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Abstract—Accurate floor localization in a multi-story environ-
ment is an important but challenging task. Among the current
floor localization techniques, fingerprinting is the mainstream
technology due to its accuracy in noisy environments. To achieve
accurate floor localization in a building with many floors, we have
to collect sufficient data on each floor, which needs significant
storage and running time; preventing fingerprinting techniques
from scaling to support large multi-story buildings, especially on
a worldwide scale.

In this paper, we propose a quantum algorithm for accurate
multi-story localization. The proposed algorithm leverages quan-
tum computing concepts to provide an exponential enhancement
in both space and running time compared to the classical
counterparts. In addition, it builds on an efficient binary-neuron
implementation that can be implemented using fewer qubits
compared to the typical non-binary neurons, allowing for easier
deployment with near-term quantum devices. We implement
the proposed algorithm on a real IBM quantum machine and
evaluate it on three real indoor testbeds. Results confirm the
exponential saving in both time and space for the proposed
quantum algorithm, while keeping the same localization accuracy
compared to the traditional classical techniques, and using half
the number of qubits required for other quantum localization
algorithms.

Index Terms—floor localization, quantum applications, quan-
tum neuron, quantum computing.

I. INTRODUCTION

Indoor localization has become an important requirement in
smart cities and Internet of Things (IoT)-based applications as
people spend more time indoors [1]. Accurate 3D localization
is crucial in many commercial and emergency situations, such
as indoor multi-floor navigation and emergency response ser-
vices, where getting an accurate location in a large multi-story
building can make the difference between life and death [2].

Different techniques have been proposed to solve the floor
estimation problem [3, 4, 5, 6]. Among the current floor
localization techniques, fingerprinting is the mainstream tech-
nology due to its accuracy in noisy environments [3]. These
techniques have two phases: the offline calibration phase and
the online phase. In the offline phase, the data coming from
the different signal sources (e.g. WiFi access points, APs) is
collected at the different floors in the building. Then, in the
online phase, the system matches the heard signals from a
user’s device at an unknown floor with the fingerprint data
to estimate her floor. The closest floor in the fingerprint is
reported as the estimated floor.

The number of signal sources used in the matching process
affects the final floor estimation accuracy; i.e., the higher the
number of signal sources, the more precise the accuracy will
be[7, 8]. However, this increases the matching time and the
space needed to store a large fingerprint, especially for large
multi-story buildings. This drawback poses a major difficulty
for fingerprinting techniques in real-world floor localization
systems.

Recently, quantum fingerprint-based localization algorithms
started to appear to enable a large-scale worldwide local-
ization [9, 10, 11, 12, 13, 14, 15], mainly focusing on 2D
localization in a single floor. However, these algorithms
require a relatively large number of qubits, making them less
suitable for near-term quantum devices. This is even worse
when we apply them to the multi-floor localization problem,
where the fingerprint is much larger.

In this paper, we propose an efficient quantum fingerprint-
based floor localization algorithm for near-term quantum de-
vices. The proposed algorithm uses the quantum binary neuron
to provide an exponential saving in time and space compared
to its classical counterparts [16]. Furthermore, this implemen-
tation requires nearly half the number of qubits compared
to current quantum localization algorithms [9, 10, 11, 12].
This allows our algorithm to use double the number of signal
sources, leading to better localization accuracy and/or more
efficient implementation.

We implement our quantum algorithm on an IBM Quantum
Experience machine and deploy it in three real multi-story
buildings. The results confirm the ability of our quantum
algorithm to achieve the same accuracy as classical floor
localization but with the potential exponential saving in both
space and running time.

The rest of the paper is organized as follows: Section II
gives a background on the floor localization problem and the
binary neuron. We discuss the details of the proposed quantum
floor localization algorithm in Section III. Then, we evaluate
the performance of our system in Section IV. Finally, we
conclude our work in Section V.

II. BACKGROUND

A. The Floor Estimation Problem

Fingerprint-based floor localization algorithms [3] depend
on the pre-installed signal sources (e.g., WiFi or cellular infras-
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Fig. 1: A general artificial neuron model diagram. The neuron
input Φ⃗ is processed with the neuron weight vector Ψ⃗ using
dot product to produce the output of the neuron (the activation
value). A binary neuron has binary inputs and weight vectors.

tructure, also called reference points) to estimate users’ floor.
Generally, they work in two phases: the offline calibration
phase, where the signal information, such as the Received
Signal Strength (RSS) and the signal source ID, is collected
at different locations on each floor to construct the fingerprint
database. The fingerprint is stored as vectors, where each
entry in the vector represents the RSS from one reference
point, alongside the floor number where these vectors are
collected. In the online tracking phase, the online signal
sources information is matched to the fingerprint vectors, and
the closest floor in the signal space becomes the estimated
floor. Classically, matching the online information to the
fingerprint takes o(MN) time and space complexity, where
M is the number of vectors in the fingerprint and N is the
number of signal sources.

