations.

(c) The lack of texture / symmetric structures make visual descriptors / spatial descriptors less reliable.

Figure 19: Failure cases. We display correct line matches in green and wrong ones in red. GlueStick may still fail or
underperform in some situations, such as (a) perfectly repeated patterns that are hard to disambiguate, (b) large rotation (e.g.
> 45◦), and (c) lack of texture and symmetric structures.

References

[1] Hichem Abdellali, Robert Frohlich, Viktor Vilagos, and
Zoltan Kato. L2D2: learnable line detector and descriptor.

In IEEE International Conference on 3D Vision (3DV), 2021.
2, 6, 7, 8, 9, 14, 15, 16

[2] Cuneyt Akinlar and Cihan Topal. Edlines: A real-time line
segment detector with a false detection control. Pattern
Recognition Letters, 32(13):1633–1642, 2011. 2

[3] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-
jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2016. 8

18

Attention from a keypoint Attention from a line endpoint

Cross layer 2

Cross layer 4

Cross layer 6

Cross layer 8

Point matches Line matches

Figure 20: Cross attention visualization. We plot in the first column the attention from a keypoint and in the right column
the attention of a line endpoint, for various layers in the Graph Neural Network. We compute here the average attention
across all heads and keep the top 20 activated nodes. More opaque lines means higher attention, green matches are connected
to a line endpoint in the second image, and cyan matches are connected to an isolated keypoint. The last row pictures the
final matches.

[4] Khashayar Asadi, Hariharan Ramshankar, Mojtaba
Noghabaei, and Kevin Han. Real-time image localiza-
tion and registration with bim using perspective alignment
for indoor monitoring of construction. Journal of Computing

in civil Engineering, 33(5):04019031, 2019. 1

[5] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-
tian Mikolajczyk. HPatches: A benchmark and evaluation
of handcrafted and learned local descriptors. In IEEE Conf.

19

Comput. Vis. Pattern Recog. (CVPR), 2017. 7, 9, 12, 13, 15
[6] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian

Mikolajczyk. Learning local feature descriptors with triplets
and shallow convolutional neural networks. In Brit. Mach.
Vis. Conf. (BMVC), 2016. 5

[7] Dániel Baráth, Dmytro Mishkin, Michal Polic, Wolfgang
Förstner, and Jiri Matas. A large scale homography bench-
mark. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
2023. 7

[8] Eric Brachmann and Carsten Rother. Neural-guided
RANSAC: Learning where to sample model hypotheses. In
Int. Conf. Comput. Vis. (ICCV), 2019. 7

[9] Eric Brachmann and Carsten Rother. Visual camera re-
localization from RGB and RGB-D images using DSAC.
IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 44(9):5847–
5865, 2021. 8

[10] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and
Torsten Sattler. Hybrid camera pose estimation. In IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR), 2018. 7, 8

[11] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and
Torsten Sattler. Hybrid camera pose estimation. In IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR), 2018. 13

[12] Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang
Bai, Zeyu Hu, Chiew-Lan Tai, and Long Quan. Learning to
match features with seeded graph matching network. In Int.
Conf. Comput. Vis. (ICCV), 2021. 2

[13] Hongkai Chen, Zixin Luo, Lei Zhou, Yurun Tian, Mingmin
Zhen, Tian Fang, David N. R. McKinnon, Yanghai Tsin, and
Long Quan. Aspanformer: Detector-free image matching
with adaptive span transformer. In Eur. Conf. Comput. Vis.
(ECCV), 2022. 2

[14] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:
Richly-annotated 3D reconstructions of indoor scenes. In
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2017. 7,
13

[15] Xili Dai, Haigang Gong, Shuai Wu, Xiaojun Yuan, and
Ma Yi. Fully convolutional line parsing. Neurocomputing,
506:1–11, 2022. 9

[16] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2018. 2, 3, 6, 8, 17

[17] Johan Edstedt, Ioannis Athanasiadis, Mårten Wadenbäck,
and Michael Felsberg. DKM: Dense kernelized feature
matching for geometry estimation. In IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR), 2023. 2

[18] Bin Fan, Fuchao Wu, and Zhanyi Hu. Robust line match-
ing through line–point invariants. Pattern Recognition,
45(2):794–805, 2012. 2

[19] Leandro AF Fernandes and Manuel M Oliveira. Real-time
line detection through an improved hough transform voting
scheme. Pattern recognition, 41(1):299–314, 2008. 2

