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Abstract— Soft growing robots are proposed for use in
applications such as complex manipulation tasks or navigation
in disaster scenarios. Safe interaction and ease of production
promote the usage of this technology, but soft robots can
be challenging to teleoperate due to their unique degrees of
freedom. In this paper, we propose a human-centered interface
that allows users to teleoperate a soft growing robot for manip-
ulation tasks using arm movements. A study was conducted to
assess the intuitiveness of the interface and the performance
of our soft robot, involving a pick-and-place manipulation
task. The results show that users completed the task with a
success rate of 97%, achieving placement errors below 2 cm on
average. These results demonstrate that our body-movement-
based interface is an effective method for control of a soft
growing robot manipulator.

I. INTRODUCTION

Soft and continuum robots have useful features that are
advantageous in applications requiring delicate interaction,
e.g. object manipulation [1]-[6], or adaptation to unknown
environments, e.g. navigation and exploration [7], [8]. A
subset of soft and continuum robots have an additional
feature that makes operation in confined environments easier:
the ability to extend or grow as an additional degree of free-
dom [7]-[10]. By extending and shortening in length, these
systems can move their tip through cluttered environments
without being restricted by body parts that may collide with
obstacles, such as the “elbows” on a typical rigid serial-
chain robot arm. For this reason, growth can be especially
beneficial in manipulation tasks.

While the growth degree of freedom has benefits in
cluttered environments, designing control to leverage those
benefits is challenging. In general, there do not exist well-
defined kinematic models for soft robots, so often control
of soft robots happens in joint space instead of task space
[11]. Even when approximate kinematic models exist, the
output shape or behavior of the robot can be difficult to
measure, and therefore hard to close a loop around. Thus,
one strategy to control soft robotic systems is to use the
human to close the loop on position and account for errors
caused by inaccurate models and lack of sensing and closed-
loop control. However, dissimilarity between the degrees of
freedom of the robot and the human makes it difficult to find
appropriate control interfaces.
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Fig. 1.
based Body Interface. Here the operator is shown physically near the robot,
which is safe due to the robot’s low inertia and soft exterior, while in our
experimental study the operators controlled the robot from a slightly farther
distance.

An operator controls the soft growing robot with the gesture-

Studies have used devices such as 3D mice [12], joysticks
and gamepads for gaming [12]-[14], haptic interfaces [12],
[15], rigid-link manipulators [16], and even flexible joysticks
specially designed for soft robots [17]. In particular, the work
of El-Hussieny et al. [17] was specifically designed for soft
growing robots and proved to be intuitive and easy to use.
However, all these interfaces rely on physical devices, which
may not be the most intuitive way for humans to control (and
learn to control) the robot. Here we remove the physical
interface and use the human body to control the robot.

In this work, we propose an interface that allows human
operators to control the robot simply by using their arm.
The gestures of the operator, tracked by a motion capture
system, are mapped to the kinematics of the robot for an easy
and intuitive teleoperation. This interface, called the “Body
Interface” (Fig. [I), was used in an experimental study to
assess its effectiveness in the control of a soft growing robot
in a teleoperated manipulation task. Twelve participants were
able to successfully teleoperate the robot to reach, grasp, and
move objects in the workspace.

The rest of the paper is organized as follows: Sec. [I]
discusses the interface, Sec. describes the design and
control of the soft growing robot, Sec. discusses the
experiment setup and results, and, finally, Sec. [V]summarizes
the work and presents possible future research.

II. BODY INTERFACE

The interface for teleoperating the robot, the Body Inter-
face, is based on a Motion Capture Tracking system and a
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(a) Motion capture marker layout on the operator’s upper body. (b) Commands used to control the robot based on direction of movement. (c) The

original reference system is transformed to be aligned with the plane where the markers CHI, CH2, and ABD lie, with origin at CH].

Gesture Interpreter Tool. The interface tracks the operator’s
gestures, maps them to the kinematics of the robot, and sends
the commands.

A. Motion Capture Tracking

We used the PhaseSpace Impulse X2E (phasespace.com)
system to track the operator’s movements. This accurate
optical tracking mechanism was used in order to test the
effectiveness of the interface while avoiding the performance
limitations of other types of sensors. In practice, other
tracking systems such as inertial measurement units (IMUs)
could be employed.

