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Abstract— Embodied Question Answering (EQA) serves as a
benchmark task to evaluate the capability of robots to navigate
within novel environments and identify objects in response to
human queries. However, existing EQA methods often rely on
simulated environments and operate with limited vocabularies.
This paper presents a map-based modular approach to EQA,
enabling real-world robots to explore and map unknown
environments. By leveraging foundation models, our method
facilitates answering a diverse range of questions using natural
language. We conducted extensive experiments in both virtual
and real-world settings, demonstrating the robustness of our
approach in navigating and comprehending queries within
unknown environments. (Webpage)

I. INTRODUCTION

Home robots that interact with humans need to understand
both language and 3D environments to perform household
tasks based on human instructions. For instance, if we
misplace our smartphones, it would be helpful if robots could
search the room and locate them for us. To accomplish this,
robots must explore scenes to find the target object and
generate text-based responses based on their visual obser-
vations. These skills can be assessed through the Embodied
Question Answering (EQA) task [10], [35], where an agent
navigates an unfamiliar environment to answer a question.
Recent studies of semantic visual navigation [13] indicate
that modular learning approaches are effective in real-world
scenarios, whereas end-to-end learning approaches fail due
to a significant domain gap in visual observations between
simulations and reality. The existing EQA methods [10],
[35] utilize an end-to-end framework trained on simulation
environments, which is likely to lead to poor real-world
performance. In addition, the VQA modules of the existing
methods often struggle to deal with new types of questions
and new objects because the models are trained with a limited
vocabulary and a few question types. In terms of question
diversity, the MP3D-EQA dataset suffers from a limited
range of question types, primarily focusing on “what color”
or “what room” even though in real-world situations, we ask
a wider variety of questions including “where” and “what is”.
When we consider EQA in more realistic daily life settings,
EQA models need to be able to handle an open vocabulary
and a diverse range of questions.
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Fig. 1. Example of our method: We provide an agent with a question and
the agent proceeds to explore an unknown environment. When it encounters
a potential target object, it verifies if this is indeed the correct target object
through image-text matching (ITM). If the ITM score falls below a pre-
determined threshold, the agent continues its exploration. If the ITM score
exceeds the threshold, the agent stops exploration and performs VQA.

In this paper, we present a map-based modular EQA
method combining object-goal navigation (ObjNav) [7], [8],
[30] and Visual Question Answering (VQA) [3], [21], [20],
[23] tasks. The agent extracts a target object category from
a question, explores the environment using frontier-based
exploration [37], and answers the question with an open
vocabulary once the target object is found. Unlike end-
to-end EQA methods relying on reinforcement learning,
our approach is designed to work robustly in real-world
scenarios.

Using the MP3D-EQA dataset, we evaluate our proposed
method and find that it performs comparably or even outper-
forms existing end-to-end methods that employ reinforce-
ment learning. On MP3D-EQA, the VQA top-1 accuracy
scores around 0.43, which is higher than the scores stated
on existing methods [35]. We also conduct extensive surveys
in two real houses, using question formats that differ from
those in MP3D-EQA dataset and incorporating target objects
not present in MP3D-EQA for our experiments. The results
demonstrated that our map-based modular approach achieved
high question-answer accuracy.

II. RELATED WORK

A. Visual Question Answering in 3D Space

In the domain of 3D spatial understanding and ques-
tion answering (3D-QA) [4], [14], [38], models provide
answers to textual questions regarding rich RGB-D indoor
scans encapsulating entire 3D scenes. Distinguished from
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conventional 2D-QA [3] models commonly employed in
visual question answering, the 3D-QA task poses distinct
challenges, particularly concerning spatial comprehension,
object alignment, directionality, and localization based on
textual cues within a 3D setting. However, environments
change dynamically, and it is necessary to gather information
anew each time. Thus, EQA is a more realistic task as
an agent explores an unseen environment and answers a
question.

