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Abstract—Mobile Social Networks (MSNs) have been evolving
and enabling various fields in recent years. Recent advances
in mobile edge computing, caching, and device-to-device com-
munications, can have significant impacts on 5G systems. In
those settings, identifying central users is crucial. It can provide
important insights into designing and deploying diverse services
and applications. However, it is challenging to evaluate the
centrality of nodes in MSNs with dynamic environments. In this
paper, we propose a Social-Relation based Centrality (SoReC)
measure, in which social network information is used to quantify
the influence of each user in MSNs. We first introduce a new
metric to estimate direct social relations among users via direct
contacts, and then extend the metric to explore indirect social
relations among users bridging to their neighbors. Based on
direct and indirect social relations, we detect the influence spheres
of users and quantify their influence in the networks. Simulations
on real-world networks show that the proposed measure can
perform well in identifying future influential users in MSNs.

Index Terms—Centrality, social relations, mobile social net-
works, real-world techno-social systems

I. INTRODUCTION

The advances in popularity of wireless networks and mo-

bile devices bring unprecedented prosperity to Mobile Social

Networks (MSNs) [1], [2]. Millions of mobile users can

directly connect, interact, and share content with each other

via their smart devices, which become one of the most

important paradigms in the 5G system [3]. In this paradigm,

centrality evaluation is a key research issue [4]–[8]. It is

helpful to identify the influential users in the networks, as this

provides important insights into the design and deployment of

diverse applications and services in various settings, such as

mobile edge computing, content-centric networks, device-to-

device communication, etc. Most research [4], [5] on centrality

evaluation in MSNs is based on the static-network assumption.

The topologies of the networks are supposed to remain the

same over time, e.g., a link between two users exists if they had

interacted within the observation period, and doesn’t exist oth-

erwise. In other words, any temporal information is essentially

disregarded. However, MSNs consisting of mobile devices

carried by humans are essentially dynamic environments, i.e.,

link vary over time, often significantly. Thus, even quite

effective centrality measures for static networks, e.g., degree,

closeness, node and edge betweenness [9], [10], and PageRank

[11], are not ideal for dynamic MSNs. In order to evaluate

the centrality of users in such challenging network environ-

ments, some researchers [6], [12] built a time-ordered model

according to human mobility patterns and tried to quantify the

influence of each user by capturing the spatial and temporal

characteristics of the networks. While many researchers have

studied that mechanism as a means of centrality evaluation

in MSNs, the effects of the social nature of MSNs have

generally been ignored when considering how to predict the

centrality of users over time. Further studies [13], [14] show

that spatial and temporal actions (mobility) of humans are not

chaotic but are strongly impacted by social relations — these

social relations, in turn, have stable long-term characteristics.

Thus, social relations need to be taken into consideration

when evaluating centrality. In addition, apart from the direct

relations, indirect relations also need to be considered, because

even two nodes with no direct relation can still have a strong

influence on each other as long as the two have some mutual

friend(s) — indirect connections can drive social influence.

The importance of developing accurate centrality measures

in MSNs is further enhanced by the fact that such centrality

measures are also often exploited in downstream tasks such as

community detection and recommendation systems [15], [16].

In this paper, we investigate the centrality evaluation from

the perspective of social relations and propose a centrality

measure to identify influential users in dynamic MSNs. First,

direct and indirect social relations are studied. A new metric

is proposed to estimate direct social relations among contact

users by mining their contact patterns. We also give a brief

(mathematical and experimental) proof of the metric validity.

Apart from the direct social relations, indirect social relations

are studied to estimate the relations among users bridging to

their neighbors. Combing direct and indirect social relations,

we propose a Social-Relation based Centrality (SoReC) mea-

sure to quantify the centrality of users in dynamic MSNs.

Extensive simulations on real-world mobility networks show

that the SoReC measure can well identify future influential

users in MSNs. The rest of the paper is organized as follows: In

Section II, we briefly depict the mobile social network model.