As the floor localization accuracy depends on the density
of the signal sources, the matching time and space require-
ments limit the accuracy of the fingerprint-based techniques,
especially for large buildings.

B. Binary Neuron

An artificial neuron mimics what is done in a real biological
neuron. It takes signals as inputs, processes these signals,
and activates an output signal based on this process. An
artificial neuron is basically a mathematical representation
of the biological neuron (Figure 1). Specifically, the output
activation of a neuron is calculated as the weighted sum of
multiplying each input ϕi with a weight ψi as1:

⟨Ψ|Φ⟩ =
N−1∑
i=0

ΨiΦi (1)

A binary neuron is a special version of the general neuron,
where the neuron takes a binary-valued input vector Φ⃗, then it
is combined with a binary-valued weight vector Ψ⃗. The output
is a response function evaluated from the inner product of the
two vectors, representing the neuron activation value.

In this paper, we use a quantum implementation of this
binary neuron to estimate the user floor number, where the

1The Dirac notation is usually used to mathematically describe quantum
systems. The |.⟩ notation is called ket and represents a column vector, the ⟨.|
notation is called bra and represents a row vector, and the ⟨.|.⟩ notation is
called braket and represents the dot product of the two vectors.

Fig. 2: System architecture for the quantum fingerprint-based
floor localization using quantum neuron.

fingerprint samples are the inputs to the neuron and the user’s
sample represents the neuron weight. The output activation
value of this neuron is going to be used as an indicator of
the similarity between the user sample and each fingerprint
sample.

III. THE PROPOSED QUANTUM FLOOR ESTIMATION
ALGORITHM

To reduce the matching time and space requirements, we
use the quantum binary-neuron circuit [16]. The basic idea is
to use an instance of the quantum binary neuron to calculate
the similarity between the online RSS vector (i.e., user sample)
and each one of the fingerprint training vectors (i.e., fingerprint
sample), one at a time. The floor that gives the highest
activation is reported as the estimated location for the user
sample.

A. Floor Estimation Algorithm

Figure 2 shows the architecture of the proposed quantum
floor localization system. In the offline phase, the fingerprint
data is collected across the building floors by collecting the
signal sources IDs along with the floor number as the ground
truth in a vector. Each entry in this vector represents a specific
signal source. Then, in the online phase, we collect the user
signal sources IDs heard by the user’s device at an unknown
floor. We compare the online RSS vector to vector at each
fingerprint location using the quantum binary neuron. The floor
in the fingerprint sample with the highest activation value is
returned as the estimated floor number.

The RSS vectors are binary vectors: each entry is either
−1 or +1, where −1 at a vector index i means that the signal
source number i is not heard, and +1 represents that the signal
source is heard.

Assuming that the user online sample is Ψ =[
ψ0 ... ψN−1

]
and the fingerprint sample number l is

Φl =
[
ϕl0 ... ϕlN−1

]
, where N is the number of the signal

sources and ϕli, ψi ∈ {−1, 1}, we can encode the vectors
value using amplitude encoding [17] to the following quantum
states,
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Fig. 3: Binary neuron quantum circuit to calculate neuron
activation between a fingerprint sample Φl, and a user sample
Ψ. |γi⟩ represents the joint system state at different positions
in the circuit.

|Ψ⟩ = 1√
N

N−1∑
i=0

ψi |i⟩ (2)

|Φl⟩ = 1√
N

N−1∑
i=0

ϕli |i⟩ (3)

Where |i⟩ is the binary encoding for i. Note the exponential
saving in the space where a vector of N entries is encoded in
log(N) qubits.

To find the fingerprint sample Φl that is most similar to
the online sample Ψ, we can use a binary neuron, where each
fingerprint sample Φl at location l acts as an input to the
neuron and the online sample Ψ acts as the neuron weight
vector. Hence, we can find the neuron activation value using
the dot product ⟨Ψ|Φl⟩.

Figure 3 shows the quantum circuit for implementing the
quantum binary similarity algorithm between the two vectors
Φl and Ψ (i.e. ⟨Ψ|Φl⟩). The input to the circuit is a single
ancilla qubit at state |0⟩ and n-qubit register initially at state
|0⟩⊗n, where N is the vectors length representing the N signal
sources, and n = log(N).

