
Synthesis of Asynchronous Circuits Using Early Data Validity

N. Gupta and D.A. Edwards
Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

{guptan, doug}@cs.man.ac.uk

Abstract

Interest in asynchronous circuit design is increasing
due to its promise of efficient designs. The quiescent
nature of asynchronous circuits allows them to remain in
a stable state until necessary wire transitions trigger an
event to occur. This avoids synchronizing events using a
global clock tree, which can consume a large amount of
energy. The need for low power and high performance
circuits leads to investigation of various asynchronous
design styles.

The work presented here provides an overview and
novel implementation of synthesizing asynchronous
circuits using an early data validity protocol.
Conventional asynchronous tools synthesize circuits using
a broad data validity protocol, which leads to simple
circuits, but non-overlapped sequencing of consecutive
operations. The early protocol requires data to be valid
for a shorter period, allowing consecutive operations to
overlap phases. The resulting circuits have a potential
increase in performance by allowing greater concurrency
and earlier execution of events.

1. Fundamentals of Asynchronous Design

The basic concept of asynchronous circuit design is the
absence of a global clock to synchronize the transfer of
data. Removal of the global clock eliminates the massive
switching network that usually consumes a large amount
of energy and dictates the speed of synchronous circuits.
Other benefits of asynchronous circuits include increased
modularity and lower noise and EM emission. Examples
of these properties are described in [4]. Without a clock to
signal when data is available, the notion of handshakes is
introduced.

1.1 Handshaking

Handshakes occur between two or more circuit
elements that require a synchronous transfer of data and/or
control between them. Handshakes are generally
implemented through the use of request and acknowledge
wires and data channels between elements [16]. Between

two elements, one actively initiates the handshake by
sending out a request while one passively waits for this
request. Once the passive unit receives the request, an
acknowledgement is sent, signifying the receipt of data or
transfer of control. Other similar handshake protocols exist
for asynchronous circuits depending on the application and
direction of data transfer [16].

Figure 1 and Figure 2 illustrate the difference between
synchronous and asynchronous circuit flow where R* are
synchronous registers, CL are blocks of combinational
logic, and CTL blocks are elements controlling the
handshaking between asynchronous stages. The clock
controls when circuit components can read and write data
for synchronous circuits, whereas the request and
acknowledge signals control when circuit components can
read and write data for asynchronous circuits.

Figure 1. Synchronous circuit flow diagram

Figure 2. Asynchronous circuit flow diagram

1.2 Data Encoding

In synchronous design, data is often binary encoded
where each wire represents one bit of data. For
asynchronous circuits, different choices of data encoding
are made based on the resulting difference in performance,
area, and power characteristics. Two major encoding
schemes are bundled data and delay-insensitive encodings
[16].

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Bundled data (also known as single-rail) encoding is
illustrated in Figure 2, where request and acknowledge
wires are bundled with the binary encoded data to indicate
data validity. Advantages of this encoding include the
ability to use the same combinational logic blocks used in
synchronous circuits, and easy separation of control from
datapath. Bundled data schemes can result in smaller,
simpler, low power circuits and usually results in more
efficient circuits than delay-insensitive circuits [16]. But
this data encoding often requires explicit delay elements to
be added along the control path to ensure data becomes
valid before the receiving unit is signaled.

Delay-insensitive circuits encode each bit of data across
multiple wires. Transitions on one or more of these wires
indicate data validity, thus encoding the request signal
within the data. Once all the bits of data are realized (i.e.
transitions have completed for each bit of data), an
acknowledgment is sent and the circuit enters a reset
phase, known as the return-to-zero phase, where all the
wires reset to zero. A four-phase handshake is the
common term for the process of raising the request and
acknowledge signals followed by resetting them. The
advantage of delay-insensitive circuits is that no delay
elements are needed within the circuit since the request is
encoded within the data; thus the circuit will execute as
fast as the logic allows. However, due to the extra wires
needed to encode the data, circuits tend to be larger and
extra logic is needed to realize the data bits. A common
technique to realize the data bits is to use trees of Muller
C-elements [16], which results in greater area and
degraded performance.

