
Embarrassingly Simple Binary Representation Learning

Yuming Shen 1, Jie Qin 1, Jiaxin Chen 1, Li Liu 1, and Fan Zhu 1

1Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE
{ymcidence, qinjiebuaa, chenjiaxinx, liuli1213, fanzhu1987}@gmail.com

Abstract

Recent binary representation learning models usually re-
quire sophisticated binary optimization, similarity measure
or even generative models as auxiliaries. However, one may
wonder whether these non-trivial components are needed to
formulate practical and effective hashing models.

In this paper, we answer the above question by propos-
ing an embarrassingly simple approach to binary repre-
sentation learning. With a simple classification objec-
tive, our model only incorporates two additional fully-
connected layers onto the top of an arbitrary backbone net-
work,whilst complying with the binary constraints during
training. The proposed model lower-bounds the Informa-
tion Bottleneck (IB) between data samples and their se-
mantics, and can be related to many recent ‘learning to
hash’ paradigms. We show that, when properly designed,
even such a simple network can generate effective binary
codes, by fully exploring data semantics without any held-
out alternating updating steps or auxiliary models. Exper-
iments are conducted on conventional large-scale bench-
marks, i.e., CIFAR-10, NUS-WIDE, and ImageNet, where
the proposed simple model outperforms the state-of-the-art
methods. Our codes are available at https://github.
com/ymcidence/JMLH .

1. Introduction
Approximate nearest neighbour search with binary rep-

resentations has been regarded as an effective and efficient
solution to large-scale multimedia data retrieval. Conven-
tionally termed as learning to hash, this family of tech-
niques aims at (a) shrinking the embedding size of data and
(b) producing binary features to speedup the computation
of distance-based pair-wise data relevance. Similar to many
other machine learning tasks, learning to hash can be ei-
ther unsupervised or supervised. The former requires less
labeling efforts for training, while the later obtains better
performance in retrieval. We focus on supervised hashing

to fully leverage the semantic information of data.
Recent research in this field largely boosts the perfor-

mance of the produced hash codes by introducing deep
learning techniques. Deep hashing models typically em-
ploy an indifferentiable sign activation to the top of the
encoding network. Various methods have been proposed to
empower the encoder with the ability to properly locate data
in the Hamming space.

A typical approach is to employ a held-out code learner
as the network training complementary [11, 29, 40]. The
code learner performs discrete optimization and alternately
updates the semantic-based target codes to govern the be-
havior of the encoding network. This approach generally
requires longer training time since the held-out discrete op-
timization step cannot be effectively paralleled, and con-
sumes additional memory to cache the target codes dur-
ing each round of update. Alternatively, some propose
to decouple unrelated data representations by introducing
similarity-based penalties to the encoders [7, 42, 43, 44].
To train an encoder with these regularizers, one may resort
to continuous relaxation on the codes, which arguably de-
grades the training quality. One recent fashion in deep hash-
ing is to employ generative adversarial models [5, 13, 34,
45]. By distinguishing synthesized data from real ones, the
encoder implicitly acknowledges the respective data distri-
bution.

However, the above precisely-proposed approaches raise
another question: How to build an effective supervised
hashing model with minimum auxiliary components?

We attempt to find the answer by carefully considering
the following main challenges of learning to hash:

• Keeping the discrete nature of binary codes. The bi-
nary constraints usually lead to an NP-hard optimiza-
tion problem in parameterized models, and cannot be
directly solved by gradient-based methods. This is
usually addressed by conventional methods using held-
out discrete optimization or relaxation techniques.

• Enriching the information carried by the codes. It

ar
X

iv
:1

90
8.

09
57

3v
1

 [
cs

.C
V

]
 2

6
A

ug
 2

01
9

https://github.com/ymcidence/JMLH
https://github.com/ymcidence/JMLH

is always essential to make the encoder aware of the
semantic information (e.g., lables or tags) of data.

As a result, in this paper, we propose a simple but pow-
erful deep hashing network. In our model, the above prob-
lems are tackled by relating data and their semantics with a
binary representation bottleneck, which is thereafter used as
the final hash codes. A single recognition penalty is applied
for training. With a reasonable regularization term, the fi-
nal learning objective forms a variational lower bound of
the Information Bottleneck (IB) [2, 36] between observed
data and their semantics. Importantly, one can impose
stochasticity on the binary bottleneck to keep the binary
constraints and apply gradient estimation methods during
training. Therefore, the whole framework can be optimized
end-to-end with Stochastic Gradient Descent (SGD). To this
end, we find our design leads to an embarrassingly simple
solution,which basically shapes a single classification neu-
ral network .

Regardless of the regularization, the proposed model just
maximizes the label likelihood of data. Thus, we name our
model Just-Maximizing-Likelihood Hashing (JMLH). The
contributions of this paper are summarized as follows:

• We propose a simple and novel deep hashing model,
i.e., JMLH, and theoretically base it on the Variational
Information Bottleneck (VIB) [2] method. To the best
of our knowledge, JMLH is the first attempt in deep
hashing to employ the IB methods.