B. Language-Guided Object Goal Navigation

Object goal navigation is a task in which an embodied
agent follows a concise textual phrase specifying a target
object category, navigates through a 3D environment, and
finally locates and reach the target object [7]. It also shares
similarities with the vision and language navigation (VLN)
task, in which agents follow detailed navigation instruc-
tions [2], [17], [1]. using the noisy-channel language model-
ings [18] or a history-aware multimodal transformer [9]. In
object goal navigation, SemExp [7] and PONI [30] adopt
map-based approaches. They generate semantic maps by
utilizing semantic segmentation and top-down projection.
These maps are then leveraged to determine long-term
goals and actions for the agent. In both methods, they
develop global policies to infer long-term goals with limited
vocabularies. Consequently, these methods cannot handle
many other object categories that are not included in the
training data. To address the vocabulary limitation, zero-shot
object goal navigation methods have been proposed [24],
[12], [6], which enable navigation to objects even if they
were not explicitly encountered during training. GOAT [6]
demonstrates the ability to navigate to any object or location
using text, images, or object categories.

C. Embodied Referring Expression Comprehension

Referring expression comprehension is a task for localiz-
ing objects following a short textual phrase of the referring
expression and introduced in 2D images [16], [26], [40], [25].
Previous work has explored the use of referring expressions
for embodied agents [28]. Additionally, research has been
conducted on tasks requiring both referring expression com-
prehension and object manipulation for these agents [32].
Furthermore, referring expression comprehension has been
applied to first-person video settings, which closely resem-
bles the robotic navigation context [19].

D. Question Answering for Embodied Agents

Embodied AI agents equipped with VQA can analyze
visual input from cameras or other sensors to answer ques-
tions about their environment. To assist the agent in rec-
ognizing and comprehending the scene during navigation,
VQA is used [15]. For example, by answering a question
about its surroundings, the agent can prevent collisions with
transparent doors. In EQA, a crucial challenge is VQA after
navigation, where an agent explores an unseen environment
to answer a given question. The original EQA [10] and
MP3D-EQA [35] datasets contain questions that almost focus

on a single target within the House3D [36] and Matter-
port3D [5] environments. A generalized version of EQA
has been proposed [39], in which each question within this
expanded task encompasses multiple objects, necessitating
the agent to navigate to these objects to provide an answer. K-
EQA [34] presents a dataset where questions (e.g. “Please tell
me what objects are used to cut food in the room?”) require
prior knowledge such as “knife is used for cutting food”. In
these EQA tasks, end-to-end imitation learning approaches
on shortest paths are often used as the baseline models [10],
[35]. However, this approach frequently results in collisions
with walls, which is undesirable when deploying these mod-
els in real-world scenarios. Another standard model [35] uses
point cloud data so that the agent does not collide with the
objects. Unfortunately, both models are based on supervised
methods and suffer from limited vocabularies.

III. PROPOSED METHOD

A. Task Definition

The EQA task aims to answer a question by exploring
and finding a target object in the unseen 3D world. During
EQA, an agent can observe its location, orientation, RGB-
D image, and the given question from a user. The agent can
take actions such as moving forward, turning left or right, and
stopping. After finding the target object, the agent performs
VQA based on the observed images and the posed question.
The episode is considered successful if the predicted answer
matches the correct answer.

B. Overview of EQA Framework

As illustrated in Fig 2, our EQA framework mainly
consists of language-guided navigation and VQA modules.
First, an agent is placed within an unknown environment and
is simultaneously given a question asking about the surround-
ings (e.g. “What color are the cabinets in the kitchen?”).
Next, the agent explores the indoor environment, observing
the images from its egocentric view. When the agent finds
an object belonging to the extracted object category, it
determines whether the object is the target object by image-
text matching. If the object is considered the target object,
the “stop” action is selected and the navigation is terminated.
Finally, the VQA module predicts the answer based on the
images collected up to the current state, taking into account
the image-text matching scores.

C. Language-guided Navigation Module

Language Understanding. Our navigation module detects
the object category extracted from a given question and
explores to find the corresponding target object. We used the
gpt-35-turbo-0613 through the Azure OpenAI API to
extract an object category with a prompt in Fig 3. We also use
the gpt-35-turbo-0613 for converting questions into
declarative sentences for image-text matching (ITM).