The circuit consists of three stages: Φl Encoding, Ψ Entan-
gling, and Measurement stages.

1) The Φl Encoding Stage: Initially, the quantum system
is in state:

|γ0⟩ = |0⟩ |0⟩⊗n (4)

The first step is to construct the fingerprint binary state vector
Φl. This is achieved by applying a unitary transformation UΦl

on the data qubits such that:

UΦl |0⟩⊗n
= |Φl⟩ (5)

where UΦl is a gate that obtains |Φl⟩ from |0⟩⊗n using the
Hypergraph States Generation Subroutine [16]. This moves
the quantum state to:

|γ1⟩ = |0⟩ |Φl⟩ (6)

2) The Ψ Entangling Stage: The second step is to apply
another unitary transformation UΨ to the data register of the
circuit in quantum state |γ1⟩. The quantum state moves to:

|γ2⟩ = |0⟩UΨ |Φl⟩ = |0⟩ |η⟩ (7)

where |η⟩ = UΨ |Φl⟩.
The UΨ is a gate that moves a quantum state |Ψ⟩ to state

|1⟩⊗n, i.e.:
UΨ |Ψ⟩ = |1⟩⊗n

= |N − 1⟩ (8)

Similar to UΦ, the UΨ gate can be realized using the
Hypergraph States Generation Subroutine [16].

3) The Measurement Stage: The last step is to measure
the neuron activation value, i.e. the dot product ⟨Ψ|Φl⟩. Using
equations 7 and 8, the required similarity can be written as:

⟨Ψ|Φl⟩ = ⟨Ψ|U†
ΨUΨ|Φl⟩ = ⟨N − 1|η⟩ (9)

Since |η⟩ = η0 |0⟩+η1 |1⟩+ ...+ηN−1 |N − 1⟩, Equation 9
reduces to

⟨Ψ|Φl⟩ = ηN−1 (10)

Hence, the squared neuron activation value is the probability
of measuring the data register in state |N − 1⟩. To measure
this probability, we add the final CNOT gate that flips the
ancilla qubit if the data register is in state |N − 1⟩ = |1⟩⊗n

=
[0, 0, ..., 1],

| ⟨Ψ|Φl⟩ |2 = P (a = 1) = η2N−1 (11)

B. Example
In this section, we give a simple example of the quantum

binary neuron circuit mentioned in the previous section using
two fingerprint vectors collected at two locations: l0 and l1,
and a user sample vector, each with four signal sources: Si

for i ∈ {0..3}.
At location l0, all signal sources are heard except S3, i.e. the
fingerprint sample at location l0 is: Φl0 = [1, 1, 1,−1], and
at location l1, signal sources S2 and S3 are not heard, i.e.
fingerprint sample at location l1 is Φl1 = [1, 1,−1,−1], where
1 means that the signal source is being heard at the location
and −1 means that it is not heard. Let the user sample be
Ψ = [1, 1, 1, 1], i.e. all signal sources are heard at the current
online user location.

To find the neuron activation value for the fingerprint
samples and the user sample vectors, we construct the two
quantum circuits shown in Figures 4. The first subfigure (a)
shows the simple implementation of the UΦl0 and UΨ to
find the neuron activation value (dot product) of the first
fingerprint sample Φl0 with the user sample Ψ. The UΦl0

gate is implemented by applying the Hadamard gates (H)
on the data register, which produces an equal superposition
state of 1

2 (|00⟩ + |01⟩ + |10⟩ + |11⟩). Then the Controlled Z
(CZ) gate is added to flip the sign of the basis state |11⟩ by
rotating the qubits around the Z-axis of the Bloch sphere [18].
The UΨ gate moves state |Ψ⟩ to state |1⟩⊗n according to
Equation 8. This is done by applying H gates to move the
|Ψ⟩ = 1

2 (|00⟩ + |01⟩ + |10⟩ + |11⟩) state to state |0⟩⊗n then
adding NOT gates (X) to move it to state |1⟩⊗n.