Due to the nature of four-phase delay-insensitive
circuits, consecutive operations cannot be overlapped. A
complete four-phase handshake must occur before the next
operation since the request is encoded within the data. The
next request cannot be sent out before the current
operation resets the data. However, for bundled data, the
request signal is separate from the data, which allows for
varying periods of data validity and possible overlapping
of operations. The work presented here revolves around
four-phase single-rail handshake circuits [13] and the
corresponding data validity protocols.

2. Data Validity Protocols

Three main data validity protocols exist for single-rail
circuits: early, broad, and late [13]. Figure 3 and Figure 4
illustrate the time periods when data becomes valid (clear
region) and invalid (X region) for each of the three
different protocols, depending on whether the circuit
element is actively pushing (sending) data or actively
pulling (receiving) data. The figures show the data validity
for a four-phase handshake on the request and
acknowledge wires, where the request wire acts as the data

validity signal for push channels and the acknowledge
wire acts as the data validity signal for pull channels. A
detailed explanation of four-phase handshake protocols for
single-rail circuits is described in [13].

Figure 3. Single rail push channel data validity
diagram

Figure 4. Single rail pull channel data validity
diagram

For the early protocol, the data only remains valid for
one phase of the handshake in which the data must be
processed. The data is assumed to be invalid for the
remainder of the handshake. For the broad protocol, the
data remains valid throughout the entire handshake, and
for a pull channel, remains valid until the start of the next
handshake. For a late protocol, the data is assumed to only
be valid during the return-to-zero phase of the handshake.
Because of the inverted logic needed for implementing
late pull channels, late protocols are unfavorable and are
not addressed in this work.

3. Motivation

The primary motivation behind implementing an early
data validity protocol is the ability to achieve greater
concurrency between operations. Figure 3 and Figure 4
illustrate how the data is assumed to be invalid during the
return-to-zero phase of the four-phase handshake. This
means all data processing must be done before the circuit
element starts the return-to-zero phase. Once the return-to-
zero phase begins, data is allowed to change and can no

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

longer be processed. Since no useful data processing
occurs during the return-to-zero phase, the next operation
can begin while the current operation resets. Thus the
processing phase of the next operation is overlapped with
the return-to-zero phase of the current operation.

Figure 5. Normal sequencing as implemented
using the broad data validity protocol

Figure 6. Concurrent sequencing as implemented
using the early data validity protocol

Figure 5 illustrates the normal broad sequencing of
operations and Figure 6 demonstrates the overlapping of
sequential operations (or processes), where the P* blocks
represent the data processing phase of a handshake and R*
blocks represent the return-to-zero phase of a handshake.
For the broad protocol, the data processing can be delayed
until the return-to-zero phase since the data remains valid.
However, this can create bottlenecks between consecutive
handshakes because data is only allowed to change
between handshakes. Since the circuit stalls the data
validity signal until the data becomes valid, a potential
bottleneck will occur if there is a large delay to set up the
data for the next operation. In the early protocol, data for
the next operation can be set up as soon as the processing
completes for the current operation, thus allowing the data
to be valid much sooner and reducing bottlenecks between
handshakes.

Previous investigation into the early protocol resulted
in belief that circuits would result in degraded

performance compared to the broad protocol [12].
Implementations of various early control circuits are
described in [12], with the conclusion that broad circuit
implementations are simpler and consume less power than
the equivalent early implementations. Although early
circuits tend to contain extra logic to implement the
protocol, this investigation did not consider that early
circuits have a performance advantage over broad circuits
by overlapping operations as described above. The result
of overlapping operations in this way results in greater
concurrency and allows the circuit to execute a sequence
of operations much faster than the equivalent broad circuit.

4. Implementation

The early data validity protocol has been integrated as a
back-end to the Balsa asynchronous circuit synthesis tool
developed at the University of Manchester [8]. The Balsa
toolkit is similar to the Philips Tangram compiler [9][15]
and uses the paradigm of handshake circuits [3] to compile
design descriptions, written in the Balsa language [7], into
networks of interconnected handshake components. Using
the set of Balsa tools and commercial CAD tools, a gate-
level netlist and layout can be produced from the
handshake components.

