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ABSTRACT

Fourier descriptors (FD’s) are widely used shape descriptors.

By first warping the scanning speed of the contour before cal-

culating the FD’s, the shape approximation can be improved.

This approach has never been properly tested on real applica-

tions. In this paper we compare these new shape descriptors

to the regular FD’s. A database of over 400 leaf shapes is ap-

proximated using these shape descriptors and compared to the

approximation based on FD’s. The error of the approxima-

tion was measured with the Hausdorff distance and modified

Hausdorff distance, resulting for both criteria in an average

improvement of more than 10% over approximation based on

FD’s.

Index Terms— Image shape analysis, Pattern recogni-

tion, Shape Representation, Contour based shape descriptors,

(Improved) Fourier descriptors

1. INTRODUCTION

Compact shape representation is important for segment cod-

ing, coding of medical signals, silhouette coding, etc. Com-

pact shape representation is not only interesting for the pur-

pose of data compression, but also for pattern recognition,

where it helps to overcome the curse of dimensionality. The

required accuracy of representation is lower for these applica-

tions, but the power to discriminate between different shapes

is more important. Typical applications are classification [1,

2], model based segmentation [3, 4], retrieving similar shapes

from databases [5, 6], motion analysis, posture analysis, etc.

Due to the many applications, shape representation has been

a very active field of research, and has lead to a variety in

description methods.

In literature, two broad classes of techniques can be dis-

tinguished: the region based methods and the contour based

methods. In the region based methods, the object is repre-

sented by a binary image which pixels represent the object.

Parameters, such as statistical moments are computed on this

binary image. Methods belonging to this group are quad trees,

central moments, Zernike moments, etc. In contour based
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methods, only the points belonging to the contour are used to

represent the object. For several of these methods, the contour

is parameterized. A wide variety of parameterizations have

been investigated in literature, e.g. (x(t),y(t)) where x(t) and

y(t) are the coordinates of point ”t” on the contour, the com-

plex representation of the coordinates (x(t) + jy(t)), the an-

gle between three subsequent contour points, the centroid dis-

tance (
√

(x(t)− x0)2 + (y(t)− y0)2, where x0 and y0 are

the coordinates of the center of the object), etc. The contour

parametrization s(t) can be further processed for shape de-

scription. Methods belonging to this group are Chain codes,

Fourier descriptors, Curvature Scale Space, etc. For a more

thoroughly review on shape description we refer to [7].

In this paper we will further work with discrete contour

based methods , i.e. only an finite number N of contour points

s(tn), n = 0, ..., N − 1 are known. This paper is arranged

as follows. In Section 2, we will define three metrics which

can be used to compare two shapes. In Section 3 the Fourier

descriptors are explained. A generalization of the Fourier de-

scriptors are also explained in this section. These new shape

descriptors, Improved Fourier descriptors, are tested for the

purpose of shape approximation in section 4. Section 5 reca-

pitulates and concludes.

2. SHAPE DIFFERENCE METRICS

In order to compare different representation techniques, a

metric to express similarity or dissimilarity of a shape and

its approximation is needed. The mean squared distance is

a metric which is used to compare contour parameteriza-

tions. Consider s1 and s2 to be the same parameterization of

two shapes, the mean squared distance between s1 and s2 is

defined as follows:

dmsd(s1, s2)
△
=

1

N

N−1
∑

k=0

(s1(tk)− s2(tk))2 (1)

This might be a good measurement for differences be-

tween functions, but it is not necessarily a good measurement

for difference between shapes. Let s1 and s2 describe the

same shape, but with an other starting point, e.g. s2(tk) =
s1(k + 1) with tN = t0. Even though the shapes are equal,



the mean squared distance differs from zero. To overcome

this problem, two other metrics are defined in [7]: the Haus-

dorff distance and the modified Hausdorff distance. For two

sets of points A = a1, a2, ..., ap and B = b1, b2, ..., bq the

Hausdorff distance (HD) is defined as follows

dH(A, B)
△
= max(h(A, B), h(B, A)) (2)

where

h(A, B)
△
= max

a∈A
min
b∈B

d(a, b)

With d a given metric function. For our purpose the euclidean

distance is used.