Scene Understanding. The scene understanding module
generates a semantic map for navigation using object de-
tection on first-person images. We use Detic [41], which



Fig. 2. Map-based Modular Embodied Question Answering Model Overview. The proposed method comprises the Navigation module (outlined
in blue) and the VQA module (outlined in red). The Navigation module consists of the Perception module and a set of Policies. The Perception module
incrementally builds a 2D map, storing images along with their image-text matching scores. The Global Policy selects a long-term goal based on the 2D
map and its frontiers. The Deterministic Local Policy outputs actions, and finally, the VQA module provides an answer based on the memorized images
and the given question.

Fig. 3. Dataset pre-processing using gpt-35-turbo-0613. It extracts
a target object category from a given question for ObjNav and converts a
question into a declarative text for image-text matching.

identifies 21,00 object classes, to segment observed images
based on the object category extracted by Large Language
Models. Then, this module overlays the object detection
outcomes with depth information and projects them onto a
top-down view.

Planner. To find the target object, we use frontier-based ex-
ploration [37], which selects the closest unexplored region as
a goal. We assumed frontier-based exploration does not need
training and, thus, results in a minimal domain gap between
simulation and real-world performance. Using the created
semantic map, the agent first detects frontiers, defined as
the edges or boundaries between known and unknown areas
within an environment. The closest frontier to the agent is
designated as a long-term goal if multiple frontiers exist. The
agent uses the A* algorithm to determine the path between

its current position and the long-term goal and selects a
sequence of actions to move to that position. The long-term
goal is updated every 25 steps to simulate in parallel. As
for the experiments in the real world, the updating steps
change dynamically according to the observation of the target
object and reaching the long-term goal. After finding an
object belonging to the extracted object category, the agent
sets the target object’s position to the long-term goal. While
exploring the environment, the agent stores images when it
approaches the target object within one meter and faces the
center position of the target object for the subsequent image-
text matching and VQA modules. Exploration stops after
100 steps or when a stop action is selected (the text-image
matching score is greater than β , which will be introduced
later.)

D. Image-text Matching Module

The agent has to distinguish target objects from others
based on a declarative text converted from a question.
To tackle this problem, we use vision-language foundation
models BLIP2 [20] and CLIP [29] as an image-text matching
module. Using these foundation models, we measure the
similarity between the observed images and the declarative
sentence. We assumed that the similarity between the image
containing the target object and the declarative sentence
would be greater than the similarity between an image
without the target object and the declarative sentence. The
agent stops and performs VQA on the image when the
similarity score exceeds β , otherwise, it continues to move.



E. Visual Question Answering Module

After navigation, we obtain a set of images and select
the one with the highest similarity score for VQA. We use
the pre-trained vision-language models for this VQA module
such as BLIP [21], BLIP2 [20], and LLaVA [23] respectively,
which show high performance on many VQA tasks.

IV. EXPERIMENTS
A. EQA Datasets

Our experiments leverage the Matterport3D (MP3D) EQA
dataset within the Habitat simulator [31], [33], [27]. The
dataset uses scenes derived from 3D reconstructions of real-
world settings. Since MP3D-EQA [35] only releases train
and validation splits, we further divided the original training
dataset into new train and val sets based on the scenes. The
original validation dataset was then used as the test dataset.

The agent is equipped with sensors including an RGB-
D sensor and a pose sensor. The observation space encom-
passes RGB-D images with dimensions 480∗640. The pose
sensor reports the agent’s position and rotation. The agent is
spawned at distances corresponding to 10, 30, and 50 actions
away from the ground truth end positions, moving towards
the start positions along the shortest paths. The shortest path
lengths from these start positions to end positions are 3.45,
4.53, 5.71, and 8.21 meters.

B. Implementation Details

We mainly use the implementation of SemExp [7].
There are two hyperparameters: the thresholds α,β of ob-
ject detection and image-text matching. We set (α,β ) ∈
(0.3,0.0),(0.2,0.1),(0.1,0.2). A lower value for α implies
that the object detection model is more likely to detect not
only the target object but also other objects present in the
scene. A higher value for β indicates that the agent prioritizes
performing VQA on the image with the highest image-
text matching score, suggesting greater confidence in that
particular image’s relevance to the question.

