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Abstract— Heterogeneous robot teams are formed to perform
complex tasks that are sub-divided into different roles. In ad
hoc domains, the capabilities of the robots and how well they
perform as a team is initially unknown, and the goal is to
find the optimal role assignment policy of the robots that will
attain the highest value. In this paper, we formally define the
weighted synergy graph for role assignment (WeSGRA), that
models the capabilities of robots in different roles as Normal
distributions, and uses a weighted graph structure to model
how different role assignments affect the overall team value.
We contribute a learning algorithm that learns a WeSGRA
from training examples of role assignment policies and observed
values, and a team formation algorithm that approximates the
optimal role assignment policy. We evaluate our model and
algorithms in extensive experiments, and show that the learning
algorithm learns a WeSGRA model with high log-likelihood
that is used to form a near-optimal team. Further, we apply
the WeSGRA model to simulated robots in the RoboCup Rescue
domain, and to real robots in a foraging task, and show that
the role assignment policy found by WeSGRA attains a high
value and outperforms other algorithms, thus demonstrating
the efficacy of the WeSGRA model.

I. INTRODUCTION

In ad hoc domains, robots from different sources are put
together to solve complex tasks that are frequently sub-
divided into roles, where each role defines the robot’s initial
state and its responsibility in the task. For example, in
an urban search-and-rescue (USAR) scenario, rescue robots
from around the world would arrive at the scene. However,
due to space constraints, only a small number of robots
can be deployed. Thus, the best combination of robots has
to be chosen. Possible roles in USAR include ambulances
that directly save civilians, fire engines that put out fires,
and police cars that clear debris and direct civilians to safe
areas. However, because of the ad hoc nature of the problem,
the capabilities of the robots (i.e., how well they perform
in the roles) are initially unknown, as well as how well
combinations of robots will perform together at the task.

Previous work in role assignment, which we discuss in
detail in the related work section, focus on cases where the
capabilities of the robots are known. In multi-robot task-
allocation, the goal is to maximize the total number of tasks
completed, while we are interested in finding the optimal
role assignment to complete a single task with highest value.
Research in the ad hoc domain has thus far focused on how
a learning agent can adapt to unknown teammates; we are
interested in how to form a team of robots in an ad hoc
problem. We have previously introduced the synergy graph

model, that captures the capabilities of agents at a task, and
their synergy when working in a team. However, the synergy
graph model only selects a team of agents, and does not
provide role assignments.

In this paper, we formally introduce the weighted synergy
graph for role assignment (WeSGRA) model, where agent
types (combinations of robot hardware and software) are
vertices in a weighted graph, and the distance between agent
types in the graph is related to how well they perform
together in a team. Furthermore, each agent type is associated
with a list of Normal distributions that describe the capability
of the agent type at different roles. We formally define how
the synergy of a role assignment policy is computed, and
contribute a team formation algorithm that uses a WeSGRA
to approximate the optimal role assignment policy.

Because the robot capabilities are initially unknown, the
WeSGRA must be learned from data. Thus, we contribute a
learning algorithm that learns a WeSGRA using only training
examples of role assignments and their values in the task. In
extensive experiments, we use a hidden WeSGRA to generate
training data, and show that the learned WeSGRA is very
similar, and that the role assignment policy found by using
the learned WeSGRA is close to optimal.

We demonstrate the efficacy of the WeSGRA model with
simulated robots and real robots. Using the RoboCup Rescue
simulator, we run combinations of algorithms of RoboCup
teams to solve the task, and learn a WeSGRA from the
simulated results. Through cross-validation, we show that the
WeSGRA model captures the capabilities and interactions of
the robots, and we show that the role assignment policy found
by using the learned WeSGRA outperforms that found by a
market-based technique. In addition, we use a combination
of Aldebaran NAO robots and Lego Mindstorms NXT robots
in a foraging task, and learn a WeSGRA from the robots’
performance. We demonstrate that the role assignment policy
found by WeSGRA again outperforms the market-based
technique. While we use NAOs and NXTs in our real
robot experiments, the WeSGRA model is general, and can
be applied to other robot platforms to form effective role
assignment policies in ad hoc domains.

II. RELATED WORK

In role assignment, a single complex task is sub-divided
into a set of roles, where each role describes the responsi-
bility of the robot. Market-based techniques are commonly
used, where robots submit bids on roles and typically the



highest bid is assigned the role [1]. In IQ-ASyMTRe, het-
erogeneous robots with known capabilities (schemas) are
considered, and ranking of feasible teams is based on the
sum of schema costs [2], which bears many similarities to
market-based approaches; hence, we compare our model and
algorithms with a market-based approach. In our work, we
are interested in ad hoc domains, where the robot capabilities
are initially unknown, and we model the synergistic effects
of role assignments.