• We show that, when properly designed and trained,
a classification neural network with a discrete bottle-
neck already produces effective binary representations.
Therefore, the proposed model requires no auxiliary
components and can be optimized directly.

• Relations between JMLH and many existing hashing
models are discussed in detail.

• JMLH successfully outperforms state-of-the-art hash-
ing techniques on several benchmark datasets, i.e.,
CIFAR-10 [20], NUS-WIDE [9] and ImageNet [28].

In the rest of this paper, we first describe our model in
detail in Section 2. Subsequently, the relationships between
JMLH and existing works are elaborated in Section 3. Sec-
tion 4 presents the implementation details and experimental
findings, with a brief conclusion given in Section 5.

2. Model
The goal of learning to hash is to find an optimal en-

coding function f : X → {0, 1}m to represent data. Here
X is the variable space of data observation and m refers to
the length of the hash code space B. In the context of su-
pervised hashing, training is usually supported by the data

bx y

θ φ

n

Figure 1. The directed graphical model of JMLH. We treat the hash
code b as the latent bottleneck between data x and their labels
y. The dotted lines define the stochastic encoding procedure of
q(B|X), and the solid lines denote the approximated likelihood
q(Y |B). n is the total number of observed data points. Note that
the respective parameters θ and φ are jointly learned, forming an
extremely simple training model.

labels Y . We intendedly use capitalized notations, i.e., X ,
Y and B, for the (random) variable spaces, and denote each
respective variable instances with lower-cased letters, i.e.,
x, y and b.

2.1. JMLH at a Glance

JMLH involves a stochastic encoder q(B|X) and a clas-
sifier q(Y |B). An additional deterministic distribution
p(B) is used as the prior of B.1 This model is illustrated
in Figure 1 as a directed graphical model. Particularly, each
datum x ∈ X is firstly associated with a latent binary code
b ∈ B according to q(B|X), and then the respective label
y ∈ Y can be predicted by feeding q(Y |B) with b. There-
fore, B can be regarded as the bottleneck between X and
Y . Successively applying q(B|X) and q(Y |B) according
to the above procedure specifies a single-task neural net-
work with a binary layer in between, which makes JMLH
extremely simple.

We firstly describe the above-mentioned probabilistic
models and then discuss how they are combined as a whole
for efficient end-to-end training.

2.1.1 Parameterizing the Probability Models

Given a training pair of (x, y), the corresponding probabil-
ities models of q(b|x) and q(y|b) in JMLH are defined as

q(b|x) = P(b|κ(x; θ)),

q(y|b) = Cat(y|π(b;φ)) or P(y|π(b;φ)),

p(b) = B(b|m, 0.5).

(1)

Here P(b|κ(x; θ)) indicates the Poisson binomial distribu-
tion, parameterized by a neural network κ(x; θ) as follows:

P(b|κ(x; θ)) =

m∏
i=1

κbi
i (1− κi)1−bi . (2)

1Here we use q (·) to denote an approximated posterior when one can-
not directly model the corresponding true distribution, e.g., q(B|X). On
the other hand, p(·) is used when the distribution can be deterministically
defined or computed, e.g., the pre-defined prior p(B).

Table 1. Network settings of JMLH. All layers are sequentially
applied.

Notation Specification Variable

Input
Arbitrary data,

X
256× 256 images in our experiments

κ(x; θ)

Arbitrary network backbone,
Alexnet [21] before fc 7

in our experiments
Fully-connected, size of m

B
Binary stochastic activation

π(b;φ)
Fully-connected, size of label length

Ysoftmax (single-label datasets)
sigmoid (multi-label datasets)

On the other hand, p(y|b) can be either categorical for
single-label classification, i.e., Cat(y|π(b;φ)), or Poisson
binomial for multi-label classification, i.e., P(y|π(b;φ)),
implemented by another network π(b;φ). We additionally
introduce p(b) of a binomial distributionB(b|m, 0.5) as the
code prior for regularization purpose.

Note that we choose discrete probability models for B
to avoid the use of continuous relaxation. That is to say,
the input to the classifier π(·) is already binarized. Continu-
ous relaxation, e.g., activating the neurons with a sigmoid
non-linearity, is not considered here as it skews the obser-
vation of the classifier, propagating biased semantic infor-
mation measurement back to the encoder.

2.1.2 Shaping a Single Network

Sequentially stacking κ(x; θ) and π(b;φ) empirically
forms a classification neural network with a binary bottle-
neck B, of which the briefed structure is illustrated in Ta-
ble 1. It can be seen that JMLH only introduces two addi-
tional layers on the top of an arbitrary network backbone,
which makes it easy to be adopted to different pre-trained
models and is convenient for implementation.

Then we define the learning objective with n given train-
ing pairs {(x, y)}n of this single network as

L =
1

n

∑
(x,y)

Eq(b|x)[− log q(y|b)]︸ ︷︷ ︸
classification objective

+λKL (q(b|x)||p(b))︸ ︷︷ ︸
regularization

,

(3)

where λ is a hyper-parameter. All the probability models
are defined in Eq. (1). We first elaborate each component of
it in this subsection and later show that this learning objec-
tive is supported by VIB [2] in Section 2.2.1.

