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ABSTRACT

Although Convolutional Neural Networks (CNNs) have high
accuracy in image recognition, they are vulnerable to adver-
sarial examples and out-of-distribution data, and the differ-
ence from human recognition has been pointed out. In order
to improve the robustness against out-of-distribution data, we
present a frequency-based data augmentation technique that
replaces the frequency components with other images of the
same class. When the training data are CIFAR10 and the out-
of-distribution data are SVHN, the Area Under Receiver Op-
erating Characteristic (AUROC) curve of the model trained
with the proposed method increases from 89.22% to 98.15%,
and further increased to 98.59% when combined with another
data augmentation method. Furthermore, we experimentally
demonstrate that the robust model for out-of-distribution data
uses a lot of high-frequency components of the image.

Index Terms— neural network, out-of-distribution, fre-
quency, data augmentation

1. INTRODUCTION

In recent years, the accuracy of image recognition perfor-
mance has been improving. In particular, the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [1]
in 2012, a competition for image recognition accuracy, saw
a dramatic improvement in accuracy with the introduction
of AlexNet [2], which uses Convolutional Neural Networks
(CNNs). However, the vulnerability towards adversarial ex-
amples [3, 4, 5] and fooling images [6], overconfidence to out-
of-distribution images have also been reported [7, 8, 9]. The
generalization performance of such CNNs has been studied
in relation to the frequency of the input images [10, 11, 12].

Wang et al. [10] argued that CNNs improve accuracy by
using regions that are meaningful to humans and those with
high-frequencies that cannot be perceived by humans. For
this reason, they argued that images such as adversarial ex-
amples, which have relatively noisy high-frequency compo-
nents, have a difference in recognition from humans. They
also pointed out that there is a trade-off between the robust-
ness to adversarial examples and the accuracy to normal im-
ages, and raised a question about the focusing on accuracy
alone. In addition, Chen et al. [12] pointed out that the dif-

ference between humans and CNNs is that CNNs are sen-
sitive to the amplitude component of the image, while hu-
mans are sensitive to the phase component. They also pointed
out that adversarial examples and other examples show that
the recognition of CNNs and humans are different because
many changes are made to the amplitude component of an
image. Based on their assumptions, they proposed an aug-
mentation method, Amplitude-Phase Recombination (APR),
to let CNNs pay more attention to the phase of the images.

For out-of-distribution detection, existing studies have
proposed dedicated classifiers or attempted to improve the
detection accuracy for pre-trained models in various ways [7,
8, 9, 13]. While these methods are effective, it would be
beneficial if the robustness of the model itself to out-of-
distribution data could be improved. In addition, existing data
augmentation methods mainly focus on enhancing the accu-
racy, which may in turn sacrifice robustness. In this study, we
propose a frequency-based data augmentation that improves
robustness of the model to the out-of-distribution data in a
confidence-based out-of-distribution detection method [8].
The contributions of our research are as follows.

• We propose a new frequency-domain data augmen-
tation technique that enhances the robustness of the
model to out-of-distribution data. Since it is a data
augmentation method, it can be combined with other
methods.

• We show that models with high robustness to out-of-
distribution data pay more attention to high-frequency
components of the images.

2. PROPOSED METHOD

To improve the robustness of CNNs, we propose a frequency-
based data augmentation method, in which images are de-
composed into low-frequency and high-frequency compo-
nents and they are swapped with those of other images of the
same class (here after, we call this procedure as Replacement
of Frequency Component, RFC). While retaining the low and
high-frequency information of each class, novel (augmented)
images of each class can be generated. The flow of this data
augmentation is shown in Figure 1 and the detailed procedure
is described below.

ar
X

iv
:2

20
9.

02
36

9v
1 

 [
cs

.C
V

] 
 6

 S
ep

 2
02

2



Label : ship

Label : ship

DFT

IDFT

IDFT

DFT

High

High

Low

Low

Label : ship

Label : ship

Fig. 1. The flow of RFC. Images taken from the same class are used and their frequency components are swapped.

