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ABSTRACT

Classification of hyperspectral scenes has been dominated
in recent years by Convolutional Neural Networks (CNNs).
Spectral and spatial convolutions have proven to be very ef-
fective in learning discriminative representations. The power
of CNNs however is limited by their small receptive fields.
Training deeper CNNs with wider receptive fields is a very
difficult task with regard to the small amount of available
training samples. Furthermore, CNNs seem to fail in cap-
turing very local spectral features such as absorption peaks.
In the present paper, we introduce a new paradigm inspired
by physics-based hyperspectral indices and attention mecha-
nisms. Our model learns spectral indices by focusing on spe-
cific spectral bands through soft attention units. It achieves
high or better overall accuracy and kappa score than state-of-
the-art CNNs on Pavia University, Kennedy Space Center and
our own real-world dataset while dramatically reducing the
number of parameters needed and increasing interpretability.

Index Terms— Hyperspectral classification, spectral in-
dices, attention mechanism

1. INTRODUCTION

In recent years, machine learning methods have been per-
formed successfully in the field of remote sensing. Hyper-
spectral imagery especially has raised a growing interest in
computer vision methods to monitor land use and land cover.
A recent comparative review on hyperspectral (HS) classifica-
tion has shown that CNNs outperform conventional machine
learning models [1]. They can indeed deal very well with
the high dimensionality of the data and highlight discrimina-
tive spectral characteristics. CNNs can also embed simultane-
ously spectral and spatial features in a common representation
space with higher class separability.

However, the weakness of CNNs holds in their narrow re-
ceptive fields [2]. In order to learn spectral long-range depen-
dencies, CNNs must either go deeper or use fully-connected
layers that are driving up the number of parameters. Both so-
lutions are not optimal with regard to the availabilty of labeled
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training samples in remote sensing. The high ratio of the
number of the models parameters over the number of training
sample raises a high concern for generalization capabilities.

To mitigate this issue, regularization techniques are
widely used even though they rely on the tuning of penal-
ization coefficients. Furthermore, attention mechanisms have
recently generated a lot of interest in computer vision as an
alternative to CNNs [2]. Some attempts to introduce spectral
attention in hyperspectral classifiers have been made. Liu et
al. introduced a model that computes attention vectors on
spectral groups through fully-connected layers with a sig-
moid activation [3]. If the use of a softmax unit would have
led to more parsimonious attention, it also causes vanishing
gradients due to the high spectral dimension of the data. Haut
et al. include spatial-spectral attention masks within a resid-
ual CNN. Those masks are computed by residual blocks with
downsampling and upsampling operations to increase the size
of the attention receptive field [4].

Meanwhile, hyperspectral indices based on chemical
knowledge of materials are well suited to focus on specific
bands in order to highlight some spectral characteristics. For
instance, they can easily discriminate plastics based on spe-
cific absorption peaks [5]. As far as spectral indices rely on
the chemical composition of materials, they can be used for
various sensors and geographic areas.

In order to circumvent the problems raised by CNNs, we
introduce a new model that statistically learns hyperspectral
indices through an attention mechanism. Unlike the previous
work on spectral attention, our model is more straightforward,
needs much less parameters and leads to more parsimonious
attention, at the expense, however, of a lower model capacity.

2. METHOD

In this section, we present the architecture of our model.
We argue that spectral indices, ie. linear combination of
bands are well suited to provide discriminative and easily
interpretable features for classification. This is actually what
fully-connected neural networks (FNNs) do and one could
interpret the first hidden layer of FNNs as spectral indices.
FNNs although do not perform as well as CNNs on clas-
sification tasks [1] and their physics-based interpretation is



hard even with additional parsimony constraints. This is why
we introduce a naturally parsimonious model with very few
parameters that leads to clear spectral attention.