The first Right-Hand-Side (RHS) term of Eq. (3), i.e.
− log q(y|b), is actually a negative log-likelihood classifi-
cation penalty since q(y|b) is categorical. This loss con-
veys semantic label information of data to their codes dur-
ing training.

Algorithm 1: The Training Procedure of JMLH
Input: Data observations X , the corresponding labels Y and

the maxinum number of iterations T .
Output: Network parameters θ.
repeat

Randomly pick a batch of {(x, y)} from training data
Sample ε ∼ U (0, 1)m for each datum
L ← Eq. (3)
(θ, φ)←

(
θ − Γ (∇θL) , φ− Γ (∇φL)

)
according to

Eq.. (6)
until convergence or reaching the maximum iteration T ;

The second RHS term of Eq. (3) acts as a regularizer. By
minimizing the Kullback-Leibler (KL) divergence between
the posterior q(b|x) and the prior p(b), the entropy carried
by B is reserved. As the prior and the posterior are basi-
cally binomial,the KL divergence can be deterministically
computed by two entropy termsH(·):

KL (q(b|x)||p(b)) = H
(
q(b|x), p(b)

)
−H

(
p(b), p(b)

)
.

(4)
The whole network of JMLH is trained only using

Eq. (3). This makes the optimization extremely simple,
requiring no auxiliary module or additional complex loss
function. The only problem comes from the gradient com-
putation of the intractable expected negative log-likelihood
w.r.t. θ, which is discussed in Section 2.1.3.

2.1.3 On the Tractability of JMLH

Computing the gradients of the negative log-likelihood ex-
pectation term ∇θEq(b|x) [− log q(y|b)] of Eq. (3) is in-
tractable. One needs to traverse the latent space of B
for each sample x to accurately obtain the loss and corre-
sponding gradients. Inspired by [10], we use the following
reparametrization of B:2

b̃i =

{
1 κi(x; θ) > εi,

0 κi(x; θ) < εi,
for i = 1 ... m, (5)

where each εi ∼ U (0, 1) is a small random signal. Eq. (5)
is conventionally termed as the stochastic binary neural ac-
tivation. With this reparametrization, the gradient of Lw.r.t.
the encoder parameters θ can be estimated by the distribu-
tional derivative estimator [10]:

∇θL =
1

n

∑
(x,y)

(
Eε[−∇θ log q(y|b̃)]

+ λ∇θ KL (q(b|x)||p(b))
) (6)

2Although the reparametrization trick [19] is initially designed for con-
tinuous variables, we keep using this terminology here, because the trick
proposed in [10] leads to a similar gradient estimator to the one of [19].

𝑥𝒙𝝐

𝑦

ℒ

𝒃

𝒃

𝑥𝒙

Stochastic Node

Deterministic Node

(a) (b)

Figure 2. An analogy of the JMLH computation graphs for (a)
training and (b) test.

With this estimator, the network of JMLH can be trained
with SGD end-to-end. Note that ∇φL can be determinis-
tically obtained and does not require approximation since
π(b;φ) does not involve stochasticity.

The whole training process is illustrated in Algorithm 1,
and the respective variable feed path is illustrated in Fig-
ure 2 (a). Here we use Γ(·) to denote the gradient scaler,
which is the Adam optimizer [18] in this work. It can be
seen that, during training, JMLH performs identically to a
normal neural classifier. The only additional step is just to
sample the random signals ε.

2.1.4 Out-of-Sample Extension

Given a query datum x(q), the corresponding hash code is
produced by the encoder, i.e.,

b(q) =
(

sign(κ(x(q); θ)− 0.5) + 1
)
/2, (7)

which is shown in Figure 2 (b).

2.2. Theoretical Analysis

2.2.1 Exploring the Information Bottleneck

In this subsection, we show that JMLH defines a special dis-
crete extension of VIB [2] to learn information-rich codes.
By empirically assigning the joint probability of X and
Y with the Dirac delta function p(x, y) = 1

n

∑
i δ(x −

xi)δ(y − yi) = p(y|x)p(x), i.e., data samples are inde-
pendent, the negative learning objective of JMLH can be
rewritten as

−L =
1

n

∑
(x,y)

∑
b

(
p(x)p(y|x)q(b|x) log q(y|b)

−λp(x)q(b|x) log
q(b|x)

p(b)

)
,

(8)

where the first RHS term is the variational lower bound
of the mutual information I(B, Y) with the second RHS

term the lower bound of the negative mutual information
−λI(B,X) according to [2]. Consequently, −L literally
lower-bounds the IB [36] objectiveRIB(X,Y,B):

RIB(X,Y,B) = I(B, Y)− λI(B,X) ≥ −L. (9)

We refer to the related articles [2, 36] for more detailed def-
initions.

