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 Abstract - In order to better understand the behavior of the 
underwater robot developed at our laboratory, a simple but 
relatively good model of the underwater behavior of the robot 
had to be developed. In order to be useful for model-based 
control techniques onboard the robot, the model had to have low 
computing requirements, yet be complex enough to capture the 
transient response of the robot. To achieve this, a system 
identification approach was taken by first capturing the robot 
response to various inputs, and then matching them to a simple 
model.  
 
 Index Terms - Underwater Robotics, Oscillating Foil, Control, 
Modeling. 
 

I.  INTRODUCTION 

his paper examines the development of a simple two-
level top-down model for modeling the behavior of a 

complex robotic system. We are interested in forming a 
predictive model for the dynamics of an underwater 
swimming robot. While analytic models of complex robots 
have many attractive characteristics, matching them to a 
physical system is a substantial challenge; this is doubly true 
in the underwater environment, where faithful hydrodynamic 
models are very elusive (note this is true for air vehicles as 
well, and hence wind tunnels remain a staple of the modeling 
community). In this paper, we develop a simple top-down 
model based on empirical data and show that this type of 
"layered" model can be effective even for very complex 
systems such as our swimmer which uses movable vanes 
(foils) and which exhibits complex hydrodynamics. 

The use of foil-based propulsion systems is gaining greater 
and greater acceptance for autonomous underwater vehicles 
(AUVs). A major factor motivating this interest is the high-
impulse force and rapid response time these systems are 
capable of achieving (as well as possible biomimetic 
properties). Robotuna is one of the first systems employing 
foil-flapping propulsion, and is a result of pioneering work by 
Triantafyllou et al. [7]. Its actuated tail is used to generate 
thrust, propelling the fish-like robot forward. A propulsion 
system more similar to that being used in our work is the 
Oscillating Fin Thrusters (OFT) system, which has been 
developed by Nekton Research [8]. Kemp et al. studied the 
response time of OFTs [9] and concluded that they showed 
excellent impulsive forces and response time. A prototype 

called PilotFish was built to demonstrate the high 
maneuverability attainable with the use of OFTs [10]. 

In order to design a robust controller strategy for an AUV, 
its hydrodynamic characteristics must be studied. Methods 
used to determine the characteristics fall broadly into two 
categories: predictive methods and test-based methods. 
Predictive methods are used when an estimation of system 
performance is desired prior to completion of the design of the 
robot, and depend on the careful development of analytical 
equations, Computational Fluid Dynamics modeling, or on 
past empirical solutions. On the other hand, test-based 
methods rely on experimentation to determine the 
hydrodynamic characteristics of the system. They can 
therefore only take place once a physical platform is available 
for testing. Since in our case the robot platform was already 
operational, the latter method was employed, through the use 
of the system identification technique [2]. Even though this 
method is resource intensive (since pool trials are required to 
collect the data), it comes with a near-guarantee that the model 
will be close to the real dynamics of the robot. It also avoids 
the difficulties inherent in estimating all the relevant 
parameters in predictive methods, particularly in the case of 
flexible surfaces where the flow dynamics are complex. 

The use of a simple model to describe the behavior of the 
robot has a few key motivating factors: 

− If the model is linear, linear control theory techniques 
such as poles and zeros localization, and estimation of 
transfer function can be used; 

− Model-based control techniques can be readily 
implemented; 

− Model validation is significantly simplified; 
− Reinforcement learning with Function Approximation 

techniques can be used with a greater chance of success. 
In prior work [1] a dynamic model for underwater vehicles 

was presented. The model is divided into basic elements such 
as the hull, individual control surfaces and propulsion system. 
Based on that work, a predictive simulator was developed in 
[3] to help develop and evaluate the swimming gaits for the 
AQUA robot presented in this paper. 

  
II. AQUA SWIMMING ROBOT OVERVIEW 

A. AQUA Design Overview 

T 



The robot studied in this paper, referred to as AQUA, is the 
direct descendant of RHex, a highly mobile six-legged   
platform [4]. The watertight aluminum shell is rated to depth 
of 10m. The robot can swim, walk, maintain station, and crawl 
at the bottom of the sea using six paddles (flippers). Using 
these six flippers, the robot can directly control five of its six 
degrees of freedom. 

Although the AQUA design is not optimal as a swimming 
device, its use of the RHex morphology makes it inherently 
capable of high-mobility amphibious behaviors such as: 
swimming, beach landing and walking, stair climbing, etc.   