Fig. 4. VQA top-1 accuracy on MP3D-EQA train’. The scores of
LLaVA-v1.5-7b and LLaVA-v1.5-13b are higher than those of others.

C. Evaluation Metrics

We use the following metrics for evaluation: VQA top-
1 accuracy, dT (distance to target), following previous
works [35], [10]. The VQA top-1 accuracy is defined as

Fig. 5. ROC Curves of Image-text Matching of MP3D-EQA [35] at ‘train’
split.

the rate at the output of the VQA model with the highest
probability matches the ground truth answer. The dT is
defined as the distance to the target from the agent position
along the shortest path. In our setting, the target position is
defined as the agent end position of the shortest paths. As for
our methods, the dT is calculated between the target position
and the position on which image-text matching scores higher
than β or the highest. These metrics are calculated for T−N,
which is defined as a start position. According to ground truth
shortest paths, we set an agent on N back steps away from
an end position. We can investigate how well our navigation
module works by comparing dT with distance to a target
from a start position or comparing VQA top-1 accuracy of
our method with that of VQA only experiments.

D. Image-Text Matching

The agent has to identify which object is a target object.
To enhance EQA accuracy and prevent the misidentification
of irrelevant objects, we conducted extensive experiments
to identify the most effective combination of models and
caption formats.

E. Experimental Results

Image-Text Matching. In Figure 5, we compare scores
of BLIP2-pretrain, BLIP2-MSCOCO, and CLIP.
BLIP2-MSCOCO is a BLIP2 model fine-tuned on
MSCOCO [22]. The combination of declarative text
and BLIP2-MSCOCO scores higher than the others on
the MP3D-EQA dataset. This suggests that the MSCOCO
dataset [mscoco] might share similarities with the dataset
used for this EQA task. Therefore, we will employ
BLIP2-MSCOCO for the image-text matching module in
our simulation experiments.

VQA Baseline. We compare our method with the VQA
method where the agent perform VQA at initial starting po-
sitions. Figure 4 illustrates that LLaVA-v1.5-7b and 13b
score higher than others. It is known that LLaVA generally



outperforms BLIP2 in various vision-language [11] and the
results presented in Fig. 4 appear to align with this observa-
tion. Considering the results, we adopted LLaVA-v1.5-7b
for the experiment in the real-world environment.

EQA in the Simulation Environment.
We first measure the execution time for the EQA task. The

average time required to complete one episode, excluding
any data pre-processing are 40.74, 50.39, and 62.07 sec-
onds with (α,β ) = (0.3,0.0),(0.2,0.1),(0.1,0.2) at random
start positions respectively. We then conduct the quantitative
experiments reported in Table I. The results highlight our
method consistently outperforms the VQA-only baseline. It
indicates that the navigation module of our method can
work efficiently to answer questions. We observe that the
distance to the target dT using our method with (α,β ) =
(0.1,0.2) is shorter compared to the distances in cases where
navigation is not employed. However, the observed distance
is significantly greater than the predefined stop distance of
1 meter. One potential reason for this discrepancy is that
the agent might be navigating in the wrong direction, and
cannot find the target objects. We also observe that the object
detection is segmenting part of an object located in front of
the actual target. This misidentification might lead the agent
to erroneously stop before reaching the intended destination.
The navigation scores and VQA top-1 accuracy of (α,β ) =
(0.1,0.2) predominantly higher than other combinations.
This outcome suggests that using a lower value for α and
a higher value for β leads to better performance. In this
scenario, VQA tends to be performed on the image with the
highest image-text matching score.

Fig. 6. The robot which we use in the real world experiments. We use
i-CART mini for the mobile robot. The stereo camera is attached at 0.88
meters. 2D LiDAR is attached close to the floor so that SLAM can determine
where the robot can navigate.

EQA in the Real-World Environment. We evaluate our
method in real-world environments. Fig. 6 shows a robot
equipped with a stereo camera and 2D LiDAR. The robot
performs 19 episodes in two houses. We set (α,β ) =
(0.5,0.2) from some trials. The robot is placed 0.5 meters
(the minimum range of SLAM) away from objects and walls
for initialization. We define success in real-world settings

as predicting the correct answer regarding a target object
without any collisions.