In Section III, we detail our framework for centrality evalu-

ation. In Section IV, we conduct the performance evaluation

and discuss the results. Finally, we conclude the paper along

with insights into future directions in Section V.
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II. NETWORK MODEL

Consider a mobile social network, which consists of N
mobile devices. Each mobile device can directly communicate

with others over short-range radio frequencies when they are

within the direct transmission range of each other. For each

time slot t, the transient MSN is static and denoted as an

undirected unweighted graph Gt = (Vt, Et), where Vt is a set

of nodes representing all mobile devices in the network at the

time slot t, Vt = {vi}, 1 ≤ i ≤ N , and Et is a set of edges rep-

resenting the interaction states among the mobile devices at the

time slot t, Et = {(vi, vj) | d(vi, vj) ≤ D, vi ∈ Vt, vj ∈ Vt},

where d(vi, vj) denotes the physical distance between nodes

vi and vj . When d(vi, vj) is not less than a special distance

D (the maximum wireless transmission distance), the direct

interaction between them can occur, thereby an edge (vi, vj)
forms, otherwise not. If (vi, vj) ∈ Et, we say vi and vj
are adjacent. We assume the time during which the network

is observed is finite, from tstart until tend; Without loss of

generality, we set tstart = 0 and tend = T . The dynamic MSN in

the time interval [0, T ] is expressed as a time-ordered network

G = {G0, . . . , GT }.

III. FRAMEWORK OF CENTRALITY EVALUATION

This section details our framework of centrality evaluation,

which comprises of two parts: (i) the social relations analysis,

and (ii) the centrality quantification. In the former, direct and

indirect social relations are explored, respectively. In the latter,

the concept of influence spheres is introduced first and then a

centrality measure is proposed.

A. Analysis of Direct Social Relations

The transient nature of the connectivity among nodes, which

enables messages to travel over the MSNs, yields challenges

in detecting the interaction probabilities among nodes. Since

direct interactions among nodes only occur when nodes come

into the wireless transmission range of each other, direct social

relations arising from physical proximity (contact) need to be

analyzed to evaluate interaction intensity (influence strength).

Previous studies have proposed diverse metrics to extract the

intensity of direct social relations, such as encounter frequency

(EF), total contact duration (TCD), and average separation

period (ASP) [7], [8]. But all those metrics have some in-

adequacies in reflecting the interaction intensity arising from

the contacts. For example, consider the six contact patterns

in Fig. 1, where the shaded boxes represent the contacts’

duration. Comparing case (a) with case (b), we notice that

EF (a) = EF (b) but TCD(a) < TCD(b). Hence, the contact

pattern (b) captures a stronger interaction. In cases (b) and (c),

TCD(b) = TCD(c) but EF (b) < EF (c). Since frequent

encounters bring more interactions, pattern (c) is preferable.

Among the previous metrics, the metric EF cannot differ-

entiate between case (a) and case (b), and the TCD cannot

differentiate between case (b) and case (c). Although ASP
can assign correct link weights in cases (a), (b) and (c),

it fails in other cases. For example, consider case (c) and

case (d). If t1 = t2, ASP cannot differentiate between them

 !
"#$%

&'(

 !
"#$%

&)(

"#$%

 !
"#$%

&*(

 !&+(  !
"#$%

&,(

 !
"#$%

&%(

Fig. 1: Six different contact patterns between nodes vi and

vj during [0, T ], where shaded boxes represent the encounter

duration between them.

but case (d) is preferable due to the longer uninterrupted

contact duration. Similarly, if t2 = t3, ASP cannot differ-

entiate between case (d) and case (e), even though case (d)

offers better content transmission opportunities. Meanwhile,

the variance of the contact time is also a factor reflecting

the irregularity in the relationship, but all the three metrics

are unable to reflect it. Such as for case (c) and case (f),

if t3 = t4, then EF (c) = EF (f), TCD(c) = TCD(f),
ASP (c) = ASP (f). Since a more stable encounter duration

captures a more stable content transmission, the relationship

in case (c) is preferable to interaction opportunity.

