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Abstract— Understanding the well-being of cattle is crucial
in various agricultural contexts. Cattle’s body shape and joint
articulation carry significant information about their welfare,
yet acquiring comprehensive datasets for 3D body pose es-
timation presents a formidable challenge. This study delves
into the construction of such a dataset specifically tailored
for cattle. Leveraging the expertise of digital artists, we use a
single animated 3D model to represent diverse cattle postures.
To address the disparity between virtual and real-world data,
we augment the 3D model’s shape to encompass a range of
potential body appearances, thereby narrowing the ”sim2real”
gap. We use these annotated models to train a deep-learning
framework capable of estimating internal joints solely based
on external surface curvature. Our contribution is specifically
the use of geodesic distance over the surface manifold, coupled
with multilateration to extract joints in a semantic keypoint
detection encoder-decoder architecture. We demonstrate the
robustness of joint extraction by comparing the link lengths
extracted on real cattle mobbing and walking within a race.
Furthermore, inspired by the established allometric relationship
between bone length and the overall height of mammals, we
utilise the estimated joints to predict hip height within a real
cattle dataset, extending the utility of our approach to offer
insights into improving cattle monitoring practices.

I. INTRODUCTION

In modern agriculture, robotics and automation promise a
transformative future, streamlining labour-intensive tasks and
enhancing productivity [1]. Perception systems are critical
for livestock production systems, the animal body struc-
ture has an impact on behavior, well-being, and fertility
[2], [3]. Specifically, observing cattle during locomotion is
crucial for identifying health issues in livestock, such as
structural soundness and lameness [3], [4], [5]. Crucial in
this assessment is identifying the pose of joints and limb
actuation, allowing for body pose estimation. Advancements
in perception offer invaluable insights for optimising live-
stock management practices and improving overall herd
performance.

Human pose detection and tracking frameworks have
garnered significant attention for their versatile applications
in human-computer interaction and activity recognition [6].
However, the scarcity of annotated animal pose data presents
a major obstacle to developing animal pose estimation
approaches. Animals, unlike humans, lack the capability
to cooperate during data collection, resulting in significant
difficulty in coordinating them in the process. Available
animal data sets lack ground truth for joint position and
solely contain human-annotation [7], [8], [9].

Fig. 1: Each model is annotated by twelve joints: two joints
at each of the front legs, two at each of the back legs, two
at each side of the hip bones, and two at either end of the
spine.

Synthetic training data for 3D animal pose estimation
has been explored, adapting techniques from human pose
estimation [10]. This approach generates RGB images for
network training, focusing on minimising distributional dif-
ferences between synthetic and real animal data. However,
the approach generally considers isolated animals rather than
herds and does not fully exploit joint and shape information
for comprehensive animal assessment. Moreover, existing
simulations lack intra-species variability [10], limiting their
ability to address sim2real challenges, particularly regard-
ing shape deformation during animal movement [11]. Our
previous work [12], [13] captures from multi-depth cameras
capture 3D data of cattle in high fidelity while they are
travelling through a race.

Extending our work on estimating joint coordinates from
3D point cloud data [13], we propose a methodology to
utilise the manifold defined by the surface while leveraging
animated 3D models to represent diverse cattle postures. Our
contribution is specifically the use of geodesic distance over
the surface manifold, coupled with multilateration to extract
joints in a semantic keypoint detection encoder-decoder
architecture. This enables the extraction of joint locations,
where we demonstrate the robustness of our method to
estimate joint locations on real cattle while they are in
motion. We utilise joint information to estimate the hip
height of cattle, drawing from work [14] that demonstrates
an allometric relationship.

II. RELATED WORK

Pose estimation plays a crucial role across various dis-
ciplines, whether for humans or animals. In human-centric
applications, such as virtual reality, gaming consoles, and
human activity recognition, accurate pose estimation is
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paramount. Early research by Shotton et al. [15] demon-
strated the potential of depth data for human pose estimation,
primarily in controlled environments like motion capture
rooms. Subsequently, RGB-based approaches have gained
momentum, with researchers like Pavlakos et al. [16] and
Mathis et al. [17] employing deep-learning frameworks to
estimate body joint poses. Notably, OpenPose [18] marked
a significant milestone by introducing the first real-time
multi-person system for body keypoints estimation, setting
a benchmark for future research in human pose estimation.
Additionally, Zhang et al. [19] delved deeper into the extrac-
tion of human keypoints in natural settings without human
labels, utilizing 3D point clouds.

Animal pose estimation, drawing inspiration from human
pose estimation techniques, has advanced significantly in
assessing various health traits and behaviours in animals.
However, the field encounters challenges due to the scarcity
of fully annotated datasets, hindering the effective application
of deep learning methodologies.

Existing animal datasets, including those referenced in
[7], [5], predominantly consist of 2D images or sequences
without ground truth annotations for joint positions. While
custom animal datasets like AwA for quadrupeds [20] ex-
ist, they heavily rely on manual annotation, limiting their
suitability for autonomous training of deep learning models.

Due to the scarcity of datasets in the animal field, re-
searchers have explored various strategies to augment data
input. One approach involves adapting learning models from
other domains, such as humans or different animal species,
and fine-tuning them [21], [22], [23], [24]. Other methods
employ synthetic data augmentation processes [25], [26],
[27], [28], [29].

While some of these approaches extract 3D keypoints, they
may not precisely correspond to actual joints [30], or the
resulting 3D models may lack an evaluation of mesh quality
[31], [28]. Difficulties also arise in accurately assigning
keypoint locations, necessitating interpretable relationships
between the model and the actual animal shape [29]. Fur-
thermore, although visually appealing 3D shapes may be
generated, they may not be geometrically consistent with the
animal’s structure [32].