[20] Ruben Gomez-Ojeda, Francisco-Angel Moreno, David
Zuñiga-Noël, Davide Scaramuzza, and Javier Gonzalez-
Jimenez. PL-SLAM: A stereo SLAM system through the
combination of points and line segments. IEEE Transactions
on Robotics, 35(3):734–746, 2019. 1

[21] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. LSD: A fast line seg-
ment detector with a false detection control. IEEE Trans.
Pattern Anal. Mach. Intell. (PAMI), 32(4):722–732, 2010. 2,
3, 6, 8, 9, 10, 11

[22] Zirui Guo, Huimin Lu, Qinghua Yu, Ruibin Guo, Junhao
Xiao, and Hongshan Yu. HDPL: a hybrid descriptor for
points and lines based on graph neural networks. Industrial
Robot: the international journal of robotics research and ap-
plication, 2021. 2

[23] Manuel Hofer, Michael Maurer, and Horst Bischof. Efficient
3D scene abstraction using line segments. Computer Vision
and Image Understanding (CVIU), 157:167–178, 2017. 1

[24] Paul VC Hough. Method and means for recognizing complex
patterns, Dec. 18 1962. US Patent 3,069,654. 2

[25] Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding,
Shenghua Gao, and Yi Ma. Learning to parse wireframes in
images of man-made environments. In IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR), 2018. 2, 9

[26] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi,
and Kwang Moo Yi. COTR: Correspondence Transformer
for Matching Across Images. In Int. Conf. Comput. Vis.
(ICCV), 2021. 2

[27] Wolfgang Kabsch. A solution for the best rotation to re-
late two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General Crys-
tallography, 32(5):922–923, 1976. 13

[28] Christopher Kropp, Christian Koch, and Markus König. In-
terior construction state recognition with 4D BIM registered
image sequences. Automation in Construction, 86, 2018. 1

[29] Harold W Kuhn. The Hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 5

[30] Zuzana Kukelova, Jan Heller, and Andrew Fitzgibbon. Effi-
cient intersection of three quadrics and applications in com-
puter vision. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2016. 8

[31] Manuel Lange, Claudio Raisch, and Andreas Schilling.
WLD: A Wavelet and Learning based Line Descriptor for
Line Feature Matching. In Jens Krüger, Matthias Niessner,
and Jörg Stückler, editors, Vision, Modeling, and Visualiza-
tion. The Eurographics Association, 2020. 2

[32] Manuel Lange, Fabian Schweinfurth, and Andreas Schilling.
DLD: A deep learning based line descriptor for line feature
matching. In International Conference on Intelligent Robots
and Systems (IROS), 2019. 2

[33] Viktor Larsson. PoseLib - Minimal Solvers for Camera
Pose Estimation. https://github.com/vlarsson/
PoseLib, 2020. 8

[34] Kai Li, Jian Yao, Mengsheng Lu, Yuan Heng, Teng Wu, and
Yinxuan Li. Line segment matching: a benchmark. In Win-
ter Conference on Applications of Computer Vision (WACV),
2016. 2

[35] Kai Li, Jian Yao, Xiaohu Lu, Li Li, and Zhichao Zhang. Hi-
erarchical line matching based on line–junction–line struc-
ture descriptor and local homography estimation. Neurocom-
puting, 184:207–220, 2016. 2, 3

20

https://github.com/vlarsson/PoseLib
https://github.com/vlarsson/PoseLib

[36] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2018. 6, 9, 10

[37] Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, and
Viktor Larsson. 3d line mapping revisited. In IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2023. 8

[38] David G Lowe. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vis. (IJCV), 60(2):91–
110, 2004. 1

[39] Quanmeng Ma, Guang Jiang, Jiajie Wu, Changshuai Cai, Di-
anzhi Lai, Zixuan Bai, and Hao Chen. WGLSM: An end-
to-end line matching network based on graph convolution.
Neurocomputing, 453:195–208, 2021. 2

[40] Ezio Malis and Manuel Vargas. Deeper understanding of
the homography decomposition for vision-based control. Re-
search Report RR-6303, INRIA, 2007. 7

[41] Jiri Matas, Charles Galambos, and Josef Kittler. Robust
detection of lines using the progressive probabilistic hough
transform. Computer Vision and Image Understanding
(CVIU), 78(1):119–137, 2000. 2

[42] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid,
Andrew Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor
Kadir, and L Van Gool. A comparison of affine region detec-
tors. Int. J. Comput. Vis. (IJCV), 65:43–72, 2005. 9