The Hausdorff distance is a measurement of the maximum

distance between two contours. Whereas the modified Haus-

dorff distance (MHD) is a measurement of the average dis-

tance between two contours. This distance function is given

by eq.2 where

h(A, B)
△
=

1

p

∑

a∈A

min
b∈B

d(a, b)

Here again the euclidean distance is used for d.

3. CONTOUR BASED SHAPE DESCRIPTION

In this section the concept of Fourier descriptors and there

generalization, i.e., the improved Fourier descriptors are ex-

plained.

3.1. Fourier descriptors

A class of contour descriptors which are widely used, are

Fourier descriptors (FD). For the rest of this paper we will

assume the contour is parameterized using the complex coor-

dinates. Consider the trigonometric polynomial of order N:

sN (t)
△
=

N
∑

n=−N

Bnejnt (3)

where Bn minimizes the mean squared distance between

sN (t) and s(t). The coefficients Bn are called the Fourier

descriptors. Bn is equal to the nth frequency component of

s(t) and can easily be computed using the discrete Fourier

transform. One of the main advantages of FD’s is the fact

that if the shape undergoes certain transformations, the FD’s

change in a simple manner, i.e.

• A translation only affects the FD which corresponds to

the zero frequency component, i.e. B0, so except of B0

the FD’s are invariant to translation.

• Scaling the object result in a multiplication of all FD’s

with a real constant.

• Rotating the object with angle θ results also in a multi-

plication, but with ejθ.

• Changing the starting point of s(t) results in a phase

shift, so |Bn| are invariant to rotation and change of

starting point.

These properties have made FD’s popular in a wide range

of applications [1, 2, 3, 4, 8, 6, 9, 10]. Note that this FD’s

are defined for other parameterizations then the complex co-

ordinates as well. A more thoroughly overview of FD’s using

different parameterizations can be found in [5].

3.2. Improved Fourier descriptors

Consider C(s(t)), to be the contour described by s(t), and

C(s(θ(t))), where θ(t) is a warping function, i.e., any strictly

monotonous function that maps the interval [0,2π] onto it-

self. C(s(t)) and C(s(θ(t))) describe the same contour. This

opens the possibility of optimizing contour representation by

selecting an optimal θ(t) according to some criterion. The

FD’s calculate the trigonometric polynomial with the least

mean squared distance with s(t). It would be better to cal-

culate the FD’s for all warped contours s(θ(t)) and chose the

FD’s with the smallest error. This results in the following

trigonometric polynomial:

s′N (t)
△
=

N
∑

n=−N

Gnejnt (4)

where the coefficients Gn minimize the mean squared dis-

tance between s′N (t) and s(θ(t)) with θ the most optimal

warping function. The Gn coefficients are called improved

Fourier descriptors (IFD’s). Since the IFD’s are FD’s of

s(θ(t)), they have the same properties as FD’s concern-

ing translation, scaling, rotation and changes of starting

point. Optimizing dMSD(s(θ(t)), s′N (t)) is equivalent to

optimizing eN = dMSD(s(t), s′N (γ(t))). This approach

has the advantage that it does not need to interpolate be-

tween two contour points s(tk) and s(tk+1). This results in

s∗N (t)
△
= s′N ◦ γ∗(t), i.e.

s∗N (t)=
N

∑

n=−N

Gnejnγ∗(t) (5)

with γ∗(t) the optimal warping function. To solve this opti-

mization problem, an iterative algorithm is proposed in [11].

Consider the discrete case, where γ is represented by a mul-

tidimensional vector. Then in the nth iteration, this vector is

updated by

γn
k = γn−1

k + αndn
k

Here dk is the difference between the average error and the

error at point k. This results in optimizing γ by spreading the

error. The parameter αnis the step size that minimizes eN .



As an initial value for γ we choose γ(t) = t. There is no

guarantee the algorithm converges in a finite number of iter-

ations. In practice however, eN generally no longer changes

significantly after three iterations. This iterative process re-

quires multiple calculations of sN (γ(t)) and the error. This

can be simplified and speeded up using a decomposition in

orthonormal polynomials as suggested in [11].

4. RESULTS AND DISCUSSION

4.1. Data

To test the ability of IFD’s to represent shapes, a database with

pictures of leaves was used. This database contains pictures

of isolated leafs from six different plant species (circinatum,

garryana, glabrum, kelloggii, macrophyllum and negundo).