Our motion capture setup includes six lightweight-linear-
detector cameras monitoring seven active LED markers
placed on the forearm and the chest of the operator. The
gestures are tracked in real time at 270 Hz. As shown in
Fig. the Body Interface exploits four markers on the
operator’s forearm for gesture recognition (two on the elbow
EL] and EL2, two on the wrist WRI and WR2), and three
on the operator’s chest to create a body centered reference
system (CHI, CH2, and ABD).

B. Gesture Interpreter Tool

The operator’s gestures are mapped to the kinematics of
the robot through our custom Gesture Interpreter Tool (GIT).
The GIT recognizes three types of commands: grow/retract,
steer left/right/backwards/forwards, and rotate the end effec-
tor. One command of each type can be given simultaneously.
The communication with the robot’s microcontroller is real-
ized via a serial port at 66 Hz.

The specific mapping between the gestures and commands
can be customized based on the application. Fig. shows
one proposed mapping, used to control a soft robot hanging
from the ceiling and growing in the direction of gravity. Mov-
ing the forearm above and below the operator’s transverse
plane (forearm flexion/extension) will make the robot retract
and grow, respectively; whereas all the movements parallel to
the transverse plane are mapped as steering movements (fore-
arm back and forth and medial/lateral rotation, respectively

backwards/forwards and left/right); finally, pronosupination
defines the end effector rotation.

1) Calibration and Command Mapping: The location of
the wrist and elbow define the sent commands. Since the
interface is based on body movements, the system needs
an initial calibration to account for the operator’s reach
workspace.

The steering commands are mapped to the x and z coor-
dinates of the wrist. The wrist location WR (the centroid of
WRI and WR2) is projected to the operator’s transverse plane
to give the coordinates (xwg,zwg). During the calibration, the
system stores the limits of the operator’s reach in the four
directions (left/right/backwards/forwards), which will then
correspond to the limits of the robot’s workspace.

The command of growth/retraction is triggered when the
operator’s hand exceeds a certain threshold of yyg. During
calibration, the operator defines a deadband ([db;,db,]) along
the y axis: if the y coordinate of WR falls within this region,
the robot keeps its length fixed; otherwise, it grows or retracts
at a fixed speed, based on the position of the operator’s hand.
In this case, the calibration of the deadband is defined by
half of the operator’s reachable limits, to allow the operator
to easily steer and change length simultaneously.

Finally, the angle Op defines the rotation of the end effec-
tor. This is the angle between the two segments WRI—WR?2
and ELI—EL2 when their projection lies on the operator’s
coronal plane. During calibration, the offset between 8p and
the starting orientation of the end effector is stored to assure
the operator’s comfort during the teleoperation.

2) Reference System Alignment: In order to properly
retrieve the data, the GIT needs to define a body centered
reference system. The three chest markers allow the oper-
ator to be aligned to the motion capture reference system,
resulting in an interface that is independent of the operator’s
pose in space. As shown in Fig. the frame defined by
the calibration of the Motion Capture system (xpyc, Yumc,
zmc) is transformed into the reference system of the operator
(xop, Yop» Zop), such that the coordinates of the markers are
expressed with reference to the latter. In particular, CHI,
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Fig. 3. (a) The soft growing robot with its components, and the proposed

task scenario with the orientation of the operator’s reference system. (b)
The soft robot during the manipulation task, moving a block to a specific
target.

CH?2, and ABD define a plane, which the GIT transforms to
be lying on the xpp-yop plane, with CHI placed at the origin
of the new reference system. The operator can therefore
control the robot in whatever body pose is most comfortable.

ITII. SOFT-GROWING ROBOT

We built a soft growing robot specifically for manipulation
tasks. This section describes its design and control strategies.