Multi-robot task allocation (MTRA) has many similarities
to role assignment, where the goal is to allocate multiple
tasks instead of roles. Many approaches to MRTA compute
the value of an allocation based on the tasks completed [3].
Market-based techniques are also commonly used in MRTA,
and robot capabilities are modeled as a set of services or
resources [4]. Similar to role assignment, most approaches
do not model synergistic effects of team members. We are
interested in how the performance of a task varies based
on the team composition and role assignment, without prior
information about robot capabilities.

The ad hoc problem was recently introduced, where an
autonomous agent learns to collaborate with previously un-
known teammates [5]. Role assignment of an ad hoc agent
involves the agent choosing a role based on observations [6].
We are also interested in the ad hoc domain, and we focus
on how to form an effective role assignment policy in an ad
hoc scenario, and not the behavior of a single agent.

We recently introduced the synergy graph model, where
agents are vertices in an unweighted graph, and the distance
in the graph is related to how well they perform together in
a team [7]. The agent capabilities are represented as Normal
distributions, to capture variability and the dynamics of the
world. Agent teams were represented as subsets of agents,
without role assignments. In this paper, we build upon the
synergy graph model and use a weighted graph to improve
the expressiveness of the model. Our learning algorithm uses
much less data for training, only a single point of data per
role assignment, compared to 30 per team in the original
synergy graph learning algorithm. Further, we now model
how role assignments affect performance, and approximate
the optimal role assignment policy.

III. PROBLEM STATEMENT AND APPROACH

In this section, we formally define the problem, and give
an overview of our approach. To aid in the explanation of
the problem and solution, we will use a consistent motivating
scenario from the RoboCup Rescue domain.

A. Motivating Scenario

An earthquake has occurred in a city, and civilians are
trapped and require rescue. Fires have started, and fallen
rubble has created road blockages. An urban search-and-
rescue (USAR) team is deployed in the city, with the goal of
saving as many civilians as possible, and also to minimize
fire damage to the city. There are three kinds of USAR
agents: ambulances that can save civilians, fire engines that
put out fires, and police cars that clear rubble from roads.

Many USAR agents from around the world arrive at the
disaster scene ready to help, but due to safety concerns,
only a small number of USAR agents can be deployed. In
particular, there is a fixed set of locations within the city that
the USAR agents will be deployed from. Because the USAR
agents come from different places, many have not worked
together before and it is unknown how well they will be
able to coordinate. Thus, the goal is to pick the best ad hoc
team comprising USAR agents from different sources.

B. Formal Problem Definition

Let A = {aj,...,an} be the set of agent types,
where an agent type is a combination of the hardware of
a robot and the software (i.e., the algorithms) controlling
it. For example, physically-identical robots running different
algorithms would be represented as different agent types,
while physically-identical robots running the same algo-
rithms would be represented by a single a € A. Hence,
N is the number of possible combinations of hardware and
software, and not the total number of robots available.

The task is sub-divided in M roles — in the USAR sce-
nario, these roles indicate both the type of robot (ambulance,
fire engine, police car) and its initial location in the city. Let
R = {ri,...,ran} be the set of roles, such that each role
will be assigned an agent type.

The goal is to find the optimal role assignment policy
7 : R — A, such that V7,V (7*) > V(x) for some value
function V. In the USAR scenario, the value function V
would be a combination of the number of civilians saved and
the state of the buildings in the city. For any role assignment
policy m, every role must be assigned an agent type, and
it is valid for the same agent type a € A to be assigned
multiple roles, i.e., Iry, 75 € R s.t. m(ry) = 7(rg). Such an
assignment means that multiple identical robots (robots with
identical hardware and software) will each perform the role.

Since this is an ad hoc scenario, the capabilities of the
agent types (how well they perform at different roles) are
initially unknown, as well as how well different agent types
perform together in a team. Thus, the value function V'
is unknown. Further, since robots are acting in a dynamic
world, the value function V' is non-deterministic, i.e., for
the same 7, multiple samples of V' (7) will return different
numbers. However, examples of V(w) for different 7 are
available, and indicates how particular role assignments
performed at the task. Using these examples, the optimal
role assignment policy 7* is to be determined.