Intuitively, our learning objective allowsB to maximally
represent the semantic meaning of the label space Y by as-
cending I(B, Y). Note that, though −λI(B,X) acts as a
penalty in Eq. (9), we are not expecting zero mutual infor-
mation between X and B, otherwise the produced codes
would be data-independent. The purpose of introducing
−λI(B,X) is to filter redundant information not related to
the semantic meanings of data during encoding, and simul-
taneously preserve the essential part to support I(B, Y). In
this way, the learned codes can be compressed and discrim-
inative.

2.2.2 Nearest Neighbour Search with Recognition

In the context of large-scale data retrieval, relevant data
pairs are usually and conveniently defined by sharing the
labels/tags, which is generally reasonable. It is trivial and
inefficient to traverse all data points in a dataset and explic-
itly assign pair-wise similarity marks to each of them, while
the labels/tags can be regarded as the similarity ‘anchors’ to
ease this process.

JMLH favors this setting as it is literally a special clas-
sifier during training. The bottleneck latents B are directly
linked to the data labels. When the model is well-trained,
the codes of relevant data are naturally located with short
Hamming distances. This idea has also been proved in
many label-based hashing approaches [17, 29].

3. Related Work
Our work is related to various hashing techniques, of

which the most popular and related ones are selectively dis-
cussed according to our motivation and design.

3.1. Solving the Discrete Constraints

Traditional solutions. We firstly look at the problem of
discrete optimization. A typical example is SDH [29],
which also sequentially behaves encoding and classifica-
tion. However, as SDH [29] resorts to Discrete Cyclic Coor-
dinate descent (DCC) for alternating code updating, a held-
out optimization step is involved. Practically, this is hard
for parallelization and batch-wise optimization. Addition-
ally, training errors of the classification step cannot be effi-
ciently propagated back to the encoder. A similar paradigm
can be found in [39], while its objective is based on pair-
wise data similarity. In both single-modal hashing [40, 11]

and cross-modal hashing [23, 31], alternating code updat-
ing is widely adopted. For those methods that have held-out
code-learners, the network is regularized by the produced
target code. The disadvantage of this disarticulated pro-
cess is the low training quality. On the other hand, reg-
ularizing the network by quantization is also widely con-
sidered [6, 12, 17, 30]. However, these approaches ignore
a severe problem of the different presence of codes. The
network observes continuous codes during training, which
may represent different meanings from their discrete coun-
terparts for test. This problem is explicitly solved in JMLH
as our code bottleneck is exactly binary.
Gradient estimation solutions. Some existing hashing
models solve the discrete constraints for SGD by gradi-
ent estimation techniques so that the hashing model can be
conveniently trained. In SGH [10], a distributional deriva-
tive estimator is proposed based on the Taylor expansion of
the gradient, and the discreteness is kept by the stochas-
tic neuron. This approach has a similar presence to the
reparametrization trick [19], and is unbiased and stable dur-
ing training. This is also adopted in [32], and JMLH fol-
lows the same idea. An alternative simple choice here is
the Straight-Through (ST) estimator [3], which is used in
GreedyHash [35]. The REINFORCE algorithm [38] is also
employed for the same purpose in [41], while it undergoes
high variance during training.

3.2. Enriching the Semantic Information

JMLH is not the first model that trains the hash-
ing network with classification objectives. For instance,
SUBIC [17] also employs a classification loss as its learn-
ing objective. Specifically, SUBIC [17] separates the hash
code into l blocks and ground each code block on a ∆

m
l −1

simplex in order to favor the discreteness. This approach
considerably limits the maximal information carried by the
codes. Besides, the supervised version of GreedyHash [35]
is similar to JMLH both in terms of classification objec-
tive and keeping the discrete constraints. However, Greedy-
Hash [35] only uses the quantization loss on the code bottle-
neck, ignoring the entropy of the codes, while we consider
minimizing KL (q(b|x)||B(b|m, 0.5)) to preserve the en-
tropy. Moreover, GreedyHash [35] provides no theoretical
clue of how the trained codes are related to data semantics.

MIHash [4] borrows the concept of mutual information
as with JMLH, ending up with different designs. Our model
reflects the mutual information between codes and data se-
mantics as a part of VIB [2], while MIHash [4] consid-
ers relevant-irrelevant code distribution discrepancy and re-
quires complex histogram binning [37] during training.

Recently, a popular idea in deep representation learning
is to employ Generative Adversarial Networks (GANs) [16]
during training, which has been attempted in [5, 13, 34, 45].
The discriminators or the encoders in GANs are aware of

the data distribution p(X) without explicitly parameteriz-
ing p(X). The problem is that the auxiliary generator sig-
nificantly increases the training complexity as more param-
eters are introduced.

We experimentally show that the above sophisticated de-
signs are not always necessarily needed as the simple net-
work of JMLH can already achieve the state-of-the-art re-
trieval performance.

4. Experiments

Extensive image retrieval experiments are conducted in
this section, mainly according to the following themes:

• Comparison with existing methods. We show that,
simple as JMLH is, it still outperforms state-of-the-art
hashing models.

• Ablation study. The importance of each part of JMLH
is evaluated and discussed.

• Intuitive results. Some illustrative results are pro-
vided to implicitly justify the effectiveness of JMLH.