A. Design

The soft growing manipulator can grow, retract, and steer
in three dimensions while carrying a payload, as shown in
Fig. 3] The device retracts into a portable, sealed container
which can be easily mounted anywhere. The soft growing
manipulator everts, adding new material at the tip when
pressurized, and the DC motor inside the container pulls at
the tip, inverting the material for retraction. The fabrication
of the soft growing manipulator and the design of the
manipulator’s container are similar to the robot described
in our previous work [7], with the addition of two new
components: (i) a cable-driven steering system, and (ii) a
wireless gripper mount. The steering system consists of three
evenly spaced cables, driven by three gearmotors (Pololu
131:1 37DX73LM) at the container outlet to provide 3-degree
of freedom motion. The ends of the cables are fixed to the
proximal end of the manipulator for steering. The gripper is
driven by two servo motors. One controls the rotation and the
other controls grasping. The gripper (Standard Gripper Kit-
Rollpaw, SunFounder) connects to and moves along the tip
of the robot with a magnetic attachment similar to the one
presented in [18], allowing for the completion of grasping
and manipulation tasks. The robot is made of a heat-sealable
thermoplastic polyurethane fabric sheet and can grow to up
to 1.5 m, with a diameter of 10 cm.

B. Control

With reference to the parameters described in Sec. |l} the
Body Interface controls the following robot parameters:

o the end effector position (in meters), given by
(xwr,zwr), these are the two coordinates of the tip of
the robot given a certain length of the bodyﬂ;

« the orientation of the gripper (in radians), given by the
angle 6p; and

« the direction of length change, either growing, retract-
ing, or static, given by ywg relative to the growth
deadband [db;,db,]. When the deadband is exceeded,
the robot is commanded to grow or retract at a constant
rate (in radians per second

Because the robot tip does not have tracking sensors, the
controller relies on the human operator to close the loop
and achieve the desired end effector position. More details
about the mapping and control strategies can be found in our
previous work [7], which is based on the constant curvature
model of continuum robots [19].

For the experiment described in Section the operator
opens and closes the gripper with a verbal command to the
investigator.

IV. EXPERIMENTAL STUDY

The Body Interface was tested on a pick-and-place task
to evaluate its usability in terms of accuracy, timing, and
workload.

A. Participants

Twelve participants took part in the experiment (seven
males, 26 +3 yrs old; and five females, 22 43 yrs old). All
participants were right handed and had no known impairment
affecting their upper limb. The experimental protocol was
approved by the Stanford University Institutional Review
Board, and written informed consent was obtained from each
participant.

B. Task and Scenario

Figures |1| and show the scenario of the experiment.
The participants were asked to pick up a block placed on
a starting pillar underneath the robot’s base and then move
the block onto a designated target. There were three targets
placed over three different pillars, and all the participants
repeated the task five times for each target, for a total of
fifteen repetitions. The experiment was designed such that the
participants were randomly and equally divided to explore all
the six combinations of target ordering.

The setup details, including elements, size, and layout, are
as follows:

o the Block, size 3.4 x 3.4 cm, placed at the center of the
workspace on a pillar 30 cm tall;

o Target 1, placed 25 cm to the left of the block, on a
pillar 20 cm tall;

o Target 2, placed 25 cm to the right of the block, on a
pillar 17 cm tall;

'The coordinate along the direction of growth may vary when the length
of the robot is fixed, as a result of steering.

2Since growth is driven by internal pressure in addition to the container
motor, the actual robot growth is not constant but is upper bounded by the
commanded motor speed.



o Target 3, placed 25 cm in front of the block, on a pillar
9 cm tall; and

o the Robot’s Base, placed over the block, a distance of
1 m from the ground and 70 cm from the block.

The block starting location and the targets were placed in the
center of support surfaces with an area of 12 x 12 cm, and
the robot started each trial from an initial length of 50 cm
measured from gripper to container. The participants were
asked to face the robot as shown by the reference system
in Fig. 3] Note that this was not a necessary constraint, as
the GIT fixes the reference system based on the operator’s
position, but it was useful to normalize the position of the
participants among all the trials and assure consistency in
the results.

All the participants performed the experiment after a five-
minute training phase, in which they were familiarized with
the robot and the interface. They were instructed to move
the robot, learn how fast the commands could be performed,
explore the workspace (including testing the response of
small and large hand movements), and grasp the block.
During the training, the investigator illustrated strategies to
get a good grasp on the block and retract without buckling
the robot body.