We observe that navigation time per episode ranges from
20 seconds to 6 minutes, with a success rate of around 32
across 19 episodes shown in Table II. Changing image-text
matching models had minimal impact on performance. The
agent occasionally collides with objects due to our predefined
rules and limitations of 2D SLAM. When the deterministic
local policy fails to generate a path to the predicted long-term
goal, the agent moves randomly, increasing the likelihood
of collisions. Furthermore, 2D SLAM only maps areas that
reflect a laser from the 2D LiDAR, potentially leaving some
obstacles undetected. This 2D LiDAR limitation can be
resolved by using the depth of the RGB-D camera.

Figures 7 and 8 show success and failure cases of EQA.
Our method identifies the target object even among multiple
similar objects, but failures occur in four areas: navigation,
image-text matching, object detection, and VQA. Navigation
failures arise when the agent can’t find the target within the
given steps. In image-text matching, the correct image may
be discarded if its score is lower than others. Object detection
errors, such as failing to detect mannequins or clothes, lead
the agent to continue exploring. VQA failures occur when
incorrect answers are given despite having the correct image.
Our method also struggles with counting objects, especially
when items like chairs are spread across multiple rooms. A
more advanced memory architecture is needed. Additionally,
frontier-based exploration is not a efficient policy as the agent
has more information about the target object such as colors
and locations. Better exploration can be considered our future
work.

V. CONCLUSIONS

In this paper, we propose a map-based modular approach
for zero-shot EQA, combining ObjNav and VQA modules.
Through extensive experiments in both virtual and real-world
settings, we demonstrate that our approach outperforms the
VQA-only baseline, suggesting that our navigation and mem-
ory architecture contribute to the better EQA performance.
The use of a map-based navigation system allowed the agent
to efficiently explore unfamiliar spaces and locate target
objects, while the integration of vision-language models like
BLIP2 and LLaVA ensures accurate image-text matching
and robust question answering. However, certain challenges
remain, particularly in the areas of navigation precision,
object detection, and handling complex VQA scenarios like
counting multiple objects across different rooms. Future
work could focus on refining the navigation module to utilize
more information about the target object, as well as en-
hancing the VQA module’s capacity for complex reasoning
tasks. Overall, our proposed method presents a significant
step forward in advancing embodied AI systems, offering
a more versatile and scalable solution for real-world EQA
tasks.



TABLE I
RESULTS ON MP3D-EQA [35]. WE USE BLIP2-MSCOCO AS AN IMAGE-TEXT MATCHING MODEL AND LLAVA-V1.5-7B AS A VQA MODEL.

Method Navigation QA
dT ↓ Top-1 ↑

T−10 T−30 T−50 random T−10 T−30 T−50 random
VQA only (w/o navigation) 3.45 4.53 5.71 8.21 0.383 0.389 0.327 0.305

Ours (α = 0.3,β = 0.0) 3.62 4.13 4.74 7.89 0.434 0.417 0.403 0.347
Ours (α = 0.2,β = 0.1) 3.60 4.13 4.70 7.80 0.450 0.429 0.418 0.358
Ours (α = 0.1,β = 0.2) 3.39 3.94 4.66 7.73 0.445 0.434 0.409 0.368

Fig. 7. Qualitative examples of the success results in the real world.

TABLE II
SUCCESS AND COLLISIONS IN THE REAL HOUSES. WE USE

BLIP2-PRETRAIN AND BLIP2-MSCOCO AS AN IMAGE-TEXT

MATCHING MODEL AND BLIP-PRETRAIN , LLAVA-V1.5-7B AS A

VQA MODEL.

ITM model VQA model success collisions
BLIP2-pretrain BLIP-pretrain 7/19 3/19
BLIP2-pretrain LLaVA-v1.5-7b 6/19 3/19
BLIP2-MSCOCO BLIP-pretrain 6/19 4/19
BLIP2-MSCOCO LLaVA-v1.5-7b 6/19 4/19
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