To find a metric that reflects the direct social relation more

accurately, we propose a new metric, Social-Relation Stabil-

ity (SRS), by taking into consideration the aforementioned

three factors: frequency, duration, and regularity. The idea

is as follows: calculate the contribution of each encounter

by the sine function and add them up. We denote Θvi,vj as

the contact patterns between nodes vi and vj during [0, T ],
Θvi,vj = {θ1, . . . θK} (

∑

θk ≤ T ), where θk is the duration

of the k-th encounter. Hence the SRS metric is defined as

SRSvi,vj =

∑K

k=1
f (θk)

π/2
, (1)

where f (θk) = sin(πθk/2T ). Note that, since the sine

function is monotonically increasing and concave in the partial

interval, the value of SRS is positively correlated with the

frequency, the longevity, and the regularity of interactions.

Next, we will mathematically prove the validity of the SRS

metric (in Lemma 1-3) and discuss the range of metric values

(in Corollary 1).

Lemma 1: The SRS value is positively correlated with

contact frequency.

Proof: Without loss of generality, we assume the total

contact duration is constant and contacts’ duration are regular.

Substituting f (θk) into (1), we can get

SRSvi,vj =
2

π
·

K
∑

k=1

sin

(

π

2
·
θk
T

)

. (2)

Due to the regular contacts’ duration, i.e., ∀θk, θt ∈
Θvi,vj , θk = θt, (2) can be rewritten as

SRSvi,vj =
2

π
·K · sin

(

π

2
·
Tmeet/K

T

)

, (3)



where Tmeet denotes the total contact duration, Tmeet =
∑

θk∈Θvi,vj
θk. Since ∂SRSvi,vj/∂K > 0 when K ≥ 1

(SRSvi,vj = 0, when K = 0), SRSvi,vj increases with the

increasing of K . Thus, the SRS value is positively correlated

with contact frequency.

Lemma 2: The SRS value is positively correlated with

contact duration.

Proof: Similarly, we assume the contact frequency is

constant and contacts’ duration are regular. Due to the regular

contacts’ duration, the SRS metric can be also derived as

(3). Since ∂SRSvi,vj/∂Tmeet > 0 within [0, T ] and the

encounter frequency K is a constant, SRSvi,vj increases with

the increasing of Tmeet. Thus, the SRS value is positively

correlated with contact duration.

Lemma 3: The SRS value is positively correlated with

contact regularity.

Proof: For each θk ∈ Θi,j , 0 ≤ θk ≤ T , i.e.,

πθk/2T ∈ [0, π/2], so f (θk) is concave. According to the

Jensen Inequality, we can obtain

f

(∑

akθk
∑

ak

)

≥

∑

akf(θk)
∑

ak
, (4)

where ak is the positive weights.

Let the weights ai are all equal and denote θ̄ as the average

contact duration, θ̄ = Tmeet/K , then (4) become

2

π
·K · sin

(

π

2
·
θ̄

T

)

≥
2

π
·

K
∑

k=1

sin

(

π

2
·
θk
T

)

. (5)

Thus, for two encounter patterns with the same frequency and

duration, the more regular one gets a larger SRS value.

Corollary 1: The range space of the SRS value is [0, 1].
According to the lemma 1-3, the SRS metric gets the

maximum value when Tmeet is close to T and each duration

tk is almost the same and infinitesimal, and gets the minimum

value when no encounter occurs. The following proof is about

max (SRS).
Proof: The SRS metric gets the maximum when the

following conditions hold:

• ∀θk, θt ∈ Θvi,vj , θk = θt;
• Tmeet = T ;

• K → ∞.

Since θk = θt, ∀θk, θt ∈ Θvi,vj , the SRS metric can be

derived as

SRSvi,vj =
2

π
·K · sin

(

π

2
·
θ̄

T

)

. (6a)

Then Tmeet = T , thus

SRSvi,vj =
2

π
·K · sin

(

π

2
·
1

K

)

. (6b)

Finally, as K → ∞, we have

SRSvi,vj →
2

π
·
π

2
= 1. (6c)

Thus max(SRS) = 1.

It is immediate to prove min (SRS) = 0. To illustrate the

efficacy of the proposed SRS metric, we utilize the metric

to evaluate the direct social relations of cases in Fig. 1 and

compare with existing methods, LocalCom [7] and TCCB [8].