We denote our model by f and the spectrum of a given
pixel by a B × 1 vector sss where B is the number of spectral
bands. The output of the model f(sss) is a probability distribu-
tion over the C classes:

f(sss) = Softmax
(
WT I(sss) + bbb

)
(1)

where W is a N × C matrix of weights, b is a C × 1 bias
and I(sss) is a N × 1 matrix of N hyperspectral indice (HSI)
unit defined as:

In(sss) = ReLU
( kn∑
i=1

wiSi(sss)
)
∀n ∈ {1, ..., N} (2)

where wi are learnable coefficients and Si(sss) are soft-
band attention (SBA) units defined as the dot product of a
spectrum sss and a B × 1 attention vector aaai:

Si(sss) = aaaTi sss (3)

The attention vector aaai is parametrized by a learnable pa-
rameter µi which defines where to focus and by a hyperpa-
rameter σ which defines the size of the spectral domain of
attention:

aaai =

(
1

σ
√
2π
e−(b−µi)

2/2σ2

)
b∈{1,...,B}

(4)

The complete architecture of the model is illustrated in
figure 1.

Fig. 1. Schematic view of our HSI learning model

3. NUMERICAL EXPERIMENTS

The model is implemented in PyTorch and released on
GitHub upon publication 1. We have added our model to the
DeepHyperX toolbox [1].

1https://github.com/Romain3Ch216/DeepHyperX

3.1. Datasets

We conduct experiments on three hyperspectral datasets:
Pavia University, Kennedy Space Center and our own dataset
denoted as Mauzac. The dataset will be available on request
upon publication. Sensors spectral range, ground sampling
distance (GSD) and available labeled data are summarized in
table 2. False color RGB images are shown on table 1.

Pavia University is one of the main reference hyperspec-
tral dataset acquired by ROSIS sensor. We use the radiance
hypercube and the standard train/test split provided by the
IEEE GRSS DASE website [6]. Those train and test sets are
more independant than a random train/test split as far as one
geo-entity does not belong to both sets. Thus, this ground
truth is more likely to evaluate the generalization capability
of the models to new geographic areas.

The Kennedy space center (KSC) dataset is acquired by
the sensor AVIRIS. The training, validation and test sets are
selected from disjoint parts of the image. About 20% of the
available samples are used for training, 5% for validation and
75% for evaluation.

The Mauzac dataset was acquired by the sensor AISA-
FENIX. Atmospheric correction using COCHISE software
[7] is applied on the image in order to convert the radiance
hypercube to reflectance. Water absorption bands as well as
noisy bands are removed, resulting in 257 reliable bands. We
build the ground truth of Mauzac with the same degree of
rigour than the DASE benchmarking initiative. For the learn-
ing and the test sets, we select geo-entities with different illu-
minations, if possible, and of a slightly different natures.

3.2. Comparison with state-of-the-art models

We compare our model with the state-of-the-art hyper-
spectral classifiers identified by Audebert et al. in their 2019
comparative review [1].

Spectral CNN - Hu et al. [8] The CNN of Hu et
al. learns a collection of 1D convolutions, operates a max-
pooling operation and feeds the resulting vector in a 2-layer
fully-connected neural network. The kernel size is set ac-
cording to an empirical rule from the original paper to 12 for
Pavia University, to 25 for Kennedy Space Center and to 29
for Mauzac. Thus, the convolutions are only able to learn
local middle-range dependencies.

Spectral-spatial CNN - Li et al. [9] The CNN of Li et
al. has two layers of 3D convolutions. The kernel size of
the first and second convolutions are respectively 7 x 3 x 3
and 3 x 3 x 3 for every datasets (as in the original paper).
The resulting flattened vector then feeds one fully-connected
layer. As well as Hu et al. model, those 3D convolutions
cannot learn spectral long-range dependencies.



Table 1: False color RGB images. From left to right: Pavia University, Kennedy Space Center and Mauzac.

Pavia University Kennedy Space Center Mauzac
430 - 860nm — 1.3m GSD 400 - 2500nm — 18m GSD 420 - 2500nm — 0.55m GSD

Classes Samples Classes Samples Classes Samples
Self-blocking bricks 514 Scrub 144 Vegetation shadows 455
Meadows 540 Willow swamp 48 High vegetation 402
Gravel 392 Cabbage palm hammoc 57 Ground Vegetation 1293
Shadows 231 Cabbage palm/oak hammock 47 Dry vegetation 786
Bitumen 375 Slash pine 39 Bare Soil 229
Bare Soil 532 Oak / broadleaf hammock 46 Water body 452
Painted metal sheets 265 Hardwood swamp 26 Pool 150
Asphalt 548 Graminoid marsh 82 Pool cover 105
Trees 524 Spartina marsh 101 Curbstone 176

Cattail marsh 79 Tile 1448
Salt marsh 77 Asphalt 474
Mud flats 96 Other shadows 331
Water 184

Table 2: Spectral range, GSD and number of training samples per class

3.3. Model hyperparameters and training

The models are trained on a machine with a single Nvidia
GPU and on an 8-core Intel i7 CPU.