The protocol was integrated into the back-end by
designing circuit implementations for each of the
handshake components. A set of the available handshake
components and their operation can be found in [2]. A
typical handshake component waits for an activation
signal to start the operation of the component. For
example, the Sequencer component waits for an activation
request before beginning a sequence of operations. Once
the Sequencer receives this activation signal, activation
request signals are sequentially sent out to start the
connected processes (see Figure 7). Once the current
process has finished processing, it sends an
acknowledgement back to the Sequencer component. This
acknowledgement signals that the current operation is
complete and the next operation can occur. For the broad
protocol, a complete four-phase handshake must occur
between the Sequencer component and the current process
before starting a handshake with the next process (see
Figure 5). For the early protocol, the Sequencer
component sends out the next activation request signal as
soon as the current process acknowledges. The next
activation request occurs in parallel with the return-to-zero
phase of the current handshake, thus creating the overlap
illustrated in Figure 6. The design for the Sequencer
component is based on the concurrent sequencers
described in [14].

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Figure 7. Handshake diagram for Sequencer
component

Handshake components like CL in Figure 2 often
modify the incoming data, but simply propagate the
request and acknowledge signals between the input and
output. To take advantage of the early protocol, special
circuits were designed to decouple the return-to-zero
phases of the input and output. By the time the return-to-
zero phase of the input occurs, all data processing has
occurred. Thus performing the return-to-zero phases of the
input and output in parallel is safe.

Figure 8 and Figure 9 show the logic and timing
diagram of the circuit (named Call element) designed to
decouple the return-to-zero phases. Once the input begins
the return-to-zero phase, the input and output return-to-
zero phases operate independently, allowing the input to
set up for the next operation and activate the next input
request before the output finishes its handshake. However,
the next input request will not propagate to the output until
the output has completed the return-to-zero phase of the
current operation.

Figure 8. Logic circuit for the Call element

Similar methods to decouple return-to-zero phases have
been previously explored [5][10][11], but have yielded
circuits that are more complex and do not necessarily take
full advantage of the early protocol. They also do not
address the issue of circuit synthesis. The protocol
presented here is applied to the synthesis of asynchronous
circuits using handshake components. [10] provides

designs for decoupled latch control circuits, but these
controllers are compatible with the broad protocol, not
with the early protocol. For the early protocol, as soon as
the input is acknowledged, the data is allowed to change.
Thus the data must be latched and the latch disabled
before the input is acknowledged. Another major
difference is that these latch controllers fit into a push-
style micropipeline [17] style circuit, whereas the Balsa
back-end provides a pull-style implementation using
handshake circuits. Future work may involve investigating
and integrating a micropipeline architecture into the Balsa
back-end that uses decoupled latch controllers to provide a
behavior similar to the early protocol while reducing the
control overhead and need for added matched delays.

InR

InA

OutR

OutA

Figure 9. Timing diagram for the Call element

5. Evaluation

The early Balsa back-end has been tested on a Balsa
design [1] of the Small Scale Experimental Machine
(SSEM) developed at the University of Manchester and a
Balsa design of a MIPS processor. The SSEM design is a
32-bit accumulator processor capable of performing
arithmetic, logic, memory load, and memory store
instructions. Extracted SPICE netlists of the designs were
imported into Synopsys VCS/nanosim using 0.18 um
technology from STMicroelectronics operating at 1.8V
and 25°C. The SSEM design was tested with the Greatest
Common Divisor testbench while the MIPS processor was
tested with Dhrystone. Results of the simulations indicated
an average of a 10% increase in performance and 40%
increase in power dissipation by using the early protocol
versus the broad.

The increase in power is due to a number of factors. A
decrease in simulation time while executing the same logic
increases the power dissipation. Also, since extra latches
and latch control logic are required to control dataflow in
the early components, more transitions are required. This
extra logic also decreases the performance improvement of
the early back-end. Delays on the request-to-acknowledge
path must be added to ensure data is properly latched and
latches disabled. This increases the time needed before a
component can acknowledge the receipt and processing of
data, whereas the broad can acknowledge the receipt of
data and process the data later. Thus if the return paths are

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

fairly short, the early protocol may not benefit as much
over the broad protocol.

