
Adv3D: Generating 3D Adversarial Examples
for 3D Object Detection in Driving Scenarios with NeRF

Leheng Li1, Qing Lian2, Ying-Cong Chen1,2,∗

Abstract— Deep neural networks (DNNs) have been proven
extremely susceptible to adversarial examples, which raises
special safety-critical concerns for DNN-based autonomous
driving stacks (i.e., 3D object detection). Although there are
extensive works on image-level attacks, most are restricted to 2D
pixel spaces, and such attacks are not always physically realistic
in our 3D world. Here we present Adv3D, the first exploration
of modeling adversarial examples as Neural Radiance Fields
(NeRFs) in driving scenarios. Advances in NeRF provide
photorealistic appearances and 3D accurate generation, yielding
a more realistic and realizable adversarial example. We train
our adversarial NeRF by minimizing the surrounding objects’
confidence predicted by 3D detectors on the training set. Then we
evaluate Adv3D on the unseen validation set and show that it can
cause a large performance reduction when rendering NeRF in
any sampled pose. To enhance physical effectiveness, we propose
primitive-aware sampling and semantic-guided regularization
that enable 3D patch attacks with camouflage adversarial texture.
Experimental results demonstrate that our method surpasses
the mesh baseline and generalizes well to different poses, scenes,
and 3D detectors. Finally, we provide a defense method to our
attacks that improves both the robustness and clean performance
of 3D detectors.

I. INTRODUCTION

The perception system of self-driving cars heavily rely on
DNNs to process input data and comprehend the environment.
Although DNNs have exhibited great improvements in
performance, they have been found vulnerable to adversarial
examples [1]–[4]. These adversarial examples crafted by
adding imperceptible perturbations to input data, can lead
DNNs to make wrong predictions. Motivated by the safety-
critical nature of self-driving cars, we aim to explore the
possibility of generating physically effective adversarial
examples to disrupt 3D detectors in driving scenarios, and
further improve the robustness of 3D detectors through
adversarial training.

The 2D pixel perturbations (digital attacks) [1], [2] have
been proven effective in attacking DNNs in various computer
vision tasks [5]–[7]. However, these 2D pixel attacks are
restricted to digital space and are difficult to realize in our
3D world. To address this challenge, several works have
proposed physical attacks. For example, [4] propose the
framework of Expectation Over Transformation (EOT) to
improve the attack robustness over 3D transformation. Other
researchers generate adversarial examples beyond image space
through differentiable rendering, as seen in [8], [9]. These

*Corresponding author.
1 Artificial Intelligence Thrust, The Hong Kong University of Science and
Technology (Guangzhou). lli181@connect.hkust-gz.edu.cn,
yingcongchen@hkust-gz.edu.cn
2 Department of Computer Science and Engineering, The Hong Kong
University of Science and Technology. qlianab@connect.ust.hk

methods show great promise for advancing the field of 3D
adversarial attacks and defense but are still limited in synthetic
environments.

Given the safety-critical demand for self-driving cars,
several works have proposed physically realizable attacks and
defense methods in driving scenarios. For example, [10], [11]
propose to learn 3D adversarial attacks capable of generating
adversarial mesh to attack 3D detectors. However, their works
only consider learning a 3D adversarial example for a few
specific frames. Thus, the learned example is not universal
and may not transfer to other scenes. To mitigate this problem,
[12], [13] propose to learn a transferable adversary that is
placed on top of a vehicle. Such an adversary can be used
in any scene to hide the attacked object from 3D detectors.
However, reproducing their attack in our physical world can
be challenging since their adversary must have direct contact
with the attacked object. We list detailed comparisons of prior
works in Tab. I.

To address the above challenges and generate 3D ad-
versarial examples in driving scenarios, we build Adv3D
upon recent advances in NeRF [14] that provide both
differentiable rendering and realistic synthesis. In order to
generate physically effective attacks, we model Adv3D in
a patch-attack [15] manner and use an optimization-based
approach that starts with a realistic NeRF object [16] to learn
its 3D adversarial texture. We optimize the adversarial texture
to minimize the predicted confidence of all objects in the
scenes, while keeping shape unchanged. During the evaluation,
we render the input agnostic NeRF in randomly sampled
poses, then we paste the rendered patch onto the unseen
validation set to evaluate the attack performance. Owing
to the transferability to poses and scenes, our adversarial
examples can be executed without prior knowledge of the
scene and do not need direct contact with the attacked objects,
thus making for more feasible attacks compared with [12],
[13], [17], [18]. Finally, we provide thorough evaluations
of Adv3D on camera-based 3D object detection with the
nuScenes [19] dataset. Our contributions are summarized as
follows:

• We introduce Adv3D, the first exploration of formulating
adversarial examples as NeRF to attack 3D detectors
in autonomous driving. Adv3D provides photorealistic
synthesis and demonstrates effective attacks on various
detectors.

• Incorporating the proposed primitive-aware sampling
and semantic-guided regularization, Adv3D generates
adversarial examples with enhanced physical realism
and effectiveness.

ar
X

iv
:2

30
9.