For every datasets, metrics on the validation sets show
that best standard deviation for every SBA units is 0.5, lead-
ing to sharp spectral attention. For the Mauzac dataset, 20
HSI units with 3 SBA units are used. For the Kennedy Space
Center dataset, 20 HSI units with 3 SBA units, 10 HSI units
with 10 SBA units and 10 HSI units with 20 SBA units are
used. For the Pavia University dataset, 80 HSI units with 10
SBA units are used. Moreover, for materials that are difficult
to discriminate, indices are learned from 1 VS 1 classifica-
tions, transfered and freezed during the training. 10 HSI units
with 10 SBA units are specialized in discriminating mead-
ows from trees and asphalt from bitumen. 10 HSI units with
20 SBA units are specialized in discriminating self-blocking
bricks from gravel and meadows from bare soil. Those classes
were chosen since they are often confused. Every models are
trained with standards stochastic gradient descent algorithms
(SGD) according to the cross-entropy loss. Both state-of-the-
art CNNs are trained by the standard SGD with momentum.

For our model, we use the Adam optimizer with a 0.1 learn-
ing rate for the attention means and a 0.01 learning rate for the
other parameters. Hyperparameters are tuned on a validation
set.

3.4. Results

As shown on table 3, our model outperforms the 1D CNN
of Hu et al. on the Mauzac and the KSC datasets and the 3D
CNN of Li et al. on the KSC dataset with up to 198 times less
parameters than the state-of-the-art models.

Our model succeeds in learning long-range spectral corre-
lations between bands in the VNIR (visible and near infrared)
and in the SWIR (short-wave infrared). An interesting prop-
erty illustrated by fig. 2 is that only few indices are activated
for a given class which facilitates the interpretation of learned
indices and their comparison with state-of-the-art spectral in-
dices such as NDVI.

Lower classification performances on the Pavia Univer-
sity dataset may be explained by a too low model capacity
and too few non-linearities. The main confusions are between
meadows / trees and between meadows / bare soil. In con-



trary, the 3D CNN takes advantage of the textural information
to discriminate spectrally close classes. On the KSC dataset
however, the spatial resolution is too coarse to extract textural
information, leading to poor results with the 3D CNN.

Mauzac
Model OA Kappa Nbr of parameters
Hu et al. 72.8 ±1.0 0.70 ±0.012 78 013
Li et al. 81.6 ±2.4 0.80 ±0.026 120 141
HSI (ours) 78.9 ±0.97 0.76 ±0.011 393

Pavia University
Model OA Kappa Nbr of parameters
Hu et al. 81.2 ±2.0 0.76 ±0.023 61 370
Li et al. 84.3 ±0.72 0.80 ±0.0090 46 570
HSI (ours) 78.6 ±2.7 0.74 ±0.028 3210

Kennedy Space Center
Model OA Kappa Nbr of parameters
Hu et al. 90.3 ±0 0.89 ±1.4e-5 79 934
Li et al. 77.4 ±8.8 0.75 ±0.099 91 950
HSI (ours) 90.5 ±0.47 0.90 ±0.0052 1294

Table 3: Experimental results on the three datasets. Mean
and standard deviation of three experiments are shown. Ex-
perimental results of Hu et al. and Li et al. on IEEE GRSS
DASE Pavia University dataset are taken from Audebert et al.

Fig. 2. Box plots for high vegetation spectra (in bold red)
and for tile spectra (in thin blue) of Mauzac dataset. Extreme
values are shown by the horizontal lines.

4. CONCLUSION

In this paper, we have introduced a statistical model that
can learn long-range spectral dependencies with very few pa-
rameters by focusing on specific spectral bands. Experiments
show that this new model can outperfom state-of-the-art con-
volutional neural networks. In future work, we would like to
assess the benefits of the low number of trainable parameters
against the model low capacity on wider geographic areas.
Besides, we would like to assess the capability of the learned

indices to be transfered to other sensors with different spectral
or spatial resolutions.
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