During the experiment, a trial was considered a failure if
the block fell to the table surface, which might be due to bad
grasping, or hitting the pillar or the block and causing the
block to move. This most often occurred after overshooting
on the growth length. Participants were asked to repeat any
failed trials, such that each of them performed a total of
fifteen good trials.

After the training session, the participants started the real
task, changing the target every five trials based on their
designed ordering. In particular, a single trial was composed
of two phases:

o Grasping phase, where the operator is asked to reach
the block and grasp it; and

e Placing phase, where the operator is asked to move
the block from the starting position and place it in the
designed target.

These phases were executed sequentially without a break
in the participant’s control of the robot, and both of them
involved activities such as growing towards the targets,
orienting the gripper for a proper grasp, avoiding the pillars,
and retracting when needed (especially after grasping the
cube to avoid dragging it on the support surface). After each
trial, the robot was automatically reset to its starting position
and the block was manually replaced on the initial pillar by
the investigator.

C. Evaluation Metrics

We used the following metrics to evaluate the task perfor-
mance:

o Target Placement Error (TPE): the distance, measured
in centimeters, between the center of block and the tar-
get once the task is finished, representing the accuracy
of the placement.

o Task Completion Time (TCT): the time required to
complete a trial, measured in seconds. We broke this
parameter into: (i) the overall time of the trial, from start
to end; (ii) the time of each phase within a single trial;
and (iii) the time spent performing the actual grasp or
placement, excluding the time spent in reaching either
the block or the target.

e Fuailure Rate (FR): the number of trials in which the
block did not reach the target, which were then repeated.

o Standard NASA Task Load Index (NASA-TLX): a sub-
jective standard assessment rating perceived workload
while performing a certain task [20]; the participants
were asked questions about mental load, temporal load,
effort, and frustration scale for each session, and the
weighted average of these was used to calculate the
overall workload.

D. Results and Discussion

Fig. [ shows the histogram of the Target Placement Error
over all trials, considering all the participants and all the
targets: most of the trials resulted in errors lower than 2 cm,
and in particular, three of them presented a minimum of
0.2 cm, showing that our system can achieve accurate per-
formance in a manipulation task when operated by the Body
Interface. The histogram also shows the Failure Rate: only
5 trials were discarded against 180 successful performances,
which translates to a success rate of 97%.

Since both the Body Interface and the growing robot were
new to the participants at the start of the experiment, we
verified if the control was intuitive enough to learn during
the short training period, or if additional learning took place
over the course of the trials. We plotted how performance
metrics for both phases of the experiment, Grasping and
Placing, changed through the 15 trials (Fig.[3). For Grasping,
we measured performance using the time it took to grasp the
block. Fig.[5(a)]shows the Grasping results for all participants
and the average across participants, showing that there was
steady performance during the experiment, with only a very
slight improvement in the average time to grasp. For Placing,

Number of Trials

00-05 06-1.0 1.1-1.5 1620 2.1-25 26-30 3.1-35 3640 4.1-45 46-50 FAILURES

Target Placement Error [cm]

Fig. 4. Histogram of the Target Placement Error (TPE) over the all 180
trials (15 trials each for 12 participants), including all the successful block
placements of the participants (in blue), compared to the number of failures
(in red).
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Fig. 6. Paths followed by the operator’s hand during object manipulation trials, depicting the participant who completed the task in the shortest time for
each target. Each plot indicates the starting and ending point, as well as the moment when the grasp was performed (the black x). The planes outlined in
red dashed lines represent the deadband [db;,db,], indicating where the grow/retraction commands were triggered.

we used Target Placement Error (TPE) as the measure of
performance. Fig. shows that the average placement
error remained steady and low (below 2 cm) throughout the
experiment. Both results show that the interface was intuitive
for users to operate and the majority of learning took place
in the initial training block.