C. Overview of Approach

To solve this general problem of role assignment in an ad
hoc scenario, we do the following:

1) We formally define the Weighted Synergy Graph for
Role Assignment (WeSGRA), that models the capa-
bilities of agent types at the M roles as Normal
distributions, and how well they work together with
other agent types in a team (i.e., their synergy) with
the structure of the WeSGRA graph.



2) We learn the WeSGRA using only the training ex-
amples of V(7), that maximizes the log-likelihood
of the training examples, and effectively models the
capabilities and interactions of the agent types.

3) Using the learned WeSGRA, we approximate the op-
timal role assignment policy to perform the task.

IV. WEIGHTED SYNERGY GRAPHS FOR ROLE
ASSIGNMENT

In this section, we formally describe how we model the
value function V' using a Weighted Synergy Graph for Role
Assignment (WeSGRA), and how a WeSGRA is used to
approximate the optimal role assignment policy.

A. Modeling Capabilities and Synergy

There are N agent types and M roles, and the goal
is to find the optimal role assignment policy 7* subject
to the value function V. We assume that the performance
of a role assignment policy is represented by a Normal
distribution, i.e., V(7) ~ N(pr,02). As in our previous
work in modeling mutual capabilities and synergy [8], [7],
we use a Normal distribution because it is unimodal (the
single peak corresponds to the mean performance of the
team) and the symmetry in deviation reflects that agents are
just as likely to perform better as they are worse.

In particular, each agent type a; € A is associated with
M Normal distributions {C; 1, ...,C; am}, where each C; ,,
is the individual capability of a; at role r,, i.e., how well
the agent type performs at the particular role. In [7], agent
capabilities were also represented by a list of distributions,
that indicated how well the agent performs at each sub-task.
The key difference in this work is that the sub-tasks were
assumed to be independent in [7], but in this paper, roles are
interdependent and affect the overall task performance.

While the Normal distributions define the individual ca-
pabilities of agent types at different roles, it does not model
how well agent types perform together. For example, suppose
that in the USAR scenario, there are two roles 71,7, € R
involving ambulances deployed next to each other. Further
suppose that agent type a; has high performance at rq, 7o,
and as has low performance at rq, 7. However, if the role
assignment policy is (r1 — a1,72 — a1), the overall
task performance is low, because the algorithm of a; sends
both agents to the same civilian. Conversely, if the policy
is (r1 — ai,m72 — a2), the task performance is higher
because different civilians would be saved. Thus, the synergy
of a team is not modeled by the individual capabilities.

To effectively model synergy, i.e., how well a team of
agents will perform together, we introduce a compatibility
function ¢, where a high compatibility reflects that agent
types have good synergy and work well together. Further,
we define that compatibility is transitive — if a; is highly
compatible with ay, and ao is highly compatible with ag,
then a; should be compatible with a3. We concretely define
the compatibility function as ¢ : Z* — R™, where ¢ is a
positive monotonically decreasing function. In this manner,
¢ takes as input a distance and returns compatibility, such

8 9 )

61.2Q

Fig. 1: An example of the distances among three agent types
ai,az,a3 € A, where a low distance between agent types
reflects high compatibility and vice versa.

that low distances correspond to high compatibility and vice
versa. Examples of ¢ are ¢(d) = % (a fraction function) and
¢(d) = exp(—42) (a decay function with half-life 7). In
addition, the transitive nature of compatibility is modeled by
the sum of distances between agent types. We assume that
¢ is domain-specific and known.

Fig. 1 shows an example of the distances of three agent
types ai,as,as, where the a; and as have high compati-
bility (distance of 1) with each other, but low compatibility
(distances of 8 and 9 respectively) with themselves, and as
has high compatibility with ay (distance of 2). As such,
through transitivity, the compatibility of a; and a3 will also
be moderately high (distance of 3).

B. Formally defining the WeSGRA model

In the previous subsection, we defined the individual agent
capabilities that represents how well an agent type performs
at a role, and the compatibility function ¢ that relates how
well pairs of agent types work together in a team. Putting
these together, we now formally define the WeSGRA model:

Definition 4.1: A weighted synergy graph for role as-
signment (WeSGRA) model S is a tuple {G, C}, where:

e G=(V,E) is a connected weighted graph;

o Each a; € A is represented by a vertex v; € V;

o e = (v;,v;,w; ;) € Eis an edge between vertices v;, v;

with weight w; ; € Z7;

o Yu; € V,3e = (v;,v;,w; ;) € E, ie., every vertex has

an edge that loops to itself;

o Va;, € A,AC; € C st. C; = {Ci)l,...,ci,]w} where

Cia ~ N (pi,a, 07 ) is the capability of a; at role r,.