Although the expected increase in power dissipation
appears large, the actual energy consumed is the important
metric for comparison since energy consumption accounts
for the increase in both performance and power. The
actual increase in energy consumption is less than 25%,
which is a favorable tradeoff considering the 10%
performance increase. Future testing will involve running
other benchmarks on the MIPS processor and simulating
the design of a Java aware SPA processor [6]. These
results are expected to produce similar increases in
performance and energy consumption. These results will
be analyzed to determine where improvements can be
made in the implementation of the early handshake
components.

6. Conclusions

A novel implementation of asynchronous circuit
synthesis using an early data validity protocol is presented
here. The fact that data does not need to remain valid
throughout an entire handshake was exploited. Circuits
were produced to achieve greater concurrency by
overlapping the return-to-zero phase of one operation with
the processing phase of the next operation. Test results
show a favorable tradeoff between the increase in
performance and increase in energy consumption that may
be achieved using this implementation. Future tests of
various circuit designs are expected to produce similar
performance improvements.

7. References

[1] A. Bardsley. Balsa: An Asynchronous Circuit Synthesis
System. Masters Thesis, Department of Computer Science, The
University of Manchester, 1998.

[2] A. Bardsley. Implementing Balsa Handshake Circuits. Ph.D.
Thesis, Department of Computer Science, The University of
Manchester, 2000.

[3] C. H. van Berkel. Handshake Circuits - An asynchronous
architecture for VLSI programming. Cambridge International
Series on Parallel Computers 5. Cambridge University Press,
1993.

[4] C. H. van Berkel, M. B. Josephs, S. M. Nowick. Scanning the
technology: Applications of asynchronous circuits. Proceedings
of the IEEE, 87(2): pp. 223-233, February 1999.

[5] A. Bystrov, D. Shang, F. Xia, A. Yakolev. Self-timed and
speed independent latch circuits. In Proceedings of the 6th UK
Asynchronous Forum. University of Manchester, July 1999.

[6] P. Capewell. JASPA - Java Aware SPA. Department of
Computer Science, The University of Manchester, 2004. URL
http://www.cs.man.ac.uk/apt/projects/processors/spa/ jaspa.html

[7] D. A. Edwards, A. Bardsley, L. Janin. Balsa: A Tutorial
Guide, Department of Computer Science, The University of
Manchester, 2003.

[8] D. A. Edwards, A. Bardsley. Balsa: An Asynchronous
Hardware Synthesis Language. In The Computer Journal, Vol.
45, No. 1: pp. 12-18, British Computer Society, 2002.

[9] C. Farnsworth, D. A. Edwards, J. Liu, S. S. Sikand. A Hybrid
Asynchronous System Design Environment. In Proceedings of
the 2nd Working Conference Asynchronous Design
Methodologies: pp. 91-98, May 1995.

[10] S. B. Furber, P. Day. Four-Phase Micropipeline Latch
Control Circuits. In IEEE Transactions on VLSI Systems, 4(2):
pp. 247-253, June. 1996

[11] M. B. Josephs, J. T. Yantchev. CMOS Design of the Tree
Arbiter Element. In IEEE Transactions on VLSI Systems, 4(4):
pp. 472-476, Dec. 1996.

[12] J. Liu. Arithmetic and Control Components for an
Asynchronous System. Ph.D. thesis, Department of Computer
Science, The University of Manchester, 1998.

[13] A. M. G. Peeters. Single-Rail Handshake Circuits. Ph.D.
Thesis, Technische Universiteit Eindhoven, Eindhoven, The
Netherlands, 1996.

[14] L. A. Plana. Contributions to the Design of Asynchronous
Macromodular Systems. Ph.D. Thesis, Department of Computer
Science, Columbia University, NY, US, 1998.

[15] F. D. Schalij. Tangram Manual. Tech. Rep. UR 008/93,
Philips Electronics N.V., 1995.

[16] J. Sparso, S. Furber. Principles of Asynchronous Circuit
Design. Kluwer Academics Publishers, 2001.

[17] I. E. Sutherland. Micropipelines. In Communications of the
ACM, vol. 32, No. 6: pp. 720-738, June 1989.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