These are color pictures of 512×512 pixels. The leafs were

extracted out of the picture using a threshold on the RGB val-

ues. In Fig. 1 an example of the result of this color filter can

be seen for each different plant species. In total 436 of these

images were used to test the use of IFD’s for shape approx-

imation. Each shape was approximated using 10, 20, 30, 40

and 50 IFD’s. For comparison all images were also recon-

structed using the same amount of FD’s.

(a) circinatum (b) garryana (c) glabrum

(d) kelloggii (e) macrophyllum (f) negundo

Fig. 1. Examples of the leaf database after preprocessing.

4.2. Measurements

As an example, two shapes were approximated using both im-

proved and regular Fourier descriptors descriptors. In Fig. 2,

the results are shown. The first row shows the leafs we want

to approximate. In the second and third row there approxi-

mation using respectively 10 FD’s and IFD’s can be seen. In

these examples, it is clearly visible that the IFD’s approximate

the original shape better than the FD’s. For both examples, the

IFD approximation shows more clearly the leaf incisions. In

the first example also the long extension of the leaf stalk is

clearly captured by the IFD approximation.

(a) the original shape (b) the original shape

(c) 10 FD (d) 10 FD

(e) 10 IFD (f) 10 IFD

Fig. 2. Examples of the representation using FD’s and IFD’s. In the

first row the shape we want to approximate is shown. In the second

and third row the approximations are shown.

In the top part of Table 1 the average Hausdorff distance

can be seen between the original shape and the approxima-

tion using FD’s. The performance of the FD’s depends on

the kind of shapes they have to represent, e.g., the class of

kelloggii leafs are represented much worse than the class of

garryana leafs. It is also clear that the more descriptors are

used, the better the approximation. In the bottom part of Ta-

ble 1 the same measurements are shown, but here IFD’s were

used instead of FD’s. The same remarks as for FD’s can be

made. The average improvement of the Hausdorff distance

of the IFD approximation over the FD approximation is over

14% . Even though some classes are approximated better than

others, on average, every class is better approximated using

IFD’s. Measuring the difference using the modified Haus-

dorff distance confirms the conclusions that were made using

the Hausdorff distance as an error measurement.

In Fig. 3, a histogram is shown which visualizes how

many percentage the modified Hausdorff distance improves

using the IFD’s to approximate the shape instead of the FD’s.

This histogram incorporates all measurements, i.e., for 10, 20,

..., 50 IFD’s. Tests showed that there was no clear difference

between histograms which only incorporated approximations

using the same amount of descriptors. As we can see in this



Table 1. The Hausdorff distance between the original and the reconstructed shape using a different number of FD’s or IFD’s.

plant circinatum garyana glabrum kelloggii macrophyllum negundo average

# images 64 84 75 94 82 37 436

10 FD’s 37,2 32,9 34,4 47,1 42,4 28,4 38,3

20 FD’s 18,5 14,1 15,5 24,9 19,3 14,6 18,3

30 FD’s 10,0 8,9 9,9 16,4 12,1 9,6 11,5

40 FD’s 7,7 6,4 7,3 12,5 8,9 7,4 8,6

50 FD’s 6,5 5,0 6,2 10,2 7,0 6,2 7,0

10 IFD’s 31,0 30,8 27,0 46,0 41,0 27,7 35,1

20 IFD’s 16,8 13,0 14,2 23,3 18,2 13,0 16,9

30 IFD’s 9,5 6,9 9,0 15,0 10,9 7,8 10,2

40 IFD’s 7,0 4,4 6,7 10,5 7,2 5,7 7,1

50 IFD’s 5,5 3,0 5,4 7,8 5,4 4,6 5,4
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Fig. 3. A histogram of the improvement of the errors of the IFD

approximation over the FD approximation, measured with the mod-

ified Hausdorff distance.

histogram, there is a small amount of contours which are bet-

ter approximated using the FD’s instead of using the IFD’s.

This is because the criterion which is used in the algorithm

to find an optimal warping function θ is different from the

modified Hausdorff distance.

5. CONCLUSION

In this paper shape approximation by first warping the scan-

ning function before calculating the Fourier descriptors was

thoroughly tested. It is shown that these shape descriptors,

improved Fourier descriptors, are not only theoretically bet-

ter, but that they also have a significant better performance in

practice. Since their good performance, they seem interesting

descriptors for a wide range of applications such as silhou-

ette coding. There application to pattern recognition should

be further investigated, but seems promising.
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