The WeSGRA model captures both the individual agent
capabilities with C, and the compatibility ¢ between agent
types through the distance between vertices in the graph.
Thus, we modify the pairwise synergy function in [7] for
the WeSGRA model:

Definition 4.2: The pairwise synergy between two agents
a;i, a; assigned to roles 7,73 respectively is:

Sa(ai,aj,rasrp) = d(d(vi,v;)) - (Cia +Cj5) (1)

where d(v;,v;) = w;;, and for i # j, d(v;, v;) is the shortest
distance between vertices v;,v; in the WeSGRA graph.
Similarly, we define the synergy function that computes
the distribution of a team of agents:
Definition 4.3: The synergy of the team of agents as-
signed by the role policy 7 : R — A is:

S === 3 Sa(@(ra)sw(rs),rarrs) @)

IRI)
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Thus, the synergy function S returns a Normal distribution
that represents the performance of the team in the role
assignment policy. The same agent type can have multiple
roles in 7, e.g., m(ry) = w(rg) = a;, which implies that
the pairwise synergy function for this pair of roles will use
the self-looping edge in the WeSGRA graph to compute the
distance (and hence the compatibility).

C. Approximating the Optimal Role Assignment

Given a WeSGRA S, we want to approximate the optimal
role assignment 7* using .S. However, the synergy function S
returns a Normal distribution, and we need to be able to rank
such distributions. Hence, we use the evaluation function
defined by us in [8], that converts a Normal distribution into
a single number using a risk factor p € (0, 1):

Evaluate(Ny,p) = pir +0r - 7 1(p) 3)

where ®~! is the inverse of the standard Normal cumulative
distribution function. As such, when p = %, the value
returned equals the mean of the distribution, and the variance
increases (decreases) the value when p > % (p < %).

With the evaluation function that ranks distributions, our
team formation algorithm approximates the optimal team
by using simulated annealing to explore the space of role
assignment policies. The algorithm starts with a random
role assignment policy 7, and generates neighbor policies
by changing one of the agent types assigned to a role in .
New policies are accepted based on the score computed by
Evaluate and the temperature schedule. We use simulated
annealing as it is infeasible to compute the optimal by brute
force (there are M* possible policies).

V. WESGRA LEARNING ALGORITHM

In the previous section, we contributed the WeSGRA
model and our team formation algorithm that approximates
the optimal role assignment policy. However, in order to
use the WeSGRA model, we must first be able to learn
a WeSGRA from data. In this section, we contribute our
learning algorithm that learns a WeSGRA using only training
examples of the performance of role assignment policies.

The value function V' is unknown, but we are given train-
ing examples T = {(7r1,V1),...,(mT|,V|T|)}. Although
each V() is a distribution, we are only given a single sample
per policy in T, i.e., ¥(m;, Vi), (7;,V;) € T, m; # ;.

Algo. 1 shows the learning algorithm, which proceeds
in two steps. First, an initial WeSGRA graph structure in
randomly generated, and the agent capabilities are estimated
using the training examples 7'. Next, simulated annealing is
run, where the WeSGRA graph structure is varied so as to
explore the space of possible weighted graphs. With each
new graph structure, the agent capabilities are re-estimated.
The new WeSGRA is accepted based on the computed log-
likelihood of the training examples.

A. Learning the WeSGRA graph structure

In Algo. 1, an initial WeSGRA graph structure is first
generated by RandomWe SGRASt ructure, that creates |A|

Algorithm 1 Learn a WeSGRA from training examples
LearnWeSGRA(A, R, T')

1: G = RandomWeSGRAStructure(A)

2: C'+ EstimateCapabilities(G,R,T)
35« (G,0)

4: | - LogLikelihood(S,T)

5: for k =1 to kp do

G’ + NeighborWeSGRAStructure(G)
(' + EstimateCapabilities(G’,R,T)
S+« (G, C)

! + LogLikelihood(S’,T)

10. if p(l,I', Temp(k, kmax)) > random() then
11 S« 5

12: I+

: return S
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vertices, and randomly adds edges of random weights in the
graph so as to make the graph connected. Self-looping edges
of random weights are then added for every vertex.

Next, NeighborWeSGRAStructure is used in the
simulated annealing loop to explore the space of WeSGRA
graph structures. A neighboring graph structure is generated
by performing one of the four following actions:

o The weight of a random edge is increased by 1, subject

to a maximum weight wWmax;

« The weight of a random edge is decreased by 1, subject

to a minimum weight Wpin;

o A new edge is added between two vertices;

o An existing edge is removed, as long as it does not

disconnect the graph.