4.1. Experimental Settings

4.1.1 Implementation Details

JMLH is implemented with the popular deep learning tool-
box Tensorflow [1]. The network specifics are provided in
Table 1. For our image retrieval task, AlexNet [21] be-
fore the fc 7 layer is adopted as the network backbone,
where parameters are initialized with the ImageNet [28]
pre-trained results and is jointly updated during training.
For multi-labeled datasets, i.e., NUS-WIDE [9], we ac-
tivates the last layer of π(y|b) with the sigmoid non-
linearity, while the softmax activation is used when train-
ing JMLH on CIFAR-10 [20] and ImageNet [28]. JMLH
involves one hyper-parameter, i.e., the regularization fac-
tor λ. We empirically set λ = 0.1. The learning rate of
the Adam optimizer Γ (·) [18] is set to 1 × 10−4. We fix
the training batch size to 256. The codes can be found at
https://github.com/ymcidence/JMLH.

4.1.2 Datasets

CIFAR-10 [20] consists of 60,000 images from 10 classes.
We follow the common setting [13, 22, 35] and select 1,000
images (100 per class) as the query set. The remaining
59,000 images are regarded as the database. The train-
ing set contains 5000 images, uniformly selected from the
database.
NUS-WIDE [9] is a collection of nearly 270,000 Web im-
ages of 81 categories downloaded from Flickr. Following
the settings in [26, 39, 22], we adopt the subset of images

https://github.com/ymcidence/JMLH

Table 2. Performance comparison (w.r.t. mAP@k) of JMLH and the state-of-the-art hashing methods. The respective retrieval sequence
length k is adopted according to the most popular settings [13, 35, 41]. All baselines are reported according to the identical setting.

Method Super- CIFAR-10 (mAP@all) NUS-WIDE (mAP@5000) ImageNet (mAP@1000)
vision 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ITQ [14] 7 0.201 0.207 0.235 0.627 0.645 0.664 0.217 0.317 0.391
AGH [26] 7 0.217 0.205 0.182 0.592 0.615 0.616 0.241 0.327 0.379
DGH [24] 7 0.199 0.200 0.212 0.572 0.607 0.627 0.270 0.341 0.373
KSH [25] X 0.451 0.473 0.507 0.448 0.520 0.566 0.216 0.257 0.394
ITQ-CCA [15] X 0.463 0.498 0.505 0.555 0.512 0.460 0.235 0.377 0.576
SDH [29] X 0.499 0.525 0.546 0.595 0.595 0.617 0.298 0.431 0.504
CNNH [39] X 0.453 0.509 0.537 0.570 0.583 0.600 0.281 0.450 0.554
DNNH [22] X 0.556 0.558 0.599 0.598 0.616 0.639 0.290 0.461 0.565
DHN [43] X 0.564 0.603 0.626 0.637 0.664 0.671 0.311 0.472 0.573
HashNet [8] X 0.643 0.675 0.687 0.662 0.699 0.716 0.506 0.631 0.684
MIHash [4] X 0.760 0.776 0.761 0.722 0.759 0.779 0.569 0.661 0.694
HashGAN [5] X 0.668 0.731 0.749 0.715 0.737 0.748 - - -
PGDH [41] X 0.741 0.747 0.762 0.780 0.786 0.792 0.653 0.707 0.716
GreedyHash [35] X 0.786 0.810 0.833 - - - 0.625 0.662 0.688
JMLH (Ours) X 0.805 0.841 0.837 0.795 0.818 0.820 0.668 0.714 0.727

from the 21 most frequent categories. 100 images of each
class are utilized as a query set and the remaining images
form the database. For training, we employ 10,500 images
uniformly selected from the 21 classes.
ImageNet [28] is originally released for large-scale image
classification purpose, and is recently used in deep hashing
evaluation. Following [8, 41], we randomly select 100 cate-
gories to perform our retrieval task. All the original training
images are used as the database, and all the validation im-
ages form the query set. For each category, 130 images are
used for training.

4.2. Comparison with Existing Methods

We compare JMLH with existing methods using conven-
tional evaluation metrics, including top-k mean-Average
Precision (mAP@k), Precision of top-k retrieved sam-
ples (Precision@k), Precision within Hamming radius of 2
(P@H≤2) and Precision-Recall (P-R) curves.

Note that, for mAP@k, we adopt the most popular set-
tings of k = all, 5000, 1000 for CIFAR-10, NUS-WIDE,
and ImageNet respectively according to [13, 35, 41].

4.2.1 Baselines

JMLH is compared with various widely recognized hash-
ing baselines, including ITQ [14], AGH [26], DGH [24],
KSH [25], ITQ-CCA [15], SDH [29], CNNH [39],
DNNH [22], DHN [43], HashNet [8], HashGAN [5]
PGDH [41] and the supervised version of GreedyHash [35].
Note that the term of HashGAN is used both in [13] and [5].
Here we refer to the later one as it is a supervised approach
and thus is more related to our work.

For feature-based models, e.g., shallow hashing mod-
els, we use the AlexNet [21] fc 7 pre-trained features to
represent data for training and test. As for the end-to-end
baseline frameworks, we directly adopt the original training
settings described in their original papers and pre-trained
weights are also applied for fine-tuning when possible.