To understand the participants’ performance of the task
beyond these performance metrics, we examined how par-
ticipants commanded the robot to reach all three targets.
Fig. [6] shows three examples of the path performed by the
participants while executing the task, one for each target.
Each plot illustrates the best performance in terms of timing
for the respective target, and shows the path within the
workspace of the participant based on the Body Interface cal-
ibration (the values of the axes are expressed in millimeters).
Furthermore, the deadband [db;,db,] is also shown to show
where on the path the growth and retraction commands were
triggered. These plots indicate that the strategy followed by
the participants was mostly consistent from target to target,
and followed the instructions provided during the training
phase. During the Grasping phase, participants started the

trial growing towards the block, tuned the position of the
gripper by steering and then performed the grasp (black x);
subsequently, during the Placing phase, they retracted the
robot to avoid any collision with the pillar, and then moved
towards the target while steering and growing, ultimately
tuning the position for the best placement.

We can focus on the results shown in Fig. [6] in two ways:
in the breakdown in Task Completion Time, and in the
location of block placement in the users’ command space.
As suggested by Fig. [7(a)] the Placing phase took more time
than the Grasping one; this is true especially for Target 3
(see also Fig. [6(c)), which was the furthest from the starting
height of the cube and required more growing time. However,
as shown by Fig. if we do not consider the time
spent during eversion (growth and retraction), there are no
noticeable differences between Grasping and Placing. This
indicates that steering was equally easy at all lengths when
using the Body Interface.

Looking at the locations in the command space where
participants placed the block, we can see clear clusters
indicating each of the three target locations (Fig. [8). The
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Fig. 7. Task Completion Time data for each target and each phase,

including median, interquartile range with outliers, and max/min across all
participants. In (a) is reported the overall time from start to end; in (b) is
reported the time spent in steering, which is the time spent to tune the final
position.

color of the dots indicate the Target Placement Error for
that trial. We can see two interesting features in the data:
some high error placements occurred close to the center of
the clusters, and some low error placements occurred well
outside. The high error dots can be explained by the quality
of the grasp for that trial, since some grasps would cause the
block to roll or move significantly after being released. On
the other hand, even though participants were instructed to
place the block on the target, the low error dots outside the
clusters show where participants did not grow the robot as far
and dropped the block from a height. This strategy required
a larger steering command from the participant to reach the
same location vertically over the target, putting them outside
the cluster.

Lastly, the results of the NASA-TLX showed an average
workload value of 68 £ 11% among all the participants,
which indicates that the task was challenging but not overly
demanding. The participants indicated that the Grasping
phase was slightly more difficult than the Placing: it was
easy to hit the block with the gripper when trying to align
the robot well, especially after overshooting the growth
command.

V. CONCLUSION

In this paper, we presented an intuitive interface to tele-
operate a soft growing robot with arm gestures. We demon-
strated that this interface can be used to perform a pick-and-
place task by users with no previous training, and that those
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coordinates for the three targets. Color of the placement location indicates
the Target Placement Error.

users can achieve placement errors below 2 cm on average.
This work shows a promising first step for creating interfaces
that allow humans to control soft robots more intuitively and
close the loop around the nonlinearities between joint and
task space.

In the future, we would like to improve the performance of
the soft robot for teleoperated manipulation. Specifically, the
participants consistently indicated that the Grasping phase
was the hardest part of the task. We believe that the primary
reason is the two-finger gripper design used, and the need
to align it precisely to the block surface. A possible solution
is to integrate a more compliant and adaptable gripper, like
a four-fingered soft gripper [5]; such a device would ensure
a more powerful and stable grasp, and remove the need to
accurately position the gripper in the pronosupination degree
of freedom.

Another important extension of this study would be to
compare the Body Interface with previous proposed control
interfaces, specifically the flexible joystick proposed by El-
Hussieny et al. [17].

Finally, the last extension of the work will be to develop
shared autonomy protocols to improve the interaction during
teleoperation. The results of this work have shown that,
although the Body Interface can achieve good performance in
terms of accuracy and timing, there is still room for improve-
ment. By allowing the robot to participate in the execution
of the task, the role of the human operator will be simplified
and the different strengths of the human and the robot can
be exploited. Different strategies that could be examined
include: (i) haptic feedback through a holdable device [21],
allowing the robot to provide guidance information to the
operator and suggest the correct path to reach the targets; and
(ii) artificial-intelligence algorithms mimicking the assist-
as-needed paradigm used in robot-based rehabilitation [22],
where the robot will move autonomously towards the target
only when the operator needs help to finalize the movement
and only of a limited magnitude.
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