Let x be an image and let us denote its frequency com-
ponent z as z = F(x) using the Discrete Fourier Trans-
form (DFT) F(·). We obtain the low-frequency and the
high-frequency components of z, zl and zh, respectively,
by using the mask matrices to pass the low-frequency and
high-frequency components Ml and Mh, respectively. With
(ci, cj) as the indices of the frequency center (DC compo-
nent) of M and using a radius r, Ml and Mh can be described
as:

Ml(i, j) =

 1
(√

(i− ci)2 + (j − c2j ) < r
)

0
(√

(i− ci)2 + (j − c2j ) ≥ r
) , (1)

Mh(i, j) =

 0
(√

(i− ci)2 + (j − c2j ) < r
)

1
(√

(i− ci)2 + (j − c2j ) ≥ r
) . (2)

Then, zl and zh are defined as:

zl = Ml ⊗ z, (3)
zh = Mh ⊗ z. (4)

Here, ⊗ is the product of each element. In the same way, let
z′
l and z′

h be respectively the low and high-frequency compo-
nents of x′, a randomly selected image from the same class
as x. The frequency-component swapped images, xmix and
x′mix, using the two images, x and x′, are obtained using the
inverse Discrete Fourier transform (IDFT) F−1(·) as:

xmix = F−1(zl) + F−1(z′
h), (5)

x′mix = F−1(z′
l) + F−1(zh). (6)

Then, xmix and x′mix are added to the training data.

3. EXPERIMENTS

3.1. Experimental setup

In our experiments, the model is ResNet18 [14], the dataset
is CIFAR10 [15], and the optimization method is Stochas-
tic Gradient Descent (SGD), the learning rate started at 0.1,
was multiplied by 0.2 at the 60th, 120th, 160th, and 190th
epochs, and was continued until the 200th epoch. We use the
basic data augmentation of RandomCrop and RandomHor-
izontalFlip as a baseline. We also employed CutMix [16],
mixup [17], APR [12], RFC (proposed), and RFC+APR for
comparison.

We used SVHN [18], LSUN [19], ImageNet [20], and
CIFAR100 [15] as out-of-distribution data. For out-of-
ditribution detection, we use the Hendrycks’s method [8].
It uses confidence scores of the model’s output to distin-
guish whether the input image is in-distribution or out-of-
distribution. By using True Positive Rate (TPR) and False
Positive Rate (FPR) of this binary classification, we calculate
the AUROC that is used as an evaluation metric.

3.2. Results of out-of-distribution detection

Table 1 shows the accuracy of each data augmentation method
and the AUROC values when the models are trained using
ResNet18 and CIFAR10 as the training dataset. The accuracy
of the data augmentation methods for the spatial domain, such
as mixup [17] and CutMix [16], is over 95%, while the base-
line accuracy is 93.50%. However, the AUROC, which indi-
cates the robustness to out-of-distribution data, drops for all
out-of-distribution datasets, especially for SVHN, to around
83%, which is about 6% inferior to the baseline (89.22%).
In comparison, the AUROC of our RFC is better than the
baseline for all the out-of-distribution datasets, especially for
SVHN, with 98.15%, an improvement of nearly 9%. In addi-



Table 1. Comparison of AUROC to out-of-distribution data (SVHN, LSUN, ImageNet, and CIFAR100) for models trained
CIFAR10 on ResNet18 by each data augmentation. The best values are shown in bold.

method Test acc.(%) SVHN LSUN ImageNet CIFAR100
baseline 93.50 89.22 88.61 82.68 84.88

CutMix [16] 95.00 83.74 87.26 79.24 83.18
mixup [17] 95.31 82.91 87.41 76.63 78.09
APR [12] 95.21 98.13 92.94 84.46 88.45

RFC (proposed) 94.07 98.15 91.03 83.04 85.83
RFC (proposed) + APR 94.71 98.59 93.82 85.17 89.02

tion, RFC+APR [12] yeilds the best AUROC for all the out-
of-distribution datasets. The advantage of our proposed RFC
is that, as demonstrated in this experiment, it can be combined
with other data augmentation methods.