01
35

1v
2 

 [
cs

.C
V

] 
 6

 A
ug

 2
02

4



Methods Transferability Adv. Type Requirements

Cao et al. [10], [11] Poses 3D Mesh Model, Annotation
Tu et al. [12], [13] Poses, Scenes 3D Mesh Model, Annotation
Xie et al. [18] Scenes, Categories 2D Patch Model, Annotation
Ours Poses, Scenes, Categories 3D NeRF Model

TABLE I: Comparison with prior works of adversarial attack
in autonomous driving.

• We conduct extensive real-world experiments to validate
the transferability of our adversarial examples across
unseen environments and detectors. Additionally, the
analysis of these experiments provides valuable insights
for developing more robust detectors.

• We show that by employing adversarial training with a
trained adversarial NeRF, we can enhance the robustness
and clean performance of 3D detectors.

II. RELATED WORK

A. Adversarial Attack

DNNs are known to be vulnerable to adversarial attacks. [1]
first discovered that adversarial examples, generated by adding
visually imperceptible perturbations to the original images,
make DNNs predict a wrong category with high confidence.
These vulnerabilities were also discovered in object detection
and semantic segmentation [5], [20]. Moreover, DPatch [20]
proposes transferable patch-based attacks by compositing a
small patch to the input image. However, perturbing image
pixels alone does not guarantee that adversarial examples
can be created in the physical world. To address this issue,
several works have performed physical attacks [4], [21]–[26]
and exposed real-world threats. For example, AdvPC [27]
investigates adversarial perturbations on 3D point clouds.
SADA [28] proposes semantic adversarial diagnostic attacks
in various autonomous applications. ViewFool [29] and
VIAT [30] evaluate the robustness of DNNs to adversarial
viewpoints by using NeRF’s differentiability. In our work, we
mainly aim to generate 3D adversarial examples for camera-
based 3D object detection in driving scenarios.

B. Robustness in Autonomous Driving

With the safety-critical nature, it is necessary to pay
special attention to robustness in autonomous driving. LiDAR-
Adv [10] proposes to learn input-specific adversarial point
clouds to fool LiDAR detectors. [12] produces generalizable
point clouds that can be placed on a vehicle roof to hide
it. Adv3D [31] and SHIFT3D [32] generate adversarial
3D shapes to fool full autonomy stack and Lidar detector,
respectively. Furthermore, several work [11], [13], [33] try to
attack a multi-sensor fusion system by optimizing 3D mesh
through differentiable rendering. We compare our method
with prior works in Tab. I. Our method demonstrates stronger
transferability and fewer requirements than prior works.

C. Image Synthesis using NeRF

NeRF [14] enables photorealistic synthesis in a 3D-aware
manner. Recent advances [34] in NeRF allow for control over
materials, illumination, and 6D pose of objects. Additionally,

NeRF’s rendering comes directly from real-world reconstruc-
tion, providing more physically accurate and photorealistic
synthesis than previous mesh-based methods that relied on
human handicrafts. Moreover, volumetric rendering [35]
enables NeRF to perform accurate and efficient gradient
computation compared with dedicated renderers in mesh-
based differentiable rendering [36], [37].

III. PRELIMINARY

A. Camera-based 3D Object Detection

Camera-based 3D object detection is the fundamental task
in autonomous driving. Without loss of generality, we focus
on evaluating the robustness of camera-based 3D detectors.

The 3D detectors process image data and aim to predict 3D
bounding boxes of all surrounding objects. The parameteriza-
tion of a 3D bounding box can be written as b = {R, t, s, c},
where R ∈ SO(3) is the rotation of the box, t = (x, y, z)
indicate translation of the box center, s = (l, w, h) represent
the size (length, width, and height) of the box, and c is the
confidence of the predicted box.

The network structure of camera-based 3D object detectors
can be roughly categorized into FoV-based (front of view) and
BEV-based (bird’s eye view). FoV-based methods [38]–[40]
can be easily built by adding 3D attribute branches to 2D
detectors. BEV-based methods [41], [42] typically convert
2D image feature to BEV feature using camera parameters,
then directly detect objects on BEV planes. We refer readers
to recent surveys [43] for more detail.

B. Differentiable Rendering using NeRF

Our method leverages the differentiable rendering scheme
proposed by NeRF. NeRF parameterizes the volumetric
density and color as a function of input coordinates. NeRF
uses multi-layer perceptron (MLP) or hybrid neural represen-
tations [44], [45] to represent this function. For each pixel on
an image, a ray r(t) = ro + rd · t is cast from the camera’s
origin ro and passes through the direction of the pixel rd
at distance t. In a ray, we uniformly sample K points from
the near plane tnear to the far plane tfar, the kth distance is
thus calculated as tk = tnear +(tfar − tnear) ·k/K. For any
queried point r(tk) on the ray, the network takes its position
r (tk) and predicts the per-point color ck and density τk with:

(ck, τk) = Network (r (tk)) . (1)

Note that we omit the direction term as suggested by [46].
The final predicted color of each pixel C(r) is computed by
approximating the volume rendering integral using numerical
quadrature [47]:

C(r) =

K−1∑
k=0

Tk (1− exp (−τk (tk+1 − tk))) ck,

with Tk = exp

(
−
∑
k′<k

τk′ (tk′+1 − tk′)

)
.