 

B. Swimming Gait and Attitude Control 
The AQUA robot can execute a range of swimming gaits. 

For the purpose of this experiment, only one swimming gait 
(called “middle-offset”) was employed. In this gait, the 
flippers oscillate using a sine-function (1), with the middle 
flippers offset by a phase φ=π relative to the others. This gait 
produces little body pitch oscillation. 

offsettAt θφωθ ++= )sin()(  (1) 

 
Pitch and roll moments used to orient the robot are 

generated by changing the surface oscillation offset angle 
θoffset. A pitch command is executed by having θoffset set to a 
value with opposite signs for the front and rear flippers, 
resulting in a pure pitching moment. A roll command is 
executed by having θoffset set in a similar manner from left to 
right. The yaw command is executed by creating a net thrust 
differential between the left and right sides. The thrust 
differential is obtained by increasing the oscillation amplitude 
A on one side, and decreasing it on the opposite side. 

To avoid abrupt changes in flipper positions, all commands 

are filtered with a low pass first-order Infinite Impulse 
Response (IIR) filter, using the discrete-time equation (2), 
with a time-constant τ (sampling period T=0.001 s), where x is 
the input, and y represents the filtered output. The value τ=0.3 
s has been selected to offer the fastest possible response while 
keeping commanded motor torques within  manufacturer’s 
specifications. 
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III. CHARACTERIZATION OF ROTATIONAL RESPONSE 

 
Although the robot is capable of motion in 6 degrees of 

freedom, we will restrict this study to the 3 rotational axes 
(pitch, roll and yaw) given the current sensing capabilities. 

 
 

The test cases were executed in an indoor pool to minimize 
external disturbances such as currents on the vehicle. The 
robot’s rotational responses were captured using a Microstrain 
3DM-GX1 Inertial Measurement Unit (IMU). This unit 
provides 3-axis data for each of: angles, accelerations, angular 
velocities and magnetic fields. Several single-axis test 
maneuvers were executed in the pool in order to cover the 
range of possible steering commands for the robot. These 
maneuvers represented 25%, 50% and 100% of the full 
possible command. 
 

Fig. 3 shows the measured rotation rate of the vehicle. One 
striking feature is the relatively linear relationship between the 
input command and the angular velocity for pitch and roll 
axis. The robot shows extremely high maneuverability in the 
roll axis, with maximum rates exceeding 90°/s and response 
time around 200 ms. The pitch axis maximum rate was lower 
and stood at 20°/s, but with still an excellent response time 
(250 ms). The response times correspond to the time for the 
robot to settle to within 10% of the steady-state rate. 

 

 
Fig. 1.  The AQUA underwater robot in action in Barbados. The six flippers 

are used to provide both thrust and control. A fiber-optic tether is used to 
relay visual information and user input commands between the operator 

control unit and the robot. 
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Fig. 3.  Steady state response of the robot for the a) roll, b) pitch, and c) yaw 
axis for single-axis commands. The roll and pitch responses are fairly linear, 

whereas the yaw shows some saturation past 50%.

Fig. 2.  Force diagram of the robot for a pitch down command. The front 
flippers are oriented up and the back flippers down. 



 
The yaw axis response however is by far slower than the 

previous ones. The maximum rate reached was approximately 
12°/s, for an average response time of 1300 ms, well over the 
pitch and roll response times. Saturation also appears for yaw 
commands over 75%. This saturation appears to come from 
the less-than-optimal thrust characteristics of the flippers at 
amplitudes greater than 50°, which is ~1.7 times the nominal 
amplitude of 30°. Of note is the observed presence of an offset 
in the yaw rate response, which is thought to arise from small 
variation in individual flipper construction and bending 
behavior. This results in non-symmetric thrust characteristics. 

 
IV. OSCILLATING SURFACE HYDRODYNAMIC FORCES 

 
The forces generated by the oscillating flippers can be 

divided into three components: 1) oscillation-generated thrust, 
2) lift and 3) drag. The thrust Ft generated by the oscillating 
flippers comes from the resultant flow pattern known as a 
reverse Karman street, and is assumed to have constant 
magnitude and oriented at angle θ. The lift L generated by a 
surface of chord length D, at angle θ with a speed U in a fluid 
of density ρ can be estimated as shown in [5].  

θπρ sin2DUL =  (3) 
Moreover, some transient lift will be generated by the 

pitching surface as θ changes. This force will be proportional 
to the square of the angular velocity and oriented 
perpendicular to the angle θ, in the opposite direction to the 
motion of the flipper surface when seen from the side. 

2θbtr KL =  (4) 
The total lift generated by the surface will be the sum of (3) 

and (4): 
2sin θθ batrl KKLLF +=+=  (5) 

Although some drag will be generated by the surface 
parallel to the body length, in this model we will neglect its 
influence on the vehicle speed U. 

 
V. DYNAMICS MODELING 

 
To simplify the vehicle model, the following 

approximations are made: 
1) The robot forward speed U remains constant during the 
maneuvers. This simplifies (3) by making the function only 
dependant on θ. Although this approximation is clearly 
violated for large or long lasting commands, its impact can 
still be somewhat neglected. The speed reduction comes from 
an increased drag and reduced thrust along the longitudinal 
axis. 