Since the weights of edges in a WeSGRA graph structure
are positive integers, the actions of increasing and decreasing
the edge weights by 1 are capable of potentially exploring all
edge weight combinations, and the last two actions (add and
remove edges) changes which vertices are directly connected.

B. Estimating Agent Capabilities

Using an existing WeSGRA graph structure, and the
training examples 7', EstimateCapabilities learns
the capabilities of the agents. There are N agents and M
roles, and as such, there are N M Normal distributions to be
estimated. We assume that |T'| > 2N M so that the problem
is over-constrained as opposed to underconstrained.

Since the WeSGRA graph structure is known, the distance
between any two vertices v;, v; can be computed. If v; # vj,
then d(v;,v;) is the shortest distance between them in the
graph. If v; = v,, then d(v;,v;) = w;,, ie., the weight
of the self-looping edge of vertex v;. From the distances, ¢
computes the pairwise compatibility.

EstimateCapabilites estimates Normal distribu-
tions so as to maximize the log-likelihood of the training
examples 7. From a single training example (7, V(7)) € T,
an equation is formed that involves the means and variances
of the agent capabilities.

Fig. 2 shows an example of a WeSGRA graph structure
with 3 agent types and 2 roles. Suppose that the agent



{01,1, 01,2}

{Cs1, O3}

Fig. 2: An example of a WeSGRA with 3 agents types and
2 roles.

capabilities C; , are unknown, and that ¢(d) = %. Further
suppose that 7 = (r; — a1,72 — a2). The synergy
S(r) = ¢(d(v1,v2))(Cr1+ Ca2) = 5(Cr1 + Ca2). Hence,
the log-likelihood of the example V() is:

(V(m) - %(Mm + Mz,z))2
2- %(‘7%,1 + 05,2)

Thus, each training example in 7T corresponds to an
expression involving the means and variances of the agent
capabilities. In order to find the distributions that maximize
the log-likelihood of 7', the sum of log-likelihoods must be
maximized. In particular, the means are first estimated using
a least-squares solver, and then the variances are estimated
using a non-linear solver given the means.

1 1
3 log(2m - Z(ail + 03,2)) -

VI. EXPERIMENTS AND RESULTS

The WeSGRA model captures the individual capabilities
of agent types at different roles, and the synergy of the
agent types in a team. We have also contributed a learning
algorithm to learn a WeSGRA from training examples. In this
section, we demonstrate the effectiveness of the WeSGRA
model, the learning algorithm, and the role assignment
algorithm to approximate the optimal team.

First, we use synthetic data generated from hidden WeS-
GRA models, and show that the learning algorithm returns
a learned WeSGRA that is very similar to the hidden one,
that is used to form a near-optimal role assignment policy.
Secondly, we use the RoboCup Rescue Agent Simulator and
run combinations of existing algorithms written by RoboCup
teams. We show that the WeSGRA learned from the simu-
lation data models the interactions between the algorithms
well, and forms an effective role assignment policy. Thirdly,
we perform experiments on real robots solving a task, using
combinations of Aldebaran NAO humanoid robots and Lego
NXT robots, and show that the WeSGRA learned from the
experimental data forms a team that performs very well at
the task. In all our experiments, we assume that ¢(d) = %
is the domain-specific compatibility function.

A. Learning from Synthetic Data

In our first set of experiments, we ran 100 trials using
synthetic data. In each trial, we randomly created a hidden
WeSGRA with 5 agent types and 5 roles, that we then used
to generate 500 training and 500 test examples of V'(7r) for
different role assignment policies 7. Since N = M = 5, the
size of the policy space is 5° = 3125 and thus the training

Learn WeSGRA using

Hidden WeSGRA i
4 training examples

Generate training examples

((ry = ay, 72 — a1),10.9)

3
: vy — az), 3.8 (N
((r1 = a1,72 = a3) ) . {Cz,h(z'n}
3 6

((r = ag,r2 = a2),7.2)
1) 1

{C11,Cr2} {C31,C32}
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.
senerate test examples
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((r1 = a2, = 02), 5.5) lég—lilkeliilootl

((ry = ag,ra — a3), 1.7)

Approximate optimal
role assignment policy
Ty — ap
To — Q3

Compute value of role assignment policy

Fig. 3: The experimental process to evaluate the learning and
team formation algorithms for WeSGRA.
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Fig. 4: Learning curve of the learning algorithm using

training examples generated by a hidden WeSGRA model.

examples do not cover the space. The training examples were
used to learn a WeSGRA, and the accuracy of the learned
model was measured using the log-likelihood of the test
examples. Next, the learned model was used to approximate
the optimal role assignment policy. The value of this policy
was obtained by using the hidden WeSGRA, and compared
to the optimal (which was found by a brute force search).
The hidden WeSGRA was only involved in generating the
training and test examples, and evaluating role assignment
policies. Fig. 3 shows the steps of the experiments.