(2)

We build our NeRF upon Lift3D [16]. Lift3D is a 3D
generation framework that generates photorealistic objects
by fitting multi-view images synthesized by 2D generative



𝑥𝑥

𝑦𝑦

𝑧𝑧

Shape

Texture

NeRF network

Sampled
Original Image

Depth layer 
composition

Pretrained
3D Detectors

Adversarial Loss

Adversarial 
Loss

Pose Sampling Primitive-aware Sampling

Attacked Image

Optimize

Step1: Adversary Generation

Step2: Gradient Propagation

Image 
Composition

Objective: 
minimize all the 

confidences

Objective: 
make all objects 

disappear

Patch Rendered by NeRF

Fig. 1: Adv3D aims to generate 3D adversarial examples that consistently perform attacks under different poses during
rendering. We initialize adversarial examples from Lift3D [16]. During training, we optimize the texture latent codes of NeRF
to minimize the detection confidence of all surrounding objects. During inference, we evaluate the performance reduction of
pasting the adversarial patch rendered using randomly sampled poses on the validation set.

modes [48] using NeRF. The network of Lift3D is a
conditional NeRF with additional latent code input, which
controls the shape and texture of the rendered object. The
conditional NeRF in Lift3D is a tri-plane [49] generator.
With its realistic generation and 3D controllability, Lift3D
has demonstrated that the training data generated by NeRF
can help to improve downstream task performance. To further
explore and exploit the satisfactory property of NeRF, we
present a valuable and important application in this work: we
leverage the NeRF-generated data to investigate and improve
the robustness of the perception system in self-driving cars.

IV. METHOD

We illustrate the pipeline of Adv3D in Fig. 1. We aim to
learn a transferable adversarial example in 3D detection that,
when rendered in any pose (i.e., location and rotation), can
effectively hide surrounding objects from 3D detectors in any
scenes by lowering their confidence. In Sec. IV-A, to improve
the physical realizability of adversarial examples, we propose
(1) Primitive-aware sampling to enable 3D patch attacks.
(2) Disentangle NeRF that provides feasible geometry, and
(3) Semantic-guided regularization that enables camouflage
adversarial texture. To enhance the transferability across poses
and scenes, we formulate the learning paradigm of Adv3D
within the EOT framework [4] that is discussed in Sec. IV-C.

A. 3D Adversarial Example Generation

We use a gradient-based method to train our adversarial
examples. The training pipeline involves 4 steps: (i) randomly
sampling the pose of an adversarial example, (ii) rendering the
example in the sampled pose, (iii) pasting the rendered patch
into the original image of the training set, and finally, (iv)
computing the loss and optimizing the latent codes. During
inference, we discard the (iv) step.

1) Pose Sampling: To achieve adversarial attack in arbi-
trary object poses, we apply Expectation of Transformation
(EOT) [4] by randomly sampling object poses. The poses of
adversarial examples are parameterized as 3D boxes b that are
restricted to a predefined ground plane in front of the camera.
We model the ground plane as a uniform distribution B in
a specific range that is detailed in the supplement. During
training, we independently sample the rendering poses of
adversarial examples, and approximate the expectation by
taking the average loss over the whole batch.

2) Primitive-aware Sampling: We model the primitive of
adversarial examples as NeRF tightly bound by 3D boxes, in
order to enable non-contact and physically realistic attacks.
During volume rendering, we compute the intersection of
rays r(t) with the sampled pose b = {R, t, s} ∈ B, finding
the first hit point and the last hit point of box (tnear, tfar) by
the AABB-ray intersection algorithm [50]. We then sample
our points inside the range (tnear, tfar) to reduce large
unnecessary samples and avoid contact with the environment.

(tnear, tfar) = Intersect(r,b), (3)
r′(tk) = r̃(tnear) + (r̃(tfar)− r̃(tnear)) · k/K, (4)

r̃(t) = Transform(r(t),b), (5)

where r̃(t) is the sampled points with additional global to local
transformation. Specifically, we use a 3D affine transformation
to map original sampled points r(t) = ro + rd · t into a
canonical space r̃ = {x, y, z} ∈ [−1, 1]. This ensures that all
the sampled points regardless of their distance from the origin,
are transformed to the range [−1, 1], thus providing a compact
input representation for NeRF network. The transformation
is given by:

Transform(r,b) = s−1 · (R−1 · r− t), (6)



(a) (b) (c) (d) (e)

Fig. 2: Rendered results of adversarial examples. (a) Image and semantic label of an instance predicted by NeRF. (b) Top: our
example without semantic-guided regularization. Bottom: our example with semantic-guided regularization. (c) Multi-view
consistent synthesis of our examples. (d,e) The texture transfer results of side and back part adversary to other vehicles.

where b = {R, t, s}, R ∈ SO(3) is rotation matrix of the
box, t, s ∈ R3 indicate translation and scale vector that move
and scale the unit cube to desired location and size. The
parameters of b are sampled from a pre-defined distribution
B detailed in the supplement.

