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Abstract— Multi-robot manipulation, where two or more
robots cooperatively grasp and move objects, is extremely
challenging due to the necessity of tightly coupled temporal
coordination between the robots. Unfortunately, introducing a
human operator does not necessarily ameliorate performance
due to the complexity of teleoperating mobile robots with
high degrees of freedom. The human operator’s attention is
divided not only among multiple robots but also between
controlling a robot arm and its mobile base. This complexity
substantially increases the potential neglect time, since the
operator’s inability to effectively attend to each robot during
a critical phase of the task leads to a significant degradation
in task performance. In this paper, we propose an approach
for semi-autonomously performing multi-robot manipulation
tasks and demonstrate how our user interface reduces both task
completion time and the number of dropped items over a fully
teleoperated robotic system. Propagating the user’s commands
from the actively-controlled robot to the neglected robot allows
the neglected robot to leverage this control information and
position itself effectively without direct human supervision.

I. INTRODUCTION

RAP systems combine the unique capabilities of Robots,
Agents, and People to achieve goals that cannot be completed
by any single entity [13]. The effectiveness of a RAP system
can be enhanced in a variety of ways including improving
task allocation across entities with different capabilities [8],
the use of adjustable autonomy to improve the timing of
agent intervention [14], [15], and building explicit models
of user distraction [1], [10]. However in some cases, tasking
(which entity should perform the task) and timing (when
should the agents/robots act autonomously) are relatively
straightforward to compute. The barrier to adjustable au-
tonomy in RAP system can be selecting effective actions
during time segments when the robot is acting autonomously.
This is a problem for all autonomous systems operating in
uncertain environments, yet RAP systems have options that
are unavailable to normal robots. A common solution is
to decrease the time period of autonomous operation and
increase the amount of user intervention, but in cases where
the task is complicated and the user’s workload is already
high, this approach threatens to degrade the overall system
performance. In this paper, we propose an alternate approach
in which the agents and robots leverage information about
what the user is doing and has recently done to decide their
future course of action. We demonstrate our approach on a
multi-robot manipulation task that is both difficult to perform
autonomously due to sensor limitations and challenging
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for human teleoperation because of the higher degrees of
freedom.

In our multi-robot manipulation task, the user directs a
team of two mobile robots to lift objects using an arm and
gripper for transport to a goal location. The environment
contains a heterogeneous selection of objects, some of which
can be transported by a single robot and others that require
both robots to lift. Figure 1 shows a picture of the team of
robots cooperatively moving an object that cannot be carried
by a single robot. This task is a modified version of the multi-
robot foraging problem that has been successfully addressed
by decentralized task allocation algorithms (e.g., [2]) but
with the additional complication that grasp planning and
manipulation must be executed by the human due to the
sensor limitations of our robotic platform. Like cooperative
box pushing [5], multi-robot manipulation requires tight
coordination between robots; a poor grasp from either of the
robots will often lead to the object being dropped. Our task
can be viewed as an abstraction of the type of manipulation
task that would be performed by a team of USAR (Urban
Search and Rescue) or domestic service robots in which
they have to find and move objects in an unstructured
environment.

Our mixed-initiative interface provides the user with two
important new cooperative functions: 1) autonomous posi-
tioning of the second robot (locate ally), and 2) a mirror
mode in which the second robot simultaneously executes a
modified version of the commands that the user has issued
to the actively controlled robot. When the user requests help
to move a large object, these cooperative functions enable
the robot to autonomously move to the appropriate location,
cooperatively lift the object and drive in tandem to the
goal. The locate ally and mirror modes are created through
intermittently propagating the user’s command history across
the robots. The unmanaged robot follows a simple learning-
by-demonstration paradigm where it attempts to cooperate
with the teleoperated robot, based on the user’s current and
previous commands.