The second subfigure (b) shows the quantum circuit im-
plementation for calculating the similarity to the second fin-
gerprint Φl1 sample. Similar to the first circuit, the UΦl1 is
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(a) Quantum circuit for calculating activation value for
the first fingerprint sample Φl0 = [1, 1, 1,−1] and the
user sample Ψ = [1, 1, 1, 1]
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(b) Quantum circuit for calculating activation value for
the second fingerprint sample Φl1 = [1, 1,−1,−1] and
the user sample Ψ = [1, 1, 1, 1]

Fig. 4: Binary neuron quantum circuits to calculate neuron
activation values between the fingerprint samples Φli and the
user sample Ψ = [1, 1, 1, 1].

implemented by applying H gates on the data register qubits
then a Z gate on the second data qubit to move the data register
to state 1

2 (|00⟩+ |01⟩ − |10⟩ − |11⟩).
To measure the probability P (a0 = 1), we run the first

quantum circuit for k times (number of shots) and count the
number of times where the ancilla qubit output is 1. Then
using Equation 12, we can find the neuron activation value.

| ⟨Ψ|Φl⟩ |2 = P (a = 1) =
count(a = 1)

k
≃ 0.5067 (12)

Similarly, we run the second circuit (b) for the same number
of shots (k) to get the activation value for the location l1 as
⟨Ψ|Φl1⟩ = 0. Since the activation value of the first fingerprint
⟨Ψ|Φl0⟩ is higher than the activation value of the second
fingerprint ⟨Ψ|Φl1⟩, we estimate the user’s floor as the floor
number of the first fingerprint sample’s location l0.

C. Complexity Analysis

In the offline phase, to store a sample vector of size N , we
need N memory units in a classical computer. This makes the
total space complexity needed to store the fingerprint data with
M samples o(MN) in the classical algorithm. In contrast, the
quantum floor localization algorithm stores a vector sample
of size N in q = 1 + log(N), where one qubit is used as an
ancilla and log(N) qubits register is used as the data register,
i.e. the quantum algorithm has a space complexity of order
o(M log(N)).

In the online phase, the fingerprint and user vectors are
encoded and entangled in the quantum circuit using UΦl and
UΨ unitary transformations, which can be achieved efficiently
using the Hypergraph States Generation Subroutine [16].
Hence, using efficient unitary transformations, the proposed

quantum algorithm achieves o(M log(N)) time bound.
Furthermore, the fingerprint data vector Φl can be loaded
directly from quantum sensors [19] in the future or from a
quantum random access memory (QRAM) [20], where the
binary representation of Φl

i is loaded in parallel into the
quantum data register, which allows us to use a single quantum
circuit for matching all fingerprint samples with a user’s
sample.

IV. EVALUATION

In this section, we evaluate the quantum binary neuron
algorithm in three real testbeds and implement it on a real
IBM quantum machine. We start by describing the testbeds.
Then, we show the results of comparing the proposed quantum
algorithm with its classical counterpart as well as the state-of-
the-art quantum fingerprint localization systems [9, 10, 11].
Finally, we discuss the different advantages of the proposed
quantum algorithm.

A. Environment Setup

The collected data cover three different buildings of Jaume I
University [21]. We deploy the proposed quantum algorithm
on the first building (four floors), the second building (four
floors), and the third building (five floors). We used the already
deployed 16 WiFi access points (APs) as signal sources (N =
16). The floors area is around 110m2 [21].

We deployed the proposed quantum algorithm on each
building and compared the results to the classical counterpart.
Furthermore, we compared the proposed quantum circuit to
the state-of-the-art quantum fingerprint localization circuit
[10, 11]. We used the real 5-qubits ibmq manila quantum
computer [22].

B. Performance Evaluation

1) Comparison to classical binary neuron: Figure 5 shows
the floor localization accuracy CDF for the three buildings
using the Quantum Binary Neuron (QBN) algorithm, the clas-
sical counterpart, and the random floor classifier as a worst-
case bound for localization. The figure shows that both the
quantum and classical algorithms achieve the same accuracy.
This comes with an exponential gain in both the running time
and the space.

Figure 6, shows the space and running time complexity be-
tween the classical and the proposed quantum algorithm. The
figure shows that the proposed quantum algorithm achieves
o(M log(N)) compared to o(MN). This highlights the ex-
ponential gain of the proposed quantum algorithm over its
classical counterpart due to the fact that the quantum algorithm
grows in a logarithmic manner with N .

2) Comparison to state-of-the-art quantum localization:
To validate that the quantum binary neuron gives similar
accuracy to the state-of-the-art quantum localization [9, 10, 11]
while using a lower number of qubits, we run the quantum
binary neuron circuit and the circuit used in the state-of-the-art
quantum algorithm [9, 10, 11] on the same testbeds. However,
we use only four APs in this experiment, as the previous
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quantum algorithms would require more than the 5-qubits
available on the used ibmq manila quantum machine. This
highlights the advantage of our proposed algorithm that can
use up to 16 APs on this machine leading to better localization
accuracy and making it more suitable for near-term quantum
devices.