2) Damping force on the vehicle is proportional to angular 
velocity. This justification will eventually be relaxed by 
choosing a different damping constant for each command 
input, since each command generates a different angular 
velocity of the robot body. 
3) The angles θoffset for the commands are small. This leads 
to the common approximations sin(θ)=θ and cos(θ)=1. 
4) The oscillating flippers are modeled as a combination of 
oriented thrusters and a hydroplane. This approximation is 
valid as long as the commands are non-periodic, in which case 
they would interfere with the thrust-generating oscillation. 
5) All axes are decoupled. It was experimentally assessed 
that the cross-talk between the axes is below an acceptable 
level. 
6) The center of buoyancy is the same as the center of 
gravity. This eliminates one term in the subsequently 
described Euler motion equation. 

The modeling of the robot can be divided into two parts: 
1) modeling of the torque generated by the flippers, 
2) modeling of the robot response. 
 

A. Body Response Modeling 
The robot response will be modeled in the first place by the 

Euler equation: 
)(tMCI =+ ϕϕ  (6) 

where ϕ is the robot angle for a given axis, I the moment of 
inertia of the robot, C the damping and M(t) is the torque 
applied by the flippers. 
 
B. Torque Generation Modeling 

Fig. 2 shows the force diagram for a pitch command input. 
The moment M generated by a flipper will be a combination 
of the lift generated by the flipper and the orientation of the 
thrust vector. The pitching moment generated will be the cross 
product of the moment arm vector and oriented force vector. 
For small angles, we only consider the forces in the ‘y’ 
direction and assume the moment-arm constant. With the 
moment arms df and db for the front and back flippers, the net 
moment is: 

)sincos)(22( θθ tlbf FFddM ++=  (7) 
Expanding Fl, we get: 

}sincos)sin){(22( 2 θθθθ tbabf FKKddM +++=
 

(8) 

with sinθ=θ and cosθ=1, (8) simplifies to: 
)})){(22( 2θθ btabf KFKddM +++≈  (9) 

Approximating the moment arms df and db as constant, we can 
group the constants together, thus (9) simply becomes  

2
21 θθ KKM +≈  (10) 

This shows that the moment generated by the flippers can be 
approximated by a two-constant equation. The K1 parameter 
represents the combined moments generated by the oriented 
thrusters and surface lift, whereas K2 captures the transient 
moments due to the moving surface. 

TABLE I 
VEHICLE RESPONSE TIME 

Axis Response Time 

Pitch 200 ms 
Roll 250 ms 

Yaw 1300 ms 



 
C. Added Model Features 

To be able to have a better match, some extra parameters 
have been added to the model: 
1) Motor torque saturation Tsat 

With the squared factor of the derivative in the torque 
calculation, spikes rapidly appear in the torque 
generation. Given the limited motor characteristics, not 
limiting the torque in the model would make the robot 
react ahead of time. 

2) Moment offset Moff 
A moment offset could be added to simulate twisted 
flippers or external disturbances such as tether drag 
forces or currents from the pool filter jets. 
 

D. Complete Model 
Fig. 4 shows final model used in the matching the response 

for each axis. 

 
The model parameters I, C, K1, K2, Tsat and Moff were 

manually tuned to give a good qualitative match for a series of 
test cases covering all three axes.  

 
E. Pitch Axis Results 

Fig. 5, 6 and 7 show the comparison between the actual 
robot pitch angles and the tuned model output for commands 
of 100%, 50% and 25% of maximum. The quality of the 
match is excellent for the 100% and 50% command. In these 
cases, the match is within 3° (less than 5% error compared to 
the full test range) for the sequence used to tune the model, 
and less than 8° for the validation test case. For the 50% test 
case, the damping factor had to be reduced by about 30%, 
which was expected since the true nature of water damping is 
more squared than proportional. 

  

 
For the 25% case, the flipper parameters K1 had to be 

decreased by 15% and K2 by 50%. These could be the result of 
non-linear phenomenon more apparent at small commands, 
such as a dead-band effect around the neutral position due to 
flexibility of the surface. 

 
 

E. Roll Axis Results 
Fig. 8 shows the results for a full negative roll command (-

100%). Notice that the duration of the test is much shorter 
than the other cases, giving the appearance of a not-so-good 
match. But looking closely at the Figure, the model delay 
prediction is only off by 150 ms. This is probably due to an 
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Fig. 5.  Model and vehicle responses for pitch commands of +/-100%. a) 
shows the data used to tune the model, and b) is the response for a different 

test using the same parameters as in a).  
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Fig. 6.  Model and vehicule response for a series of pitch command of +/-
50%. a) is the test sequence used for tuning the parameters, and b) is the 

response for a different test input using the same parameters as in a). 