II. RELATED WORK

Khatib et al. [7] defines the basic manipulation capabilities
needed by robots to operate in human-populated environment
as being: 1) integrated mobility and manipulation; 2) multi-
robot coordination; 3) human-robot interaction; 4) collision-
free path planning. Our system focuses on the use of ef-
fective human-robot interaction and multi-robot coordination
to address deficiencies in the robots’ sensing. Note that
the human interacts with the robots exclusively through a
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Fig. 1. Two HU-IE robots cooperate to lift an object. One robot is
teleoperated while the other moves autonomously to mirror the user’s
intentions. The user can seamlessly switch robots during such maneuvers.

gamepad controller and graphical user interface rather than
cooperatively grasping the object along with the robots as
was done in [3]. The mirror mode in our interface effectively
functions as a leader-follower architecture similar to [9] with
the teleoperated robot serving as the leader.

There are many different ways to structure a RAP (Robots,
Agent, People) system. For instance, Kawamura et al. [6]
propose an agent-based architecture in which different as-
pects of the user interface are tasked to separate agents. An
alternative approach is to base the human-robot interaction
on the same principles that govern effective human-robot
teamwork. Hoffman and Breazeal [4] introduce a collabo-
rative interaction architecture to support turn-taking, mutual
support, and joint grounding for settings where a human user
works alongside an autonomous humanoid robot in a shared
workspace. Equipping each of the robots with a separate
teamwork proxy that can enable the robots to coordinate
among themselves was shown to successfully increase robot
autonomy and decrease demands on the human operator in
a USAR task [16].

In contrast, our user interface has a single autonomous
agent with different modes that can be either executed
autonomously or requested by the user; in this paper we
demonstrate that injecting these extra modes into the human-
robot interaction significantly improves task performance and
user satisfaction. Rosenthal et al. [12] propose the notion
of a symbiotic human-robot relationship where the user can
help the robot overcome its limitations. Similarly, we rely
on the human to address some of our robot’s deficiencies,
particularly in perception. However, our work differs in
that the human is not physically present but rather that
robot control moves seamlessly between user and the agent,
enabling multiple robots to cooperate with a human in-the-
loop that drives the system’s high-level goals.

III. HU-IE ROBOT PLATFORM

Our robot, the Home and Urban Intelligent Explorer (HU-
IE), features a mobile base attached to an arm and gripper
(Figure 2). It is designed to be able to retrieve light objects in
a household environment with either carpets or hard floors.

Fig. 2. HU-IE combines a mobile base (3 DOF) with a robotic arm
(2 DOF) equipped with a gripper. This enables HU-IE to navigate indoor
environments and pick up small objects. The user can wirelessly teleoperate
the robot using a webcam.

We constructed our robot using three components: iRobot
Create, Charmed Labs’ Qwerk board [11], the arm from the
NXT 2.0 Robotics Kit, and a Logitech Communicate STX
Webcam.

The robotic arm on the HU-IE robot was created using the
LEGO NXT Robotic Kit. It is 1.2 feet long and extends 8
inches in front of the robot. The arm is actuated using three
motors, can rotate 360◦ around the robot base and has an
operating range of -45◦–90◦ in elevation. At the end of the
robotic arm is a four tong claw with rubber grips capable of
grasping objects sized for a human hand. An NXT intelligent
brick, containing a 32-bit ARM7 microprocessor, functions
as the brain of the robotic arm, connecting all the actuators
together. Commands from the user interface are sent directly
to the robotic arm via Bluetooth, bypassing the Qwerk board.
The webcam is mounted on the robotic arm to enable the
operator to view the object from the arm’s perspective.

IV. INTELLIGENT AGENT INTERFACE

The user views the environment and interacts with the
robot team through our user interface (Figure 3), which was
designed to minimize teleoperation workload. The operator
issues controls to both robots through an Xbox 360 gamepad,
using a button to switch between robots. Prior work on
human-robot interfaces indicates that gamepad interfaces are
generally preferred over keyboards/mice for mobile robot
teleoperation [10].