Fig. 4 shows the learning curve of our learning algorithm
over 1000 iterations of simulated annealing. The dotted line
shows the average learning over all 100 trials, while the
full line shows one trial. The log-likelihood of the test
data becomes higher as the number of iterations increases,
showing that our learning algorithm is capable of learning a
WeSGRA that closely resembles the hidden one.

To compute the effectiveness of the role assignment policy
selected by our team formation algorithm, for each trial,
we found (through a brute-force search) the optimal and
worst role assignment policies in the hidden WeSGRA,
by computing the Normal distribution of every policy and
converting it into a number using Evaluate with p = %
Next, the value of the role assignment policy found from
the learned WeSGRA (vjeameq) Was also computed. Since the
value of policies (optimal, minimum, and learned) differed



across trials, we scaled them to be between 0 and 1:

Effectiveness = Dlearned —— Umin 4)
Umax — Umin

where vnmax and v, are the values of the optimal and worst

policies respectively.

Over the 100 trials with synthetic data, the effectiveness of
the role assignment policy found from the learned WeSGRA
graph was 0.97 + 0.08, which shows that the learned
WeSGRA closely matches the hidden one, and also that the
team formation algorithm is capable of finding a near-optimal
team using the learned graph.

B. Forming an Ad Hoc RoboCup Rescue Team

The previous subsection showed that the learning algo-
rithm effectively learns a WeSGRA when the data does
in fact come from a hidden WeSGRA. We now apply the
algorithms to data generated from the RoboCup Rescue
Agent Simulator, to demonstrate that the WeSGRA model
captures the interactions of ad hoc agents well.

1) Defining the Task: The RoboCup Rescue Agent Simu-
lation League releases the simulator, maps, and source code
of participating teams annually. We compiled and ran the
algorithms of 6 RoboCup teams (with minor modifications);
each agent type in the WeSGRA model corresponded to a
RoboCup team’s algorithm. We used the Istanbull scenario
from the actual RoboCup 2011 competition, where there
are 46 rescue robots to be controlled. Typically, one team’s
algorithm is used to control and coordinate all 46 robots at
once. However, because we are interested in modeling the
interactions of multiple algorithms in an ad hoc setting, we
did the following: for each of the 46 robots, one of the 6
algorithms was chosen at random to control it. Thus, a role
assignment policy in this case would be an assignment of
algorithms to each of the 46 rescue robot, and as such there
are 66 possible role assignment policies.

2) Performing the Experiments: We randomly generated
600 policies (i.e., policies with different combinations of
RoboCup algorithms), and ran an instance of the simulator
per policy. At the end of each simulation, the value was
retrieved from the simulator, which was a weighted sum of
the health of the civilians and rescue agents still alive, and
the status of the buildings of the city.

First, we performed 6-fold cross-validation on the 600
examples, where we split the data in 6 sets of 100, and
trained on 500 and tested on the remaining 100. However,
because of the small number of training examples, we were
unable to estimate the variances of the agent type capabilities
(.o, and instead set them to be a constant. Fig. 5 shows the
cross-validation learning curves, and that the log-likelihood
of the test set improves with the number of iterations of
simulated annealing, and illustrates that the WeSGRA model
is capable of modeling the interactions of the role assignment
policies running with the 6 RoboCup algorithms.

Next, we used the learned WeSGRASs from the 6 runs of
cross-validation to approximate the optimal role assignment
policy. The policies found were then run in the simulator to
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Fig. 5: Learning curve of the learning algorithm using cross-
validation of data from the RoboCup Rescue simulator.
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Fig. 6: The distribution of values of role assignment policies.
The values in the training examples is shown as a cross (the
mean) with horizontal lines showing the standard deviation.

retrieve its value. We also learned a WeSGRA using all 600
examples, and used the simulator to obtain the value of the
role assignment policy found from the learned WeSGRA.
We compared the role assignment policies found by our
approach with three methods: a random guess, a market-
based approach, and picking the policy with the highest value
in the training examples. The value of choosing a random
policy was computed based on the 600 examples. In the
market-based approach, each algorithm a; formed a different
bid Bid(a;, 7o) for each of the 46 roles r,,, based on the value
of policies in the 600 examples that contained it:

Bid(ai,7a) = ﬁ > V() (5)
mell
where I={r €T :7(ro) = a;} (6)

For each role, the market-based role assignment algorithm
picked the agent type with the highest bid.