3.3. Accuracy for CIFAR10-C

In this section, we investigate the accuracy of each model
in the CIFAR10-C dataset [21]. It consists of the CIFAR10
dataset plus 19 types of corruptions in five levels. The accu-
racy of each model for each corruptions (gaussian noise, gaus-
sian blur, fog, and contrast) of level five intensities is shown
in Table 2. The column of averages in the table shows the
average accuracy of each model for all 19 types of corrup-
tions in CIFAR10-C. From average accuracy of the table, we
can see that RFC+APR is much more robust to corruptions
with the accuracy of 75.86% than the baseline (57.52%). Al-
though APR is better for fog and contrast with a small margin,
RFC+APR is the best in terms of the average performance.

3.4. Investigation on how the models utilize the frequency
components

We investigate how differently each model handles frequency
components. For this purpose, we use ResNet18 trained with
each data augmentation in CIFAR10 and examine the accu-
racy when the low and high-frequency components of the im-
ages are separately input to the model.

Here, we describe how to generate the image with only the
phase component. LetDt be test datasets and x is included in
Dt. The frequency component F(x) of x is calculated using
its amplitude Ax and phase Px as shown below:

F(x) = Ax ⊗ ei·Px . (7)

Using this, we can calculate the average amplitude Am as

Am =
1

|Dt|
∑
x∈Dt

Ax. (8)

For each image, the image with only the phase component xp

is calculated as:

xp = F−1(Am ⊗ ei·Px). (9)

Using the mask matrices Ml and Mh defined in Eq. (2), the
phase-only images of the low-frequency and high-frequency
components, xp

l and xp
h, are computed as:

xp
l = F−1(Am ⊗Ml ⊗ ei·Px), (10)

xp
h = F−1(Am ⊗Mh ⊗ ei·Px). (11)

The accuracies of the models trained on each data aug-
mentation for these images when r = 4, 8 are shown in
Table 3. From Table 3, when r = 4, the accuracy of the base-
line model is 10% for high-frequency and high-frequency
of phase only components, which is equivalent to a random
classifier since CIFAR10 is a 10-class classification. And
the baseline model is close to a random classifier for low-
frequency components by yielding the accuracy of 15.40%.
Similarly, the performance of mixup is the same as that of
the random classifier regardless of the presence or absence
of amplitude components in both low and high-frequency
components. APR, on the other hand, is slightly more accu-
rate than the baseline by achieving the accuracy about 27%
for images with only low-frequency components and about
89% for high-frequency components. Furthermore, even for
the low-frequency and high-frequency components with only
phase, the accuracy does not decrease significantly, and it is
considered that a large percentage of the judgment is made
based on the phase of the image. RFC has the same tendency
to the high-frequency component as APR, but is the same
as the random classifier when the low-frequency component
is used. However, in RFC+APR, the accuracy using the
low-frequency component is greatly increased.

Next, we compare the accuracy of each model when r =
8. Compared to r = 4, the amount of information in the low-
frequency component is larger and that in the high-frequency
component is smaller. Therefore, from Table 3, the over-
all trend is that the accuracy using the low-frequency com-
ponent is higher and vice versa. For APR and RFC+APR,
the accuracy using the low-frequency component increases
considerably to more than 80%, and the accuracy using the
phase of the low-frequency component alone is more than
70%. The decline of accuracies of APR and RFC+APR is less
than that of baseline (31.95% to 17.47%) or mixup (45.59%



Table 2. Comparison of the accuracy of each data augmentation to CIFAR10-C (%). The best values are shown in bold.

method Test acc.
gaussian

noise
gaussian

blur fog contrast average

baseline 93.50 27.53 31.89 73.42 48.65 57.52
CutMix [16] 95.00 30.39 22.98 76.78 67.72 59.05
mixup [17] 95.31 41.42 50.64 79.33 72.18 68.10
APR [12] 95.21 44.24 85.65 90.67 74.78 73.27