Fig. 4.  Single-axis model used for end-to-end simulation of the robot. The 
collected input command is fed into the model, and the output robot angle is 

ϕ. The low-pass filter is used in the real system to smooth the input 
command in order to avoid abrupt surface changes that would put large 

stresses on the flippers. The moment M feedback is needed to simulate the 
torque limitation of the motor. 

  



overestimation of motor torque saturation, one of the major 
components of delay in the model. However the free response 
decay from time 2.0s to 3.1s is a dead-on match. 

 

 
 

Fig. 9 shows the results for a combination of +/-25% roll 
commands. One noticeable feature of the vehicle response is 
the sharp changes of roll angular rate, indicating that the 
vehicle has a near-ideal response at this command level. This 
fast response is the result of the transient forces. This validates 
our choice of time constant for the command filtering, telling 
us that a larger value would be detrimental to the vehicle 
responsiveness. The change in positive angle slopes (first one 

between 2s and 7s, the second between 18s and 25s) clearly 
indicates that there is some limit in the reproducibility of the 
response of the vehicle. At this moment we have no 
explanation for this. 

 

 
F. Yaw Axis Results 

The same model is used for the yaw axis, even though the 
underlying mechanism is quite different (difference of thrust 
vs. lift forces). A significant difference is that the transient 
forces term K2 will be very small compared to the other axes. 
By looking at the physics of the system, one would conclude 
the same, since no surface is being deployed. The fact that the 
term is smaller also helps explain the much greater delay 
associated with the yaw axis. 
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Fig. 10.  Model and vehicle responses for a yaw command of  a) +/-75% and 
b) +-50% The surface corresponds to a virtual surface acting to generate the 

yawing moments. 
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Fig. 9.  Model and vehicle responses for a roll command of +/-25%. a) is the 
test sequence used for tuning the parameters, and b) is the response for a 

different test input using the same parameters as in a). 
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Fig. 7.  Model and vehicle responses for a series of pitch command of +/-
25%. a) is the test sequence used for tuning the parameters, and b) is the 

response for a different test input using the same parameters as in a). 
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Fig. 8.  Model and vehicle responses for a roll command of -100%. a) is the 
test sequence used for tuning the parameters, and b) is the response for a 

different test input using the same parameters as in a). 



  
Although the fit of the model for the yaw axis is not quite as 

good as for pitch and roll, the model still captures the 
qualitative behavior of the robot and is an acceptable fit to the 
data for our navigation applications (Fig. 10). The delay in 
command execution is easily captured by the model, as are the 
angular rates. A small moment offset (-0.03) was added to get 
a better match. This offset is consistent with the values seen in 
the steady-state rates showed in Fig. 3. 

 
VI. CONCLUSION 

 
We have demonstrated that using a simple two-layer 

empirically-based system model allows us to accurately 
predict the behavior of our swimming robot.  Prior work based 
on an analytic model of the vehicle hydrodynamics, while 
elegant and effective, was less accurate as on overall 
performance predictor. While model tuning is a costly 
procedure, requiring the collection of empirical data, the total 
time required is comparable that that needed to develop and 
tune an analytic model.  

Using oscillating foils for propulsion and control enables 
our underwater vehicle to be highly maneuverable. In our 
design, the pitch and roll axis benefits largely from the large 
transient forces generated by surface drag. The command 
delay for those axes were less than 300 ms. On the other hand, 
the yaw axis response is much slower (1300 ms), due in great 
part to a lack of those forces. 

Even though the vehicle dynamics are quite complex, we 
showed that in the case of this particular robot, each axis can 
be approximated with a simple model with 5 parameters. This 
simplified model arises when a number of simplifications are 
assumed. The reasonable match between the tuned model and 
the experimental data validates the simplifications used to 
derive the model. A positive aspect of this simple model is the 
straightforward hindsight it gives about the vehicle dynamics.  

 However limitations in the linear modeling of the vehicle 
dynamics are apparent. In particular, it partially fails to 
properly capture the damping forces of the vehicle body in the 
water. This can be seen in the variation in the damping factor 
C for different test cases for identical axis. Initial testing with 
a non-linear model indicates that a mixture of squared and 
proportional damping would provide a closer match to the data 
seen across all body angular velocities. 

To improve matches, a more complex model for moment 
generation could also be developed. This would take into 
account the interactions between the vehicle motion and the 
moments generated, since drag and lift are dependent on the 
incoming water speed. This might explain the use of various 
torque limits for pitch and roll, since the body starts rotation 
much faster in the roll case. With the current model also, the 
moments are symmetric for surface extensions and retraction. 
There seems to be indication that in fact the forces are 
asymmetric, with surface extension from the neutral angle 
generating more forces than retraction. 
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