The experimental results in Table I show that LocalCom and

TCCB, which are based on ASP , fail to differentiate among

cases (c)-(f), while our metric can accurately indicate which

case supplies more interaction opportunities as argued earlier.

TABLE I: Evaluation Results of the Cases in Fig. 1

Cases a b c d e f

LocalCom 0.483 0.485 0.493 0.493 0.493 0.493

TCCB 2.400 2.418 2.510 2.510 2.510 2.510

SRS metric 0.199 0.487 0.494 0.716 0.167 0.493

B. Analysis of Indirect Social Relations

According to the SRS metric, the direct influence between

each pair of adjacent nodes can be evaluated. However, apart

from direct influence, indirect influence among nodes may

come from indirect interactions via neighboring nodes. This

type of indirect influence also plays a significant role in

centrality evaluation, especially in the absence of strong direct

relations among nodes. To further explore indirect influence,

an indirect SRS (in-SRS) metric is proposed to reflect the

indirect social relations among nodes. Considering a pair of

nodes, vi and vj , we say indirect influence exists between

them if there is a set of nodes Q = {qj}, qj ∈ V such

that an indirect interaction between vi and vj can be bridged

through those nodes. Here, the in-SRS value is defined as

the probability of influencing through all possible indirect

interactions. Thus, the in-SRS metric between vi and vj is

expressed as

in-SRSvi,vj = Pr (l1 ∪ l2 ∪ · · · ∪ lR) (7)

= 1−

R
∏

r=1

(

1− PIvi,vj (lr)
)

, (8)

where PIvi,vj (lr) denotes the indirect influence of the r-

th indirect interaction, and is defined as the product of all

intermediate direct social relations. Formally,

PIvi,vj (lr) = SRSvi,q1 ·

S−1
∏

s=1

SRSqs,qs+1
·SRSqS,vj

. (9)

C. Evaluation of Node Centrality

By evaluating the direct and indirect social relations, we

can derive the influence range of each node and the influence

strengths of it on the nodes within its influence range. We

construct the influence sphere of each node by the set of nodes

having the influence on it (including the direct and indirect).

Formally, ICvi = {F,W} denotes the influence sphere of

node vi, where F is the friends set of vi,

F (vi) = {vj |SRS(vi, vj) 6= 0

or in-SRS(vi, vj) 6= 0},
(10)



and W (vi) = {wvi,vj}, vj ∈ F , is a set of influence strengths

between vi and its friends,

wvi,vj = 1−
(

1− SRSvi,vj

) (

1− in-SRSvi,vj

)

. (11)

Since each influence sphere contains all possible influence

members of a node, the task of quantifying the node centrality

in the whole networks shifts to quantifying the influence of

nodes in their influence spheres. Hence, this paper proposes a

Social-Relation based Centrality (SoReC) measure to quantify

the centrality of users on the basis of Entropy theory.

The entropy notion is introduced in thermodynamics and has

been widely used in information science and statistical physics

to describe the probability distribution of a given system. In

this paper, we employ entropy to evaluate the distribution

of influence strengths in the influence spheres. Consider a

influence sphere of vi, ICvi . The influence probability of node

vi on node vj ∈ ICvi is expressed as

Pvi (vj) =
wvi,vj

∑

vq∈ICvi
wvi,vq

. (12)

Thus, the influence entropy of node vi is defined as

H (vi) = −
∑

vj∈ICvi

Pvi(vj) · log2Pvi(vj). (13)

Based on Entropy theory, the node with wider influence

range and uniform influence probability has higher influence

entropy. However, the influence entropy slights the weights

of social relations, which reflect the actual influence among

nodes. Thus we add the weight information into centrality

measure and update the measure as

SoReC (vi) = H (vi) ·
∑

qi∈ICvi

wvi,qi . (14)

IV. SIMULATION

Next, we employ the Susceptible-Infected-Recovered (SIR)

model [17] to simulate the spreading process on MSNs and

carry the simulations on the real-world mobility networks.