Then, the points lied in [−1, 1] are projected to exactly
cover the tri-plane features z for interpolation. Finally, a small
MLP takes the interpolated features as input and predicts
RGB and density:

(ck, τk) = MLP(Interpolate(z, r′ (tk))). (7)

The primitive-aware sampling enables patch attacks [15] in
a 3D-aware manner by lifting the 2D patch to a 3D box,
enhancing the physical realizability by ensuring that the
adversarial example only has a small modification to the
original 3D environment.

3) Disentangled NeRF Parameterization: The original
parameterization of NeRF combines the shape and texture
into a single MLP, resulting in an entangled shape and texture
generation. Since shape variation is challenging to reproduce
in the real world, we disentangle shape and texture generation
and only set the texture as adversarial examples. We obtain
texture latents ztex. and shape latents zshape from the Lift3D.
During volume rendering, we disentangle shape and texture
generation by separately predicting RGB and density:

ck = Network(ztex., r
′ (tk)), (8)

τk = Network(zshape, r
′ (tk)), (9)

where zshape is fixed and ztexture is being optimized. Our
disentangled parametrization can also be seen as a geometry
regularization in [12], [13] but keeps geometry unchanged
as a usual vehicle, leading to a more realizable adversarial
example.

4) Semantic-guided Regularization: Setting the full part
of the vehicle as adversarial textures is straightforward, but
not always feasible in the real world. To improve the physical
realizability, we propose to optimize individual semantic parts,
such as doors and windows of a vehicle. Specifically, as shown
in Fig. 2 (d, e)), we only set a specific part of the vehicle
as adversarial texture while maintaining others unchanged.
This semantic-guided regularization leads to a camouflage
adversarial texture that is less likely spotted in the real world
and improves physical effectiveness.

To achieve this, we add a semantic branch to Lift3D
to predict semantic part labels of the sampled points. We
re-train Lift3D by fitting multi-view images and semantic
labels generated by EditGAN [51]. Using semantic-guided
regularization, we maintain the original texture and adversarial
part texture at the same time but only optimize the adversarial
part texture while leaving the original texture unchanged. This
approach allows us to preserve a large majority of parts as
usual, but to alter only the specific parts that are adversarial
(see Fig. 2 (b, c)). In our implementation, we query the NeRF
network twice, one for the adversarial texture and the other
for the original texture. Then, we replace the part of original
texture with the adversarial texture indexed by semantic labels
in the point space.

Owing to this property, these adversarial textures can be
printed and pasted on certain parts of cars to perform attacks.
We provide real-world reproduction in supplementary video.
B. Gradient Propagation

After rendering the adversarial examples, we paste the
adversarial patch into the original image through image
composition. The attacked image can be expressed as I1 ×
M+I2× (1−M) where I1 and I2 are the patch and original
image, M is foreground mask predicted by NeRF. Next, the
attacked images are fed to pretrained and fixed 3D detectors to
compute the objective and back-propagate the gradients. Since
both the rendering and detection pipelines are differentiable,
Adv3D allows gradients from the objective to flow into the
texture latent codes during optimization.

C. Learning Paradigm

We formulate our learning paradigm as EOT [4] that finds
adversarial texture codes by minimizing the expectation of a
binary cross-entropy loss over sampled poses and scenes:

ztex. = arg min
ztex.

Eb∼BEx∼X [− log(1− P (I(x,b, ztex.))],

(10)
where b is the rendering pose sampled from the predefined dis-
tribution of ground plane B, x is the original image sampled
from the training set X , I(x,b, ztex.) is the attacked image
that composited by the original image x and the adversarial
patch rendered using pose b and texture latent code ztex., and
P (I(·)) represents the confidence of all proposals predicted
by detectors. We approximate the expectation by averaging the



Pred.
GT
Ego

Clean Images Attacked Images Clean/Attacked BEV Visualization

(a)

(b)

(c)

Fig. 3: Visualization of BEVDet prediction on nuScenes validation set under our attacks. The visualization threshold is set at
0.6. The adversarial NeRF can hide surrounding objects by minimizing their predicted confidence in a non-contact manner
(making the yellow boxes disappear). Lidar point clouds are only used for visualization.

Models Backbone Type Clean NDS Adv NDS Clean mAP Adv mAP

FCOS3D [38] ResNet101 FoV 0.3770 0.2674 0.2980 0.1272
PGD-Det [40] ResNet101 FoV 0.3934 0.2694 0.3174 0.1321
DETR3D [39] ResNet101 FoV 0.4220 0.2755 0.3470 0.1336
BEVDet [52] ResNet50 BEV 0.3822 0.2247 0.3076 0.1325
BEVFormer-Tiny [53] ResNet50 BEV 0.3540 0.2264 0.2524 0.1217
BEVFormer-Base [53] ResNet101 BEV 0.5176 0.3800 0.4167 0.2376

TABLE II: Comparison of different detectors under our attack. Clean NDS and mAP denote evaluation using original
validation data. Adv NDS and mAP denote evaluation using attacked data.

objective of the independently sampled batch. The objective
is a binary cross-entropy loss that minimizes the confidence
of all predicted bounding boxes, including adversarial objects
and normal objects.