[43] Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic,
and Jiri Matas. Working hard to know your neighbor's mar-
gins: Local descriptor learning loss. In Adv. Neural Inform.
Process. Syst. (NeurIPS), volume 30, 2017. 5

[44] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. ORB-SLAM: a versatile and accurate monocular
SLAM system. IEEE Transactions on Robotics, 31(5):1147–
1163, 2015. 7

[45] David Nistér. An efficient solution to the five-point relative
pose problem. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2003. 13

[46] Rémi Pautrat, Daniel Barath, Viktor Larsson, Martin R. Os-
wald, and Marc Pollefeys. Deeplsd: Line segment detection
and refinement with deep image gradients. In IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2023. 2

[47] Rémi Pautrat, Juan-Ting Lin, Viktor Larsson, Martin R.
Oswald, and Marc Pollefeys. SOLD2: Self-supervised
occlusion-aware line description and detection. In IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR), 2021. 2, 6, 7,
8, 9, 10, 11, 14, 15, 16

[48] Albert Pumarola, Alexander Vakhitov, Antonio Agudo, Al-
berto Sanfeliu, and Francese Moreno-Noguer. PL-SLAM:
Real-time monocular visual SLAM with points and lines.
In International Conference on Robotics and Automation
(ICRA), 2017. 1

[49] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum.
Revisiting oxford and paris: Large-scale image retrieval
benchmarking. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2018. 6, 12

[50] Srikumar Ramalingam, Michel Antunes, Dan Snow, Gim
Hee Lee, and Sudeep Pillai. Line-sweep: Cross-ratio for
wide-baseline matching and 3D reconstruction. In IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR), 2015. 2

[51] I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pajdla,
and J. Sivic. Neighbourhood consensus networks. In Adv.
Neural Inform. Process. Syst. (NeurIPS), 2018. 3, 4

[52] Paul-Edouard Sarlin. Visual localization made
easy with hloc. https://github.com/cvg/
Hierarchical-Localization. 8, 15, 17

[53] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchi-
cal localization at large scale. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2019. 8, 15, 17

[54] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning feature
matching with graph neural networks. In IEEE Conf. Com-
put. Vis. Pattern Recog. (CVPR), 2020. 1, 2, 4, 5, 6, 7, 8, 12,
13, 14, 15, 16, 17

[55] Torsten Sattler et al. RansacLib - A Template-based *SAC
Implementation. https://github.com/tsattler/
RansacLib, 2019. 7, 8

[56] Cordelia Schmid and Andrew Zisserman. Automatic line
matching across views. In IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), pages 666–671, 1997. 2

[57] Thomas Schops, Johannes L. Schonberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2017. 6, 9, 10, 12, 13,
15, 16

[58] Yan Shi, Jun-Xiong Cai, Yoli Shavit, Tai-Jiang Mu, Wensen
Feng, and Kai Zhang. ClusterGNN: Cluster-based coarse-to-
fine graph neural network for efficient feature matching. In
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2022. 2, 6,
8

[59] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene
coordinate regression forests for camera relocalization in
RGB-D images. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2013. 8, 12, 14, 15, 16

[60] Richard Sinkhorn and Paul Knopp. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics, 21(2):343–348, 1967. 4

[61] Iago Suárez, José M Buenaposada, and Luis Baumela. Re-
visiting binary local image description for resource limited
devices. IEEE Robotics and Automation Letters (RAL),
6(4):8317–8324, 2021. 5

[62] Iago Suárez, José M Buenaposada, and Luis Baumela.
ELSED: Enhanced line segment drawing. Pattern Recog-
nition, 127:108619, 2022. 2, 9, 10, 11

[63] Iago Suárez, Enrique Muñoz, José M Buenaposada, and Luis
Baumela. FSG: A statistical approach to line detection via
fast segments grouping. In International Conference on In-
telligent Robots and Systems (IROS), 2018. 2

[64] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. LoFTR: Detector-free local feature match-
ing with transformers. In IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2021. 1, 2, 3, 4, 6, 7, 8, 13, 14, 15, 16

[65] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea
Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-
ihiko Torii. Inloc: Indoor visual localization with dense

21

https://github.com/cvg/Hierarchical-Localization
https://github.com/cvg/Hierarchical-Localization
https://github.com/tsattler/RansacLib
https://github.com/tsattler/RansacLib

matching and view synthesis. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2018. 8