4.2.2 Results and Analysis

The retrieval mAP@k results are reported in Table 2. The
respective P-R curves, Precision@k and P@H≤2 scores are
illustrated in Figure 3.

It can be observed that JMLH consistently outperforms
the compared baselines, though many of them consist of
more trainable parameters, e.g., HashGAN [5]. This result
aligns with our motivation, and shows the clue that, with
the current evaluation metrics, one may not require an ex-
tremely complex model to obtain the best-performing deep
hashing function.

The performance margin between JMLH and Greedy-
Hash [35] is not significant on CIFAR-10 [20], but this gap
gets larger when it comes to a relatively more difficult situa-
tion, i.e., ImageNet [28]. This raises the concern of a proper
regularization term for training. Both GreedyHash [35] and
JMLH are trained with classification-oriented objectives.
The former literally involves a quantization penalty while
JMLH considers equally distributed {0, 1} bits to maximize
the expected code entropy. This factor becomes essential
when the data label space is large and the training samples
are limited as the codes need to be expressive enough to be
successfully classified. We find our design has better gener-
alization ability in this case.

0 0.2 0.4 0.6 0.8 1
0.1

0.28

0.46

0.64

0.82

1

Recall

P
re
ci
si
o
n

64-Bit P-R Curves on CIFAR-10

100 500 1,000
0.2

0.34

0.48

0.62

0.76

0.9

Top k Returned Samples

P
re
ci
si
o
n

64-bit Precision@k Scores on CIFAR-10

16 32 64
0.2

0.33

0.46

0.59

0.72

0.85

Bits

P
@
H
≤
2

P@H≤2 Scores on CIFAR-10

JMLH

ITQ

AGH

DGH

KSH

ITQ-CCA

SDH

CNNH

DNNH

DHN

HashNet

HashGAN

Figure 3. Left: 64-bit P-R curves on CIFAR-10 [20]. Middle: 64-bit precision of top k returned samples on CIFAR-10 [20]. Right:
Precision within Hamming radius of 2 scores on CIFAR-10 [20].

4.3. Ablation Study

In this subsection, we evaluate different components in
terms of formulating a simple deep hashing model, and em-
pirically show which one is of importance for good perfor-
mance.

4.3.1 Baselines

JMLH-Cont. We firstly look at the influence of quanti-
zation. By dropping the binary stochastic neuron and em-
ploying the sigmoid activation on the code bottleneck B,
a regular deep neural classifier is built. The regularization
term is kept, and is subsequently analyzed by other base-
lines.
JMLH-QR. The KL term of Eq. (3) is replaced by
the quantization regularizer between the activated bi-
nary codes B and their real-valued counterparts before the
stochastic neurons.
JMLH-NR. The regularizer is deprecated in this baseline,
and the whole learning objective is formulated by the clas-
sification cross-entropy.
JMLH-VAE. We replace the classifier π(·) with a decoder,
and use the L2 reconstruction error instead of classification
loss during training. Therefore, the model collapses to an
unsupervised Variational Auto-Encoder (VAE) [19], with a
negative Evidence Lower-BOund (ELBO) of

1

n

∑
x

Eq(b|x)[− log q(x|b)] + KL (q(b|x)||p(b)) . (10)

For the simplicity of training, the encoder and decoder for
this baseline are both implemented with a two-layer neural
networks and are fed by AlexNet [21] fc 7 features.

4.3.2 Results and Analysis

The mAP results of the above-mentioned baselines are
shown in Table 3. Since JMLH-VAE is an unsupervised
model, its performance is relatively lower than the others.

Table 3. mAP@all results by using different variants of the pro-
posed JMLH on CIFAR-10.

Baseline 16 bits 32 bits 64 bits
1 JMLH-Cont 0.616 0.628 0.659
2 JMLH-QR 0.778 0.827 0.835
3 JMLH-NR 0.729 0.725 0.736
4 JMLH-VAE 0.423 0.435 0.441
5 JMLH (full model) 0.805 0.841 0.837

We experience a 20% performance drop when using the
continuous relaxation during training, i.e., JMLH-Cont. As
discussed in Section 3, the binary constraints are essential
for models like JMLH as it directly influences the classi-
fier’s observation. Without regularization, JMLH-NR strug-
gles in the training-test generalization. Though not com-
peting our full model, JMLH-QR still performs closely to
GreedyHash [35], as the learning objectives are similar. The
difference between JMLH-QR and GreedyHash [35] lies in
the stochasticity of gradient estimation. Both ST [3] and
distributional derivative [10] work for this case as long as
the binary constraints are not violated. Hence, a proper
learning objective becomes more important.

4.4. More Results

4.4.1 Hyper-Parameter

The regularization penalty of JMLH is scaled by a hyper-
parameter λ. By default, it is set to λ = 0.1 for the overall
best performance. The impact of λ is illustrated in Figure 4
(a). The performance drops quickly when λ goes larger,
which actually reflects the penalty of the mutual informa-
tion between data X and codes B, i.e., I(X,B). A large
value of λ over-regularizes the model by decorrelating X
with B, making the produced codes less-informative.