Built within the framework of EOT, Adv3D helps to
improve the transferability and robustness of adversarial
examples over the sampling parameters (poses and scenes
here). This means that the attack can be performed without
prior knowledge of the scene and are able to disrupt models
across different poses and times in a non-contact manner.

D. Adversarial Defense by Data Augmentation

Toward defenses against our adversarial attack, we also
study adversarial training to improve the robustness of 3D de-
tectors. Adversarial training is typically performed by adding
image perturbations using a few PGD steps [54], [55] during
the training of networks. However, our adversarial example is
too expensive to generate for the bi-level loop of the min-max
optimization objective. Thus, instead of generating adversarial
examples from scratch at every iteration, we leverage the
transferable adversarial examples to augment the training set.

We use the trained adversarial example to locally store a large
number of rendered images to avoid repeated computation.
During adversarial training, we randomly paste the rendered
adversarial patch into the training images with a probability
of 30%, while remaining others unchanged. We provide
experimental results in Sec. V-D.

V. EXPERIMENTS

In this section, we first present the experiments of semantic-
guided regularization in Sec. V-A, the analysis of 3D attack
in Sec. V-B, and our adversarial defense method in Sec. V-D.
We provide real world experiments in supplementary video.

Dataset We conduct our experiments on the nuScenes
dataset [19]. This dataset is collected using 6 surrounded-
view cameras that cover the full 360° field of view around
the ego-vehicle. It contains 700 scenes for training and 150
scenes for validation. In our work, we train our adversarial
examples on the training set and evaluate performance drop
on the validation set.

Target Detectors and Metrics As shown in Tab. II, we
evaluate the robustness of six representative detectors. Three



Target
Source Clean FCOS3D PGD-Det DETR3D BEVDet BEVFormer

FCOS3D [38] 0.298 0.124 0.141 0.144 0.176 0.158
PGD-Det [40] 0.317 0.172 0.131 0.150 0.186 0.172
DETR3D [39] 0.347 0.188 0.170 0.133 0.212 0.198
BEVDet [52] 0.307 0.148 0.145 0.140 0.132 0.140
BEVFormer [53] 0.252 0.175 0.155 0.136 0.177 0.124

TABLE III: Transferability of our attack to unseen detectors. We evaluate the robustness of target detectors using an
adversarial example trained on source detectors. Reported in mAP.

are FoV-based, and three are BEV-based. Following prior
work [18], we evaluate the performance drop on the validation
set after the attack. Specifically, we use the Mean Average
Precision (mAP) and nuScenes Detection Score (NDS) [19]
to evaluate the performance of 3D detectors.

Quantitative Results We provide the experimental results
of adversarial attacks in Tab. II. The attacks are conducted
in a full-part manner without semantic-guided regularization
to investigate the upper limit of attack performance. We
found that, in spite of FoV-based or BEV-based, they display
similar robustness. Meanwhile, we see a huge improvement
of robustness by utilizing a stronger backbone (ResNet101
versus ResNet50) when comparing BEVFormer-Base with
BEVFormer-Tiny. We hope these results will inspire re-
searchers to develop 3D detectors with enhanced robustness.

Rendering Results We visualize our attack results with
semantic-guided regularization in Fig. 3 (a,b), and without
regularization in Fig. 3 (c). The disappearance of detected
objects is caused by their lower confidence scores. For
example, the confidence predicted by detectors in Fig. 3
(a) have declined from 0.6 to 0.4, and are therefore filtered
out by the threshold of 0.6. In Fig. 3 (a), we find that our
adversarial NeRF is realistic enough to be detected by a
3D detector if it doesn’t display much of the adversarial
texture. However, once the vehicle shows a larger area of
the adversarial texture as seen in Fig. 3 (b), it will hide all
objects including itself due to our untargeted objective.

A. Semantic Parts Analysis

In Tab. IV, we provide experiments on the impact of
different semantic parts on attack performance. We use
three salient parts of the car: the front, side, and rear. It
shows that compared with adversarial attacks using full parts,
the semantic-guided regularization leads to a slightly lower
performance drop, but remains a realistic appearance and less
likely spotted adversarial texture as illustrated in Fig. 2 (b).

Since we do not have access to annotation during training,
we additionally conduct ”No Part” experiment that no part of
the texture is adversarial, to evaluate the impact of occlusion.
We acknowledge that part of performance degradation can be
attributed to the occlusion to original objects and the false
positive prediction of adversarial objects (see Fig. 3 (a)), since
we do not update the ground truth of adversarial objects to
the validation set.

Part NDS mAP Part NDS mAP

Clean 0.382 0.307 Front 0.267 0.148
No Part 0.302 0.234 Side 0.265 0.149
Full Parts 0.224 0.132 Rear 0.268 0.151

TABLE IV: Ablations of different semantic parts.