Figure 7 validates that the quantum binary neuron circuit
can achieve a similar accuracy to the quantum circuit used
in the state-of-the-art quantum localization algorithms [9, 10,
11]. The proposed quantum binary neuron requires almost half
the number of qubits (1 + log(N)) compared to the previous
quantum algorithms that require (1 + 2 log(N)) qubits.

Moreover, Figure 8, confirms that the higher the number
of signal sources, the more precise the accuracy will be. This
highlights the importance of using more signal sources, which
can be achieved in low number of qubits (1 + log(N)) using
the proposed quantum binary neuron algorithm. This makes
it more feasible to be implemented on near-term quantum
devices.

C. Discussion

The results of running our quantum algorithm on three real
testbeds show that the proposed quantum floor localization
algorithm has a similar accuracy as its classical counterpart but
with the exponential gain in time and space, and has a similar

accuracy to the state-of-the-art quantum algorithms [9, 10, 11]
while using a lower number of qubits.

The classical floor estimation algorithm requires o(MN)
space and running time. On the other side, the proposed
quantum algorithm requires o(M log(N)) space and time.
This highlights the quantum computing gain and enables
fingerprint-based floor localization systems to be deployed in
large-scale multi-story buildings while maintaining a similar
localization accuracy as the classical algorithm [7, 8].

Furthermore, the proposed quantum algorithm is useful for
the offline calibration phase as it reduces the fingerprint vector
size from o(N) to o(log(N)), which mitigates the data storage
overhead and saves the required bandwidth for applications
where the data is downloaded on the users’ devices when the
matching process is done on users’ local devices (e.g., for
privacy-sensitive applications).

Comparing the proposed quantum algorithm to the state-
of-the-art quantum localization algorithms that require 1 +
2 log(N) number of qubits, results show that the proposed
quantum binary neuron algorithm achieves similar accuracy
while using 1 + log(N) qubits only compared to these al-
gorithms. This makes it able to achieve higher accuracy on
near-term quantum machines, where the number of qubits is
limited.

Finally, a single quantum circuit can be used for different
fingerprint samples by loading the fingerprint data from a
quantum random access memory (QRAM) or quantum sensors
instead of the unitary transformation UΦl in the first stage, and
both space and time complexity can be further enhanced to
o(log(MN)) by encoding all the fingerprint locations using
quantum states. And state preparation routines could be used
to reduce the number and depth of the circuit gates.

V. CONCLUSION

In this paper, we introduced a fingerprint-based quantum
algorithm for multi-story large-scale floor localization. The
proposed quantum algorithm requires o(M log(N)) time and
space, unlike its classical counterpart, which needs o(MN)
time and space for a fingerprint with M locations and N signal
sources. We implemented the proposed quantum algorithm
on a real IBM quantum machine and deployed it in three
real testbeds. Results show that our quantum algorithm can



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Binary Neuron Circuit Cosine Circuit

A
c
c
u
rr
a
c
y
 (
%
)

First Building

Binary Neuron Circuit Cosine Circuit

Second Building

Binary Neuron Circuit Cosine Circuit

Third Building

No Error 1 �oor error 2 �oors error 3 �oors error 4 �oors error

Fig. 7: Floor localization error CDF comparing using the quantum binary neuron circuit, and the quantum circuit mentioned
in [9, 10, 11] which requires nearly double the number of qubits compared to the proposed quantum binary neuron circuit.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 8 16 32

A
cc

u
rr

ac
y

 (
%

)

Number of signal sources (N)

No Error

1 floor error

2 floors error

3 floors error

Fig. 8: Floor localization accuracy using different number of
signal sources (N ).

achieve the same accuracy as the classical algorithm but with
the exponential gain in time and space. This confirms the
gain of using quantum algorithms to solve large-scale floor
localization problems, where more data can be used with
lower number of computing resources. Furthermore, we show
the advantage of using the proposed quantum binary neuron
circuit for near-term quantum machines where the number
of qubits is limited. The proposed algorithm can use nearly
half the number of qubits compared to other state-of-the-art
quantum localization algorithms while keeping the localization
accuracy. Currently, we are expanding our research in multiple
directions including exploring different quantum similarity
metrics implementations, extending our exponential saving to
the fingerprint samples (M ), handling the intrinsic practical
considerations of quantum processors in the algorithm devel-
opment, obtaining theoretical quantum performance bounds,
among others.
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