A. Experimental Settings

1) Dataset: The simulations in this work are based on two

widely used real-world datasets: (i) MIT Reality Mining Data

(Reality) [14], and (ii) UCSD Wireless Topology Discovery

Trace (WTD) [18]. In Reality, Bluetooth data are recorded

by 97 smartphones deployed on students and staff at MIT

over 246 days. In WTD, WiFi data are recorded by 275 PDAs

carried by freshmen students at UCSD over 11 weeks. The

details about the datasets are illustrated in Table II. We extract

the contact records from the partial data of the two datasets

for our simulations. Each processed records includes the start

and end time of each encounter and the IDs of the nodes in

contact.

TABLE II: Characteristics of Two Datasets

Dataset Reality [14] WTD [18]

Device Phone PAD

Network type Bluetooth WiFi

Contact type direct Ap-based

Duration (days) 246 77

Number of nodes 97 275

Number of contacts 54,667 135,364

2) SIR Model: We use the SIR model to simulate spreading

processes on networks and test the influence of every node.

In SIR, every node is initialized to be the susceptible state,

and they may convert to the infected state with probability λ
when contacting an infected node. In addition, the infected

nodes may recover over time, and recovered nodes will not

be infected. During the simulation period, for a given initial

infected node, the number of infected and recovered nodes

(influence range), and the average time of infection (influence

speed) are recorded and used as its actual influence ability.

3) Evaluation Metrics: Pearson correlation coefficient is

used to test whether the influence range (or the influence

speed) correlates with nodes centrality values under different

situations, which can be expressed as

ρX,Y = Cor (X,Y ) , (15)

where X is the ranking list by different centrality measures

and Y is the ranking list by the actual influence ability.

B. Experimental Results

Firstly, we evaluate the prediction ability of the proposed

measure. In this part, the former portion of the dataset is used

as the contact history data for the centrality quantification.

The remaining portion is used as the test data for the ac-

tual influence ability test. In addition, we also evaluate the

performance of traditional measures, including Betweenness,

Closeness, [9], and PageRank [11], as baseline comparison.

Figs. 2a, 2b, 2d, 2e illustrate the correlation between the

actual influence strength (range and speed) and the predicted

value of node centrality under different networks. The perfor-

mance of each measure varies in different networks. In Reality,

the Closeness measure performs better than the Betweenness,

but the opposite is true in WTD. But overall, the four measures

can well predict the centrality of nodes in the future and

the performance decreases with the increasing period between

prediction and test. By contrast, the correlation coefficients of

our measure are systematically the largest, which means that

the SoReC measure can quantify the centrality of nodes more

accurately in dynamic MSNs. In addition, we detail the ability

of our metric in the centrality evaluation, shown in Fig. 2d, 2f.

Since the effects turned out to be similar on influence range

and speed, we only show the results on the influence range.

In Fig. 2d, 2f, the X-axis is the rank of nodes and Y-axis

is the average actual influence range of top-L nodes ranked

by different centrality measures. Notice that the benchmark

curve is based on the actual rank, i.e., the benchmark list is

ranked by the actual influence range. We can observe that our

curves are closest to benchmark curve under both datasets,
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Fig. 2: The simulation results under different indicators, where (a)-(c) are the Pearson correlation coefficients between predicted

centrality rank with actual influence range rank and actual influence speed rank as well as the measurement accuracy under

the Reality traces, while (d)-(f) are those under the WTD traces.

and the advantage of our method is most marked in the head

of the distributions. The results illustrate that our measure has

an advantage in the centrality evaluation over other methods,

especially in the identification of influential users.

V. CONCLUSIONS

In this paper, we captured social relations to study links

among users, and on this basis, proposed SoReC to identify

influential users in MSNs. Through theoretical derivations and

experimental verification, the SoReC measure we proposed is

proved to able to accurately quantify the centrality of nodes in

MSNs. In addition, the SoReC measure performs better than

traditional measures in terms of centrality prediction. Despite

the promising results, our model still requires a knowledge of

the global network topology. In the future, we will attempt

to identify the influential users in a distributed fashion, or by

relying on a mix of global and local information [16]. We will

then leverage our framework to redesign proofs-of-concept of

some popular services and applications in MSNs.
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