B. Effectiveness of 3D-aware attack
To validate the effectiveness of our 3D attacks, we ablate

the impact of different poses on the attack performance.
In Fig. 4 (a), we divide the BEV plane into 10 × 10 bins
ranging from x ∈ [−5m, 5m] and z ∈ [10m, 15m]. We then
evaluate the relative mAP drop (percentage) of BEVDet [52]
by sampling one adversarial example inside the bin per image,
while keeping rotation randomly sampled. Similarly, we
conduct experiments of 30 uniform rotation bins ranging from
[0, 2π] in Fig. 4 (b). The experimental results demonstrate
that all aspects of location and rotation achieve a valid attack
(performance drop > 30%), thereby proving the transferability
of poses in our 3D-aware attack.

A finding that contrasts with prior work [12] is the impact
of near and far locations in z axis. Our adversarial example
is more effective in the near region compared with the far
region, while [12] displays a roughly uniform distribution
in all regions. We hypothesize that the attack performance
is proportional to the area of the rendered patch, which is
highly related to the location of objects. Similar findings are
also displayed in rotation. The vehicle that poses vertically to
the ego vehicle results in a larger rendered area, thus better
attack performance.

Data Adv train NDS mAP

Clean val ✗ 0.304 0.248
Clean val ✓ 0.311 0.255

Adv val † ✗ 0.224 0.132
Adv val † ✓ 0.264 0.181

Adv val § ✓ 0.228 0.130

TABLE V: Results of adversarial training. The symbol
† indicates attacks using the same adversarial example used
in adversarial training, while § indicates a different example.

C. Transferability Across Different Detectors

In Tab. III, we evaluate the transferability of adversarial
examples across different detectors. To this end, we train a



3 0 . 0

3 2 . 5

3 5 . 0

3 7 . 5

4 0 . 0

4 2 . 5

4 5 . 0

4 7 . 5

𝑥𝑥

𝑧𝑧

−5𝑚𝑚
10𝑚𝑚

15𝑚𝑚

%

5𝑚𝑚

0

1
2𝜋𝜋

𝑥𝑥

𝑧𝑧 34.0

36.0

38.0

40.0

42.0

44.0

46.0

%

(a) Location (b) Rotation

𝜃𝜃

Relative Perform
ance Drop 

Fig. 4: To examine the 3D-aware property of our adversarial examples, we ablate the relative performance drop by sampling
adversarial examples within different bins of location and rotation.

single adversarial example of each detector separately, then
use the example to evaluate the performance drop of other
detectors. We show that there is a high degree of transferability
between different models. Among them, we observe that
DETR3D [39] appears to be more resilient to adversarial
attacks than other detectors. We hypothesize this can be
attributed to the sparsity of the query-based method. During
the projection of 3D query to the 2D image plane, only a
single point of the feature is indexed by interpolation, thus
fewer areas of adversarial features will be sampled. This
finding may have insightful implications for the development
of more robust 3D detectors in the future.

D. Adversarial Defense by Data Augmentation

We present the results of adversarial training in Tab. V.
We observe that incorporating adversarial training improves
not only the robustness against the seen adversarial examples,
but also the clean performance. However, we also note
that our adversarial training is not capable of transferring
to unseen adversarial examples trained in the same way,
mainly due to the fixed adversarial example during adversarial
training. Furthermore, we hope that future work can conduct
in-depth investigations and consider handling the bi-level
loop of adversarial training in order to better defend against
adversarial attacks.

VI. LIMITATION AND FUTURE WORK

While our method demonstrated promising results in attacks
and downstream improvements, it is important to acknowledge
our current limitations.

Perceptibility As we optimize the adversarial texture with
only semantic regularization, the adversarial part texture still
can be easily detected by humans as shown in Fig 3. Future
work can explore more advanced techniques [56]–[58] to
build inconspicuous 3D adversarial examples.

Lighting Since our optimized adversarial examples have a
different data source from the original datasets. There exists
an illumination gap between the rendered patch and the
original environment. This gap can lead to domain gaps
when deploying adversarial examples in the real world. In
future work, researchers can explore the use of physical-based
rendering techniques [34], [59] to address this issue and train
lighting-invariant adversarial examples.

Broader Impact The recent development of NeRF has
led to remarkable progress in NeRF-based driving scene
simulation. Our adversarial framework is general and can
be extended to integrate with the advances in NeRF-based
simulators to benefit a wide spectrum of practical systems. For
instance, our framework can be combined with UniSim [60]
to perform adversarial closed-loop evaluations of self-driving
cars in NeRF environments, or with ClimateNeRF [61]
to identify adverse weather conditions that may corrupt
the autonomous driving system. We believe that our work
provides valuable insights and opens up new possibilities
for creating authentic adversarial evaluations that verify and
improve the robustness of self-driving cars.

VII. CONCLUSION

In this paper, we propose Adv3D, the first attempt to
model adversarial examples as NeRF in driving scenarios.
Adv3D enhances the physical realizability of attacks through
our proposed primitive-aware sampling and semantic-guided
regularization. Compared with prior works of adversarial
examples in autonomous driving, our examples are more
threatening in practice as we carry non-contact attacks, have
feasible 3D shapes as usual vehicles, and display camou-
flage adversarial texture. Extensive experimental results also
demonstrate that Adv3D achieves better attack performance
and transfers well to different poses, scenes, and detectors. We
hope our work provides valuable insights for creating more
realistic evaluations to investigate and improve the robustness
of autonomous driving systems.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” ICLR, 2014.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” ICLR, 2015.