Fig. 6 shows the distribution of values of the role assign-
ments found by WeSGRA (from cross-validation, and from
using all the data) and methods we used for comparison. The
role assignments formed by WeSGRA generally outperforms
a random policy, and also the market-based algorithm. The
performance of WeSGRA using all the data is similar to
picking the best policy in the training data, but we believe
this is due to the small size of training data, and WeSGRA'’s
performance will improve with more examples, while choos-
ing the best training policy can lead to over-fitting.

C. Applying WeSGRA on Real Robots

For our third set of experiments, we applied the WeSGRA
model to real robots in the foraging domain. We used two
hardware platforms — Aldebaran NAO humanoid robots,



Fig. 7: The experimental setup for the real robot experiments.
The red circle indicates a hidden fifth ball, and the blue circle
indicates where balls are replaced if they are moved past the
side and back lines. Different combinations of robots were
placed in the 3 robot roles r1, 2, 3.

and Lego Mindstorms NXT robots. While we used these two
robot platforms, our results are general and can be applied to
other robot types. To increase the heterogeneity in the robots,
we also varied the algorithms the NAOs ran, which we will
elaborate in detail below. The foraging domain was chosen
as it bears many similarities to the USAR domain, namely
searching and “rescuing” in a limited amount of time.

1) Defining the Task: For the foraging task, 3 roles
r1, 72,73 were defined with starting locations in one half of
a RoboCup Standard Platform League soccer field, where 5
balls were placed (Fig. 7). 4 of the balls were in open areas
and easily seen by the NAOs, while 1 ball was hidden from
view under a tunnel, thus requiring an NXT to handle it. The
robots were to find and move as many balls as possible to
the other half of the field, in as little time as possible. If a
ball was moved outside the half of the field (i.e., the side or
back lines), the ball was replaced in the middle of the half
(denoted by the blue circle in Fig. 7). The value of the team
was based on the number of balls foraged and the time in
which the balls were foraged:

V = vpan - [B] + D (tiotal — 1) (7

beB
where vy, is the value per ball foraged, B are the balls

foraged, t; is the time elapsed (in seconds) when b was
foraged, and ty, is the total time of the trial in seconds.

2) Types of Robots: The NAO robots had three different
algorithms: Chase-and-Kick (CK), Kick-past-Midline (KM),
and Observer (Ob). A NAO running CK would search for
a ball, walk to it, and then perform a straight kick in
whichever direction the robot was currently facing. In the
KM algorithm, the NAO would explicitly localize (based on
landmarks on the field such as the yellow and blue goal posts)
and attempt to kick the ball past the middle line. Thus, the
KM algorithm explicitly kicks the ball towards the target area
(the other half of the field), while the CK algorithm kicks in
any direction, but over time CK succeeds in foraging since
balls kicked past the side and back lines are replaced. Also, in
both algorithms, the NAO would perform obstacle avoidance
so as not to walk into another NAO, NXT or the tunnels.

The Ob algorithm of the NAO did not actively forage
the balls — instead, the NAO would search for balls, and
transmit the ball’s position through a wireless connection to
other NAOs in the team, and as such potentially reducing
the amount of time another NAO needed to find a ball.

The NXT robots were programmed to follow lines, such
that they moved straight across the green field, turned around
when they encountered a white line, and followed a purple
line. Thus, the NXT robot would move across the field until
it found one of the two sets of purple lines around a tunnel,
and then followed it endlessly (it turned around at the end of
the purple line). If a ball was present inside the tunnel, the
NXT would push it out as part of the line-following behavior.
As such, the NXT robots were not capable of foraging the
balls directly, but only assisted the overall team goal.

The robots in our experiments ran autonomously, without
any central computer or processing. The only information
communicated between the robots was the ball position
that the Ob algorithm sent to KM, that KM would use to
approach the ball. We chose these algorithms so that there
was a greater heterogeneity in the robots, and also that
some algorithms were explicitly “helper” types (i.e., Ob and
NXTs), where they would not attain any value on their own,
but can improve the overall value given the right teammates.
The video accompanying our paper shows the setup, robot
behaviors and role assignment found by our algorithm.