The basic user interface requires the user to fully teleop-
erate both robots. In this paper, we present and evaluate the
Intelligent Agent Interface (IAI) which adjusts its autonomy
based on the user’s workload. In addition to automatically
identifying user distraction, the IAI leverages prior com-
mands that the user has issued to one robot to determine a
course of action of the second robot. To enable the human to
simultaneously control multiple robots, the interface allows
robots to be placed in a search mode, where the robot
continues moving in the specified direction, while hunting
for objects and avoiding obstacles. IAI monitors each of the
robots and identifies robots that are ignored by the operator
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Fig. 3. The intelligent agent interface is designed to enable the user to seamlessly switch teleoperation across multiple robots. The IAI supports a
cooperative mode where the agent supports the user’s active robot by mirroring its intentions.

through measuring time latencies. It then assumes control of
the unattended robot and cedes control if the user sends the
robot an explicit teleoperation command.

The IAI provides the user with two important new coop-
erative functions: 1) autonomous positioning of the second
robot (locate ally) and 2) a mirror mode. In these modes,
the unmanaged robot attempts to learn through demonstration
the intent of the user by monitoring the command history of
the teleoperated robot. The autonomous robot uses a simple
set of translation rules to modify the command sequence.
In the locate ally mode, the robot positions itself on the
side adjacent to the teleoperated robot, closest to the nearest
pile of objects. For the mirror mode, it simply executes
the same set of commands, corrected for differences in the
robots’ orientation.

Robots have the following modes of operation:

Search: the robots wander the area searching for
objects.

Help: a robot enters this mode if the human opera-
tor calls for help using the gamepad or when
the teleoperated robot is near an object too
large to be moved by an individual robot.

Pickup: the robot detects an object and requests that
the human teleoperate the arm.

Transport: the robot transports an object held by the
gripper to the goal.

Locate Ally: the unmanaged robot autonomously moves
to a position near the teleoperated robot

based on command history.
Mirror: the robot mimics the commands executed

by the teleoperated robot to simultaneously
lift an object and transport it to the goal
location.

In a typical usage scenario, the IAI moves the unattended
robot around the environment in search of objects to be
moved (clutter). At the start of the mission, the region
is roughly partitioned into two areas of responsibility for
exploration. Given this partition, each robot independently
searches its assigned space. The robot’s current state is
displayed on the user interface for the benefit of the human
operator. When the user needs help manipulating an awkward
object, the second robot can be called using the gamepad
controller. The Help function can also be automatically acti-
vated by the IAI system, based on the other robot’s proximity
to large objects. Once in the Help mode, the robot executes
the Locate Ally behavior. IAI maintains a history of both
robots’ navigational movements and uses dead reckoning
to determine the teleoperated robot’s position.1 Each HU-
IE robot has a cliff sensor, which when activated indicates
that a robot has been forcibly moved. If that occurs, the IAI
system notifies the user to reorient the robot by driving it to
its initial starting position. If the user is not actively soliciting
help, the unmanaged robot typically moves into the Search
mode; once the robot detects an object, it notifies the user

1In indoor environments, the Create robot base only experiences a little
slippage so the robot’s position estimates are accurate to within a few cms.
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Fig. 4. The physical interface to the IAI is through an Xbox 360
gamepad from which the operator can select a robot and send it teleoperation
commands.

that it needs help with manipulation. After the object has
been lifted by the user, the robot transports it to the goal.
The aim of the IAI system is to smoothly transition between
the unmanaged robot rendering help to the user and asking
for help with the manipulation section of the task.

The human operator can also opt to put the other robot into
Mirror mode. In this mode, the unmanaged robot intercepts
the commands given to the teleoperated robot and attempts
to duplicate them in its own frame of reference. This mode
is essential for reducing the workload of the operator during
cooperative manipulation, when two robots are required to
lift the object. By combining the Help, Locate Ally, and
Mirror modes, the robot can autonomously detect when its
help is needed, move to the correct position and copy the
teleoperated robot’s actions with minimal intervention from
the operator.

The operator controls the robots using an Xbox 360
Gamepad controller (Figure 4) as follows. The trigger buttons
on the Xbox 360 controller are used to toggle teleoperation
between the two robots and to activate the mirror mode in
the unmanaged robot. The A, B, X and Y buttons are used
to drive the mobile base. The right button halts the actively
managed robot. The left and right analog sticks control the
elevation and azimuth, respectively, of the robot arm. The
claw grip is controlled by the D-pad on the Xbox 360
controller.