[3] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in ICLR Workshop, 2017.

[4] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust
adversarial examples,” 2018.

[5] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in CVPR,
2017.

[6] C. Xiang, C. R. Qi, and B. Li, “Generating 3d adversarial point clouds,”
in CVPR, 2019.

[7] Y. Dong, Q.-A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and J. Zhu,
“Benchmarking adversarial robustness on image classification,” in CVPR,
2020.



[8] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu, “Meshadv: Adversarial
meshes for visual recognition,” in CVPR, 2019.

[9] X. Zeng, C. Liu, Y.-S. Wang, W. Qiu, L. Xie, Y.-W. Tai, C.-K. Tang,
and A. L. Yuille, “Adversarial attacks beyond the image space,” in
CVPR, 2019.

[10] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li,
“Adversarial objects against lidar-based autonomous driving systems,”
arXiv preprint arXiv:1907.05418, 2019.

[11] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen,
M. Liu, and B. Li, “Invisible for both camera and lidar: Security of
multi-sensor fusion based perception in autonomous driving under
physical-world attacks,” in IEEE Symposium on Security and Privacy
(SP), 2021.

[12] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng,
and R. Urtasun, “Physically realizable adversarial examples for lidar
object detection,” in CVPR, 2020.

[13] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer,
and R. Urtasun, “Exploring adversarial robustness of multi-sensor
perception systems in self driving,” CORL, 2021.

[14] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” in ECCV, 2020.

[15] A. Sharma, Y. Bian, P. Munz, and A. Narayan, “Adversarial patch
attacks and defences in vision-based tasks: A survey,” arXiv preprint
arXiv:2206.08304, 2022.

[16] L. Li, Q. Lian, L. Wang, N. Ma, and Y.-C. Chen, “Lift3d: Synthesize
3d training data by lifting 2d gan to 3d generative radiance field,” in
CVPR, 2023.

[17] Z. Zhu, Y. Zhang, H. Chen, Y. Dong, S. Zhao, W. Ding, J. Zhong, and
S. Zheng, “Understanding the robustness of 3d object detection with
bird’s-eye-view representations in autonomous driving,” arXiv preprint
arXiv:2303.17297, 2023.

[18] S. Xie, Z. Li, Z. Wang, and C. Xie, “On the adversarial robustness of
camera-based 3d object detection,” TMLR, 2023.

[19] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in CVPR, 2020.

[20] X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen, “Dpatch:
An adversarial patch attack on object detectors,” arXiv preprint
arXiv:1806.02299, 2018.

[21] S.-T. Chen, C. Cornelius, J. Martin, and D. H. Chau, “Shapeshifter:
Robust physical adversarial attack on faster r-cnn object detector,” in
ECML PKDD, 2019.

[22] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang,
and X. Lin, “Adversarial t-shirt! evading person detectors in a physical
world,” in ECCV, 2020.

[23] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” arXiv preprint arXiv:1712.09665, 2017.

[24] L. Huang, C. Gao, Y. Zhou, C. Xie, A. L. Yuille, C. Zou, and N. Liu,
“Universal physical camouflage attacks on object detectors,” in CVPR,
2020.

[25] T. Wu, X. Ning, W. Li, R. Huang, H. Yang, and Y. Wang, “Physical
adversarial attack on vehicle detector in the carla simulator,” arXiv
preprint arXiv:2007.16118, 2020.

[26] Y. Zhang, H. Foroosh, P. David, and B. Gong, “Camou: Learning
physical vehicle camouflages to adversarially attack detectors in the
wild,” in International Conference on Learning Representations, 2019.

[27] A. Hamdi, S. Rojas, A. Thabet, and B. Ghanem, “Advpc: Transferable
adversarial perturbations on 3d point clouds,” in ECCV, 2020.

[28] A. Hamdi, M. Müller, and B. Ghanem, “Sada: semantic adversarial
diagnostic attacks for autonomous applications,” in AAAI, 2020.

[29] Y. Dong, S. Ruan, H. Su, C. Kang, X. Wei, and J. Zhu, “Viewfool: Eval-
uating the robustness of visual recognition to adversarial viewpoints,”
NeurIPS, 2022.

[30] S. Ruan, Y. Dong, H. Su, J. Peng, N. Chen, and X. Wei, “Improving
viewpoint robustness for visual recognition via adversarial training,”
arXiv preprint arXiv:2307.11528, 2023.

[31] J. Sarva, J. Wang, J. Tu, Y. Xiong, S. Manivasagam, and R. Urtasun,
“Adv3d: Generating safety-critical 3d objects through closed-loop
simulation,” arXiv preprint arXiv:2311.01446, 2023.

[32] H. Chen, Z. Chen, G. P. Meyer, D. Park, C. Vondrick, A. Shrivastava,
and Y. Chai, “Shift3d: Synthesizing hard inputs for tricking 3d
detectors,” in ICCV, 2023.