4.4.2 Towards Model Simplicity

One key claim of this paper is to build a simple deep
hashing model. Training JMLH is non-trivial and effi-

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

λ

m
A
P
@
a
ll

Performance w.r.t. different values of λ

32-bit JMLH

1 25 50 75 100
0.4

0.5

0.6

0.7

0.8

0.9

Epoch

m
A
P
@
a
ll

Training Efficiency

32-bit JMLH

32-bit MIHash

(a) (b)

4 5 6 7 8 9 10 11 12
0.5

0.6

0.7

0.8

code length

m
A
P
@
a
ll

Performance with extremely short codes

JMLH

GreedyHash

DHN

(c)

Figure 4. (a) mAP@all results of 32-bit JMLH on CIFAR-10 [20]
with different values of λ. (b) Training efficiency of JMLH and
MIHash [4] on CIFAR-10 [20]. (c) Encoding performance com-
parison with extremely short code length on CIFAR-10 [20].

cient. Our classification likelihood learning objective pro-
vides a straightforward way to convey data semantics to
the encoder. We show training efficiency comparison be-
tween JMLH and MIHash [4] in Figure 4 (b). It can
be observed that JMLH converges more quickly to the
best performance than MIHash [4] with a margin of ∼10
epochs. Although MIHash [4] requires no auxiliary net-
works, its histogram-based learning objective introduces
complex positive-negative data pairing and histogram bin-
ning. All these factors make the training of MIHash [4] in-
direct, resulting in relatively slower convergence rate than
JMLH. Note that the performance of MIHash is slightly
lower than the one reported in [4], as it was previously
trained with VGG [33] features and we reproduce the re-
sults with the AlexNet [21] backbone for fair comparison.

The whole parameter size of JMLH for all experi-
ments conducted in this section is slightly smaller than
AlexNet [21], as we have a relatively narrow fully-
connecting bottleneck in the middle. Compared with the
models that involve end-to-end generative networks [13, 5],
this is believed to be a light one.

4.4.3 Extremely Short Codes

Following [35], we also explore the minimal size of codes
to represent data semantics. The experiments are conducted
by setting the code length to m = 4, 5, ..., 11, 12, and the
corresponding results are shown in Figure 4 (c). We can
see that, compared with GreedyHash [35] and DHN [43],

−20 0 20

−20

0

20

32-bit t-SNE on CIFAR-10 (train)

−20 0 20

−20

0

20

32-bit t-SNE on CIFAR-10 (test)

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

(a)

Top-10 Retrieved ImagesQuery

(b)

Figure 5. (a) 32-bit JMLH t-SNE [27] visualization on CIFAR-
10 [20]. (b) Examples of top-10 retrieved candidates of 32-bit
JMLH on CIFAR-10 [20].

JMLH obtains better performance even when the encoding
length is very short. The entropy-preserving regularization
term plays the key role here since the maximum number of
concepts that the code space can cover is limited.

4.4.4 Visualization Results

The t-SNE [27] visualization of 32-bit JMLH on CIFAR-
10 [20] is shown in Figure 5 (a). Even though the pro-
posed model is simple both in terms of network structure
and learning objective, the resulting binary codes are still
clearly scattered in the feature space according to their se-
mantic meanings. We further provide several image re-
trieval examples where the top-10 retrieved candidates are
shown together with the query image in Figure 5 (b). Ob-
viously, JMLH successfully finds related images in the top
of the retrieval list. Here we only show the 32-bit results to
keep the content concise.

5. Conclusion

In this paper, we proposed a simple but effective deep
hashing model called JMLH. Our model shaped a conven-
tional deep neural network with a single likelihood max-
imization learning objective. A differentiable binary bot-
tleneck was plugged in, making the whole network end-to-
end trainable using SGD. JMLH was linked to the infor-
mation bottleneck methods, which aimed at learning max-
imally representative features for a given task. We showed
that, when applying proper binary-preserving gradient es-
timators and suitable regularization terms, a single classi-
fication model could generate high-quality hash codes for
similarity search, outperforming state-of-the-art models.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.
5

[2] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep
variational information bottleneck. In International Confer-
ence on Learning Representations (ICLR), 2016. 2, 3, 4, 5

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-
agating gradients through stochastic neurons for conditional
computation. arXiv preprint arXiv:1308.3432, 2013. 5, 7

[4] F. Cakir, K. He, S. Adel Bargal, and S. Sclaroff. Mihash:
Online hashing with mutual information. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017. 5, 6,
8

[5] Y. Cao, B. Liu, M. Long, and J. Wang. Hashgan: Deep
learning to hash with pair conditional wasserstein gan. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018. 1, 5, 6, 8

[6] Y. Cao, M. Long, B. Liu, and J. Wang. Deep cauchy hashing
for hamming space retrieval. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 5

[7] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep
learning to hash by continuation. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 1

[8] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep
learning to hash by continuation. In IEEE International Con-
ference on Computer Vision (ICCV), 2017. 6