V. EXPERIMENTAL METHODOLOGY

Our user studies are designed to evaluate the performance
of the IAI vs. manual teleoperation on a variety of measures,
including speed of task completion, number of object drops,
and user satisfaction. Three indoor scenarios plus a training
scenario were employed in our user study. The user was
asked to execute each of the scenarios twice, once using
our Intelligent Agent Interface and the other using the
basic teleoperation functionality. The scenarios were always
presented in ascending order of difficulty, with a randomized
ordering of the user interface condition. Participants were
allotted 10 minutes of practice time and 15 minutes for each
of the scenarios. The scenarios are as follows:

Fig. 5. Scenario 3 Layout: the two robots operate in an area of 6.3′×6.4′

and move objects from various piles to the goal area. Objects differ in
difficulty and demand different strategies from the robot-user team.

Training: Each participant was given a ten minute train-
ing session during which they were able to
familiarize themselves with the teleoperation
controls and the IAI system. The human
operator was allowed to practice picking up
objects and transporting them to the goal
location.

Scenario 1: For the first task, the participant had to use
the two robots to search the area and transport
small objects (movable by a single robot) to
the appropriate goal. The environment con-
tained three piles with five objects. The first
pile had large round objects, the second pile
contained oddly-shaped objects, and the third
pile contained small round objects.

Scenario 2: In the second scenario, the participant had
to locate and retrieve awkward objects that
required both robots to simultaneously lift
and carry. These objects were grouped in
three sections, each containing 3 awkward
objects.

Scenario 3: The final mission consisted of a mixture of
objects as shown in Figure 5: the first section
contained five (small and large) objects; the
second had oddly-shaped objects; and the
third contained awkward objects that required
bimanual manipulation.

The baseline system, designated as manual operation,
consisted of a standard teleoperation setup where the human
operator controls all aspects of the robot’s motion using
the Xbox 360 controller for the three scenarios. The user
interface is only used to display camera viewpoints, and the
robots never attempt to act autonomously. In our proposed
approach, the user has access to the additional commands,
help and mirror through the controller. The IAI automati-
cally detects lack of robot activity and triggers the search
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TABLE I
DEMOGRAPHICS AND EXPERIENCE LEVEL OF THE USER-STUDY

PARTICIPANTS.

Age Gender PC Game Skill Level
20–28 Male Female Expert Inter. Beginner

20 10 10 4 6 10

Fig. 6. Scatterplot showing the time required the complete the task
in each scenario under the two experimental conditions: IAI (adjustably
autonomous) and Manual (pure teleoperation). We observe that in the
majority of scenarios, IAI reduces the time required to complete the task.

mode to hunt for objects with the unmanaged robot. When
an object too large for a single robot is detected, the IAI
system autonomously positions the robot and waits for the
user to activate the mirror. We measured task performance
using two metrics: (1) the time required to complete the task
(bounded by 15 minutes); (2) the number of times objects
were dropped during the scenario. We present our findings
in the next section.

VI. RESULTS

Table I summarizes the demographics of our user study.
The majority of the users had limited prior experience with
game controller interfaces. Figure 6 presents a scatter plot of
the time taken by each user to complete each scenario under
the two experimental conditions, pure teleoperation (denoted
“Manual mode”) and IAI. We see that in the majority of runs,
IAI significantly accelerates the human operator’s progress.
We attribute this to the fact that the robot controlled by
the IAI continues to assist the human-operator while the
teleoperation condition forces the user to inefficiently multi-
task between robots.

Table II presents an analysis of the completion time re-
sults. We confirm that the improvements in completion time
reported by the majority of users are statistically significant
under a Student’s one-tailed t-test (p < 0.05).

Figure 7 shows the number of failed pickup attempts
by the user in each scenario, both under IAI and manual
conditions. Table III analyzes these results to test our belief
that IAI should result in fewer dropped objects. We see that

TABLE II
ANALYSIS OF AVERAGE TASK COMPLETION TIME. IAI RESULTS IN A

SIGNIFICANT IMPROVEMENT OVER THE MANUAL MODE IN ALL THREE

SCENARIOS.