[33] M. Abdelfattah, K. Yuan, Z. J. Wang, and R. Ward, “Adversarial attacks
on camera-lidar models for 3d car detection,” in IROS, 2021.

[34] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and
J. T. Barron, “Nerfactor: Neural factorization of shape and reflectance
under an unknown illumination,” ToG, 2021.

[35] J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,”
ACM SIGGRAPH computer graphics, vol. 18, no. 3, 1984.

[36] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in
CVPR, 2018.

[37] S. Liu, T. Li, W. Chen, and H. Li, “Soft rasterizer: A differentiable
renderer for image-based 3d reasoning,” in ICCV, 2019.

[38] T. Wang, X. Zhu, J. Pang, and D. Lin, “FCOS3D: Fully convolutional
one-stage monocular 3d object detection,” in ICCV Workshop, 2021.

[39] Y. Wang, V. Guizilini, T. Zhang, Y. Wang, H. Zhao, , and J. M.
Solomon, “Detr3d: 3d object detection from multi-view images via
3d-to-2d queries,” in CoRL, 2021.

[40] T. Wang, X. Zhu, J. Pang, and D. Lin, “Probabilistic and Geometric
Depth: Detecting objects in perspective,” in CoRL, 2021.

[41] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d,” in ECCV, 2020.

[42] C. Reading, A. Harakeh, J. Chae, and S. L. Waslander, “Categorical
depth distributionnetwork for monocular 3d object detection,” CVPR,
2021.

[43] Y. Ma, T. Wang, X. Bai, H. Yang, Y. Hou, Y. Wang, Y. Qiao, R. Yang,
D. Manocha, and X. Zhu, “Vision-centric bev perception: A survey,”
2022.

[44] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural networks,”
in CVPR, 2022.

[45] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM ToG, 2022.

[46] J. Gu, L. Liu, P. Wang, and C. Theobalt, “Stylenerf: A style-based 3d
aware generator for high-resolution image synthesis,” in ICLR, 2022.

[47] N. Max, “Optical models for direct volume rendering,” IEEE TVCG,
1995.

[48] T. Karras, S. Laine, Aittala, J. Lehtinen, and T. Aila, “Analyzing and
improving the image quality of StyleGAN,” in CVPR, 2020.

[49] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. D.
Mello, O. Gallo, L. Guibas, J. Tremblay, S. Khamis, T. Karras, and
G. Wetzstein, “Efficient geometry-aware 3D generative adversarial
networks,” in CVPR, 2022.

[50] A. Majercik, C. Crassin, P. Shirley, and M. McGuire, “A ray-box
intersection algorithm and efficient dynamic voxel rendering,” Journal
of Computer Graphics Techniques Vol, vol. 7, no. 3, 2018.

[51] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler,
“Editgan: High-precision semantic image editing,” in NeurIPS, 2021.

[52] J. Huang, G. Huang, Z. Zhu, Y. Yun, and D. Du, “Bevdet: High-
performance multi-camera 3d object detection in bird-eye-view,” arXiv
preprint arXiv:2112.11790, 2021.

[53] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai,
“Bevformer: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” ECCV, 2022.

[54] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[55] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le,
“Adversarial examples improve image recognition,” in CVPR, 2020.

[56] T. Bai, J. Luo, and J. Zhao, “Inconspicuous adversarial patches for
fooling image-recognition systems on mobile devices,” IEEE Internet
of Things Journal, vol. 9, no. 12, pp. 9515–9524, 2021.

[57] S. Jia, B. Yin, T. Yao, S. Ding, C. Shen, X. Yang, and C. Ma, “Adv-
attribute: Inconspicuous and transferable adversarial attack on face
recognition,” NeurIPS, 2022.

[58] H. Mohaghegh Dolatabadi, S. Erfani, and C. Leckie, “Advflow:
Inconspicuous black-box adversarial attacks using normalizing flows,”
NeurIPS, 2020.

[59] Z. Wang, W. Chen, D. Acuna, J. Kautz, and S. Fidler, “Neural light field
estimation for street scenes with differentiable virtual object insertion,”
in ECCV, 2022.

[60] Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang,
and R. Urtasun, “Unisim: A neural closed-loop sensor simulator,” in
CVPR, 2023.

[61] Y. Li, Z.-H. Lin, D. Forsyth, J.-B. Huang, and S. Wang, “Climatenerf:
Extreme weather synthesis in neural radiance field,” in CVPR, 2023.


	Introduction
	Related Work
	Adversarial Attack
	Robustness in Autonomous Driving
	Image Synthesis using NeRF

	Preliminary
	Camera-based 3D Object Detection
	Differentiable Rendering using NeRF

	Method
	3D Adversarial Example Generation
	Pose Sampling
	Primitive-aware Sampling
	Disentangled NeRF Parameterization
	Semantic-guided Regularization

	Gradient Propagation
	Learning Paradigm
	Adversarial Defense by Data Augmentation

	Experiments
	Semantic Parts Analysis
	Effectiveness of 3D-aware attack
	Transferability Across Different Detectors
	Adversarial Defense by Data Augmentation

	Limitation and Future Work
	Conclusion
	References