RFC (proposed) 94.07 16.94 27.27 81.34 50.59 51.71
RFC (proposed) + APR 94.71 51.56 86.48 89.97 73.54 75.86

Table 3. Accuracy of the model trained with each data augmentation on various test data for r = 4 (%). Values in parentheses
are for r = 8. Low, High means low-frequency and high-frequency respectively. P means using only phase component.

method Original Low High Low-P High-P Phase only
baseline 93.50 15.40 (31.95) 10.01 (10.00) 12.26 (17.47) 10.00 (10.00) 73.71

CutMix [16] 95.00 13.37 (12.91) 9.35 (7.49) 11.27 (9.56) 10.06 (9.98) 70.24
mixup [17] 95.31 14.45 (45.59) 9.89 (9.30) 11.42 (23.17) 10.00 (9.98) 79.61
APR [12] 95.21 26.71 (81.07) 88.77 (68.75) 20.34 (72.14) 80.41 (48.65) 92.61

RFC (proposed) 94.07 10.01 (17.33) 89.47 (65.71) 10.00 (11.54) 64.24 (26.46) 74.25
RFC (proposed) + APR 94.71 48.43 (85.19) 87.75 (80.15) 37.60 (74.36) 80.09 (66.29) 91.47

to 23.17%). This indicates that the information of the low-
frequency phase is utilized more than that of amplitude. Fur-
thermore, since the accuracy of the high-frequency compo-
nent of RFC+APR is higher than that of APR by more than
10% and the accuracy of the low-frequency component is
also higher in RFC+APR, the difference between APR and
RFC+APR can be explained as follows: RFC+APR uses the
high-frequency component above r = 8.

Here, let us discuss the relationship between the ro-
bustness to out-of-distribution data and the accuracy of low
and high-frequency components. The robustness to out-
of-distribution data is generally in the order of RFC+APR >
APR > RFC > baseline > CutMix > mixup. Unlike the other
models, the baseline and mixup models, which are less robust
to out-of-distribution data, are equivalent to random classi-
fiers in terms of accuracy for images with high-frequency
components, while the RFC, APR, and RFC+APR models,
which are more robust to out-of-distribution data, use more
high-frequency components with r = 8 or higher than the
other models. Furthermore, RFC+APR, which has the highest
performance, especially utilizes more high-frequency com-
ponents than the other models. Therefore, it is inferred that
the robustness to out-of-distribution data depends on whether
the model uses high-frequency components or not. Also,
RFC+APR and APR have high accuracy for low-frequency
and phase only images, and both models have both accuracy
and robustness to out-of-distribution data. Thus, it is expected
that the low-frequency or phase is necessary to improve both
accuracy and robustness to out-of-distribution data. In ad-

dition, the fact that the RFC utilizes more high-frequency
components explains the accuracy of the Section 3.3 with
respect to CIFAR10-C. RFC is considerably less accurate
against gaussian noise and gaussian blur than the baseline
model. Considering the corruptions, low-frequency compo-
nent of gaussian noise is not so different from the original
image, but the high-frequency component deviates greatly
from the original image due to noise. Gaussian blur, which
is equivalent to a low-pass filter in terms of its operation
on the image, is an operation in which the high-frequency
components required by RFC are lost. Therefore, for image
corruptions such as noise and blur, the high-frequency com-
ponents are significantly changed or lost, and the accuracy of
RFC is supposed to be greatly reduced. On the other hand,
noises such as fog and contrast are regarded as operations
in which a uniform change in the entire frequency range is
applied, and as a result, RFC is expected to be as accurate as
baseline in such corruptions.

4. CONCLUSIONS

In this paper, we proposed a frequency-based data augmen-
tation that can enhance the robustness to out-of-distribution
data. Furthermore, we experimentally showed that robust
models mainly use high-frequency of images. It was also
suggested that models that also use low-frequency or phase
components are also more robust to corrupted data. Future re-
search may include investigating the robustness to adversarial
examples and further frequency-based data augmentation.
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