[9] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.
Nus-wide: a real-world web image database from national
university of singapore. In ACM International Conference
on Image and Video Retrieval (CIVR), 2009. 2, 5

[10] B. Dai, R. Guo, S. Kumar, N. He, and L. Song. Stochastic
generative hashing. In International Conference on Machine
Learning (ICML), 2017. 3, 5, 7

[11] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash
with binary deep neural network. In European Conference
on Computer Vision (ECCV), 2016. 1, 4

[12] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep
hashing for compact binary codes learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015. 5

[13] K. Ghasedi Dizaji, F. Zheng, N. Sadoughi, Y. Yang, C. Deng,
and H. Huang. Unsupervised deep generative adversarial
hashing network. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 1, 5, 6, 8

[14] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-
tive quantization: A procrustean approach to learning binary
codes for large-scale image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(12):2916–
2929, 2013. 6

[15] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-
tive quantization: A procrustean approach to learning binary
codes for large-scale image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(12):2916–
2929, 2013. 6

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems (NIPS), 2014. 5

[17] H. Jain, J. Zepeda, P. Perez, and R. Gribonval. Subic: A
supervised, structured binary code for image search. In IEEE
International Conference on Computer Vision (ICCV), 2017.
4, 5

[18] D. Kingma and J. Ba. Adam: A method for acm symposium
on theory of computing (stoc)hastic optimization. In Inter-
national Conference on Learning Representations (ICLR),
2015. 4, 5

[19] D. Kingma and M. Welling. Auto-encoding variational
bayes. In International Conference on Learning Represen-
tations (ICLR), 2014. 3, 5, 7

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. 2009. 2, 5, 6, 7, 8

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 3, 5, 6, 7, 8

[22] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature
learning and hash coding with deep neural networks. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2015. 5, 6

[23] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao. Deep sketch
hashing: Fast free-hand sketch-based image retrieval. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017. 5

[24] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph
hashing. In Advances in Neural Information Processing Sys-
tems (NIPS), 2014. 6

[25] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Su-
pervised hashing with kernels. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012. 6

[26] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with
graphs. In International Conference on Machine Learning
(ICML), 2011. 5, 6

[27] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008. 8

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015. 2, 5, 6

[29] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised dis-
crete hashing. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. 1, 4, 6

[30] Y. Shen, L. Liu, and L. Shao. Unsupervised binary repre-
sentation learning with deep variational networks. Interna-
tional Journal of Computer Vision, DOI: 10.1007/s11263-
019-01166-4. 5

[31] Y. Shen, l. Liu, L. Shao, and J. Song. Deep binaries: en-
coding semantic-rich cues for efficient textual-visual cross
retrieval. In IEEE International Conference on Computer
Vision (ICCV), 2017. 5

[32] Y. Shen, L. Liu, F. Shen, and L. Shao. Zero-shot sketch-
image hashing. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 5

[33] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In International
Conference in Learning Representations (ICLR), 2015. 8

[34] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen.
Binary generative adversarial networks for image retrieval.
In AAAI Conference on Artificial Intelligence (AAAI), 2018.
1, 5

[35] S. Su, C. Zhang, K. Han, and Y. Tian. Greedy hash: To-
wards fast optimization for accurate hash coding in cnn. In
Advances in Neural Information Processing Systems, 2018.
5, 6, 7, 8

[36] N. Tishby, F. C. Pereira, and W. Bialek. The information
bottleneck method. In Annual Allerton Conference on Com-
munication, Control, and Computing, 1999. 2, 4

[37] E. Ustinova and V. Lempitsky. Learning deep embeddings
with histogram loss. In Advances in Neural Information Pro-
cessing Systems (NIPS). 2016. 5

[38] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992. 5

[39] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-
ing for image retrieval via image representation learning. In
AAAI Conference on Artificial Intelligence (AAAI, 2014. 4,
5, 6

[40] Y. Yang, Y. Luo, W. Chen, F. Shen, J. Shao, and H. T. Shen.
Zero-shot hashing via transferring supervised knowledge. In
ACM international conference on Multimedia (MM), 2016.
1, 4

[41] X. Yuan, L. Ren, J. Lu, and J. Zhou. Relaxation-free deep
hashing via policy gradient. In The European Conference on
Computer Vision (ECCV), September 2018. 5, 6

[42] X. Zhou, F. Shen, L. Liu, W. Liu, L. Nie, Y. Yang, and H. T.
Shen. Graph convolutional network hashing. IEEE Transac-
tions on Cybernetics, pages 1–13, 2018. 1

[43] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing net-
work for efficient similarity retrieval. In AAAI Conference
on Artificial Intelligence (AAAI), 2016. 1, 6, 8

[44] B. Zhuang, G. Lin, C. Shen, and I. Reid. Fast training of
triplet-based deep binary embedding networks. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 1

[45] M. Zieba, P. Semberecki, T. El-Gaaly, and T. Trzcinski. Bin-
gan: Learning compact binary descriptors with a regularized
gan. In Advances in Neural Information Processing Systems
(NIPS), 2018. 1, 5