[66] Prune Truong, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning accurate dense correspondences and when
to trust them. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2021. 2

[67] Alexander Vakhitov and Victor Lempitsky. Learnable line
segment descriptor for visual slam. IEEE Access, 7:39923–
39934, 2019. 2

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst. (NeurIPS), 2017. 4

[69] Bart Verhagen, Radu Timofte, and Luc Van Gool. Scale-
invariant line descriptors for wide baseline matching. In Win-
ter Conference on Applications of Computer Vision (WACV),
2014. 2

[70] Lu Wang, Ulrich Neumann, and Suya You. Wide-baseline
image matching using line signatures. In Int. Conf. Comput.
Vis. (ICCV). IEEE, 2009. 2

[71] Qing Wang, Jiaming Zhang, Kailun Yang, Kunyu Peng, and
Rainer Stiefelhagen. Matchformer: Interleaving attention in
transformers for feature matching. In Asian Conf. on Com-
put. Vision (ACCV), 2022. 2

[72] Zhiheng Wang, Fuchao Wu, and Zhanyi Hu. MSLD: A
robust descriptor for line matching. Pattern Recognition,
42(5):941–953, 2009. 2

[73] Erik Wijmans and Yasutaka Furukawa. Exploiting 2D floor-
plan for building-scale panorama rgbd alignment. In IEEE
Conf. Comput. Vis. Pattern Recog. (CVPR), 2017. 8

[74] Jianxiong Xiao, Krista A Ehinger, Aude Oliva, and Anto-
nio Torralba. Recognizing scene viewpoint using panoramic
place representation. In IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2012. 7, 13, 14

[75] Chi Xu, Lilian Zhang, Li Cheng, and Reinhard Koch. Pose
estimation from line correspondences: A complete analysis
and a series of solutions. IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI), 39(6), 2017. 1

[76] Yifan Xu, Weijian Xu, David Cheung, and Zhuowen Tu.
Line segment detection using transformers without edges.
In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), pages
4257–4266, 2021. 2, 9

[77] Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu
Wu, and Liangpei Zhang. Learning attraction field repre-
sentation for robust line segment detection. In IEEE Conf.
Comput. Vis. Pattern Recog. (CVPR), 2019. 2

[78] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song
Xia, Liangpei Zhang, and Philip H.S. Torr. Holistically-
attracted wireframe parsing. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2020. 2, 9, 10, 11

[79] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,
Mathieu Salzmann, and Pascal Fua. Learning to find good
correspondences. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2018. 7

[80] Sungho Yoon and Ayoung Kim. Line as a visual sentence:
Context-aware line descriptor for visual localization. IEEE
Robotics and Automation Letters (RAL), 6(4):8726–8733,
2021. 1, 2, 6, 7, 8, 14, 15, 16

[81] Huayi Zeng, Kevin Joseph, Adam Vest, and Yasutaka Fu-
rukawa. Bundle pooling for polygonal architecture segmen-
tation problem. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2020. 1

[82] Lilian Zhang and Reinhard Koch. An efficient and robust line
segment matching approach based on LBD descriptor and
pairwise geometric consistency. Journal of Visual Commu-
nication and Image Representation, 24(7):794–805, 2013. 2,
6, 7, 14, 15, 16

[83] Ziheng Zhang, Zhengxin Li, Ning Bi, Jia Zheng, Jinlei
Wang, Kun Huang, Weixin Luo, Yanyu Xu, and Shenghua
Gao. PPGNet: Learning point-pair graph for line seg-
ment detection. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2019. 2

[84] Kai Zhao, Qi Han, Chang-Bin Zhang, Jun Xu, and Ming-
Ming Cheng. Deep hough transform for semantic line detec-
tion. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 2021.
2

[85] Lipu Zhou, Jiamin Ye, and Michael Kaess. A stable algebraic
camera pose estimation for minimal configurations of 2D/3D
point and line correspondences. In Asian Conf. on Comput.
Vision (ACCV), 2018. 8

[86] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe
parsing. In Int. Conf. Comput. Vis. (ICCV), 2019. 2

[87] Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen,
Li-Yi Wei, and Yi Ma. Learning to reconstruct 3D manhattan
wireframes from a single image. In Int. Conf. Comput. Vis.
(ICCV), 2019. 1

[88] Xingxing Zuo, Xiaojia Xie, Yong Liu, and Guoquan Huang.
Robust visual slam with point and line features. In Interna-
tional Conference on Intelligent Robots and Systems (IROS),
2017. 1

22