3) Performing the Experiments: There were 3 roles, and
4 possible agent types (CK, KM, Ob, NXT), and thus there
were 43 = 64 possible role assignment policies. We per-
formed 61 of these policies and recorded the times in which
balls were successfully foraged (3 combinations involving all
NAOs could not be run due to hardware problems).

Next, we set vpy; = 100, and computed the values of each
of the combinations, given different amounts of time per trial.
For example, if ¢ was 120 seconds, then we ignored all
balls foraged after 120 seconds. We varied ;o from 120 to
600 seconds at 60 second intervals.

For each value of ty w1, we performed 6-fold cross-
validation on the data, comparing the WeSGRA model (using
4 agent types and 3 roles) with the market-based algorithm
(Eqn. 5). Due to the small number of training examples,
we again fixed the variances in the WeSGRA model to a
constant. As i increases, the values of policies found
by both algorithms increase, as there is more time for the
robots to forage balls. To compare the performance of the
algorithms, we used the effectiveness measure (Eqn. 4) to
scale the results from O to 1. Table I shows the results
of WeSGRA and the market-based algorithm. WeSGRA
outperforms the market-based algorithm across all values of
toal. Using a single-tailed paired-sample T-test, we found
that our results are statistically significant with p = 0.00003.

The market-based technique picked the role assignment
(r1 - CK, r, - KM, r3 — KM) regardless of
totar and as such the team could only forage the 4 visible
balls. The WeSGRA model picked teams involving 1 NXT
and 2 NAOs (running CK and KM), and were thus able to
forage more balls in general and attain a higher value. Thus,
the WeSGRA model successfully modeled the interactions
between the helper types of robots. While the Ob algorithm
helped to provide ball information to the other NAOs, it was
not selected as part of the optimal team, as having more
NAOs walking in the field provides a larger benefit.



. ttotal
Algorithm 20 180 240 300 360 20 480 540 600
WeSGRA | 0.9T £0.11 | 0.92 £0.11 | 0.96 £0.04 | 0.93 £0.08 | 0.92 £0.07 | 0.93 £0.06 | 0.88 £ 0.06 | 0.88 £0.06 | 0.90 £ 0.08
Market-based | 0.80 £ 0 080 %0 083 E0 00310 000 £0 080 E0 087E0 0.86 £ 0 0860

TABLE I: Effectiveness of algorithms in the foraging domain with real robots.

VII. CONCLUSIONS

We formally introduced the weighted synergy graph for
role assignment (WeSGRA) model, that models the ca-
pabilities of robots at different roles and how well they
perform in a team. Each agent type (a combination of robot
hardware and software) is represented with a vertex in the
WeSGRA model, with a list of Normal distributions as asso-
ciated capabilities for each role. The WeSGRA model uses
a weighted graph to represent compatibility among agent
types, where a smaller distance in the graph corresponds to
higher compatibility (i.e., agent types work better together).

We contributed a team formation algorithm that approxi-
mates the optimal role assignment policy given a WeSGRA.
However, in order to use a WeSGRA on actual ad hoc
domains, it must first be learned from data. Thus, we
contributed a learning algorithm that uses training examples
of role assignment policies and the values they attained, and
iteratively learns a WeSGRA by varying the weighted graph
structure and estimating the capabilities of the agent types.

To demonstrate the efficacy of our learning and team
formation algorithms, we first performed experiments using
data generated from a hidden WeSGRA. We showed that the
learned WeSGRA has high log-likelihood compared to test
data, and that the role assignment policy found by searching
the learned WeSGRA is in fact close to optimal.

Next, we applied the WeSGRA model to the RoboCup
Rescue domain, running combinations of existing RoboCup
algorithms in the RoboCup simulator. From the data, we
performed cross-validation and showed that the learned
WeSGRA represents the underlying interactions well. We
further compared the role assignment policies found by using
the learned WeSGRA against a market-based algorithm, and
showed that our policies performed much better.

Real robot experiments were also performed in a foraging
task, using Aldebaran NAO robots and Lego Mindstorms
NXT robots. We collected data from different possible role
assignment policies, and each policy’s value was based on
the number of items foraged and the time per foraged item.
We showed that the WeSGRA learned from the data selects
a role assignment policy that outperforms the market-based

algorithm, across all values of the maximum time to forage.

While we used two types of robot hardware, the WeSGRA
model is directly applicable to other robot platforms. The
model effectively captures robot capabilities and their syn-
ergy in the team, and uses only training examples with no
prior information. Thus, the WeSGRA model and algorithms
can be readily applied to many ad hoc robot problems.
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