Scenario IAI Manual Significance
Time ±σ (sec) Time ±σ (sec) (p < 0.05)

1 361.1 ± 63.2 411.8 ± 81.9 0.017
2 353.6 ± 56.0 407.2 ± 59.4 0.003
3 538.5 ± 157.3 627.8 ± 158.6 0.004

Fig. 7. Scatter plot showing the number of failed pickup attempts for each
user in each scenario.

the number of average drops is lower with IAI in all three
scenarios. However, the improvement in Scenario 1 is not
shown to be statistically significant on the Student’s t-test
(p < 0.05). In general, IAI results in fewer drops because
the mirror mode enables the user and agent to coordinate
grasping and movement, whereas in manual mode the user
risks dropping the object as a robot is moved during two-
handed manipulation task.

Our user post-questionnaire study indicated a strong pref-
erence (90%) for IAI over the manual teleoperation mode;
the remaining 10% expressed no preference between the two
conditions.

A. User Comments

As part of our post-task questionnaire we asked subjects
about their strategies for collecting objects. The comments

TABLE III
AVERAGE TOTAL COMBINED FAILED PICKUPS (OBJECT DROPS). IAI

REDUCES THE NUMBER OF DROPS ON AVERAGE; THIS IMPROVEMENT IS

STATISTICALLY SIGNIFICANT IN SCENARIOS 2 AND 3.

Scenario IAI Manual Significance
Failed Pickups ±σ Failed Pickups ±σ (p < 0.05)

1 5.75 ± 1.55 6.20 ± 1.64 NO
2 3.30 ± 1.21 4.70 ± 1.55 0.002
3 5.00 ± 2.22 6.80 ± 3.31 0.026
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Fig. 8. Histogram of user ratings of the IAI user interface on post-task
questionnaires. Users were overwhelmingly positive.

indicate that the users were definitely relying upon IAI for
either 1) autonomously transporting objects or 2) coordinated
object pickup. On the post-questionnaire, 90% of the partic-
ipants expressed a preference for IAI when queried about
their preferences and all of the participants gave IAI high
ratings (Figure 8).

From our own observations, we noted that many of the
users spent the entire time controlling a single robot and
exclusively relied upon IAI for controlling the second robot’s
navigation. When the IAI system notified the user to pick
up an object, most users switched to that robot, used the
arm to lift the object, and then chose to immediately return
to controlling the original robot. At that point, IAI would
autonomously deliver the object to the goal. Some users
chose to call for assistance on each pile of objects, instead
of assigning robots to different piles. Many participants
experienced some initial difficulty during the training period
and first scenario learning how to lift objects with the arm.
By the second scenario, most users learned the knack of
controlling the arm, resulting in fewer object drops. Users
experienced more problems in manual mode while lifting
the larger objects as compared to IAI.

VII. CONCLUSION AND FUTURE WORK

Adding manipulation capabilities to a robot team widens
its scope of usage tremendously at the cost of increasing
the complexity of the planning problem. By offloading the
manipulation aspects of the task to the human operator,
we can tackle more complicated tasks without adding ad-
ditional sensors to the robot. In this paper, we demonstrate
and evaluate an effective human-robot interface paradigm
for multi-robot manipulation tasks. Rather than increasing
the workload of the human user, we propose an alternate
approach in which the robots leverage information from
commands that the user is executing to decide their future
course of action. We illustrate how this approach can be used
to create cooperative behaviors such as mirroring and locate
ally; together the robots can coordinate to lift and transport
items that are too awkward to be manipulated by a single
robot. In the user study, our mixed-initiative user interface

(IAI) shows statistically-significant improvements in the time
required to perform foraging scenarios and the number of
dropped items. Users were able to master the interface
quickly and reported a high amount of user satisfaction. In
future work, we plan to generalize our method of learning-
by-demonstration. Currently, our system employs a static
translation system for converting the users’ commands. A
more powerful approach would be to use either plan repair
or case-based adaptation to modify the user’s commands for
use by the partner robot.
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