Recent investigations into synthetic animated training data
for 3D pose estimation of animals draw inspiration from
human pose estimation methodologies [10]. This process
involves retraining established networks like OpenPose and
Pose3D using simulated RGB and joint pose data gener-
ated under controlled conditions. The primary challenge is
aligning the distribution of synthetic training data with that
of real-world data collected from wildlife. While successful
in addressing the difficulties of obtaining relevant anatom-
ical keypoints on animal joints, this approach necessitates
the conversion of RGB images into realistic environments.
However, there have been no efforts to verify the differences
between synthetic and real-world keypoint locations utilising
3D data for animal assessment.

Similarly, recent endeavours in extracting keypoints in 3D
space, such as those proposed by other researchers [33],

involve applying methods like heat kernel and geodesic
distance. These keypoints are utilised for body segmenta-
tion, albeit positioned on the surface rather than within the
joints. Alternatively, another work by [12] suggests using
multi-depth-camera systems and PointNet++ for extracting
semantic keypoints. However, the keypoints in their dataset
are manually annotated and primarily located on the surface
rather than internally within the body.

Our work seeks to quantify the robustness of estimating
joint locations, informed by a synthetic dataset containing a
variety of shapes and animal poses. We do so by examining
joint data on real cattle while they are in motion, as well as
establishing a relationship between joint data and hip height
inspired by [14].

III. METHODOLOGY

Given that joints are not inherently situated on the surface,
their locations must be inferred from curvature on the surface
via a deep-learning model. The system architecture, pre-
sented in Figure 2, comprises four principal modules: point
cloud creation, data preprocessing, a deep-learning model
(PointNet++) tasked with estimating the nearest point cloud
to each joint, and joint estimation. We also include an MLP
model utilising joint information for hip height estimation.
Apart from the annotated joints listed in [13], which include
Carpal joint left, Elbow joint left, Carpal joint right, Elbow
joint right, Tarsal joint left, Stifle joint left, Hip joint left,
Tarsal joint right, Stifle joint right, Hip joint right, and Front
spine, a new keypoint positioned at the tip of the cattle’s
hip, termed the Illium joint, has been introduced. This is
depicted in Figure 3. This new keypoint is located on the tip
of the cattle’s hip. This results in a total of twelve keypoints
per animal, as illustrated in Figure 1, which are subject to
prediction.

The PointNet model takes the point cloud location as
input. As the joints lie outside the mesh surface, this necessi-
tates the estimation of their positions from distances inferred
by the deep learning model via multilateration. This method
utilises Euclidean distance to determine the requisite points.

Small Euclidean distances between annotated joints within
a point cloud can introduce significant errors during the
PointNet estimation. In such cases, the model may struggle
to distinguish between closely spaced joints, leading to in-
accurate estimations. To address this, geodesic distances are
computed as an additional input, incorporating information
on the distance over the surface in the learning framework.

Data processing involves two primary steps. Firstly,
geodesic distances are obtained, representing the distance on
the manifold from each joint utilising the heat kernel method.
Simultaneously, Euclidean distances from each joint to the
generated point cloud are computed. Secondly, the maximum
value between these two distance metrics is determined. The
loss function is then computed based on the logarithmic
value of the maximum distances carried by each point cloud,
relative to a known mesh.

To compute the geodesic distances, we first downsample
the generated point clouds and then utilise the heat kernel



Fig. 2: Method overview: from the simulated model, the armature undergoes rigid scaling and meshes a non-rigid deformation.
Through raycasting over a number of cameras, several point clouds are generated and merged. At inference time, the merged
point cloud is passed into an encoder-decoder architecture (Pointnet++ [34]) to extract the keypoints. During training, the
dataset uses keypoints from the armature and the distances on the manifold are pre-computed. The encoder-decoder inputs
are n× 3 points, and the outputs are the n× 13 distances to the 13 joints keypoints.

Fig. 3: Top: Cattle skeleton from [35] containing information
of all the joints and bones. Bottom: The annotated model
used in this work containing rigging and joints indicated by
blue squares

method [36] to precompute the distances on the manifold
Dg . This computation leverages the tufted Laplacian [37]
derived from the mesh structure. Subsequently, we employ
a barycentric calculation, as depicted in Equation 1, to
determine the geodesic distance of each point cloud to the
face vertices as shown in figure 4. The output is used to find
the final heat kernel distance D as illustrated in equation 2.

α =
(A⃗C · A⃗C)(A⃗B · A⃗P )− (A⃗B · A⃗C)(A⃗C · A⃗P )

(A⃗B · A⃗B)(A⃗C · A⃗C)− (A⃗B · A⃗C)2

β =
(A⃗B · A⃗B)(A⃗C · A⃗P )− (A⃗B · A⃗C)(A⃗B · A⃗P )

(A⃗B · A⃗B)(A⃗C · A⃗C)− (A⃗B · A⃗C)2

γ = 1− α− β

B =

αβ
γ


(1)

Fig. 4: Barycetnric diagram of α, β, and γ. Where Dg1, Dg2,
and Dg3 are the heat kernel distances to a point in space.

D =
∑

(B ×

Dg1

Dg2

Dg3

) (2)

To accomplish this, during the creation of point clouds
from the simulated model, we extract the hit face number
for each point in the point cloud generated by ray casting.
Subsequently, we consider the maximum distance (Dmax)
between the heat kernel distance on the manifold D and the
Euclidean distance from a joint to each point in the point
clouds, to be applied in the loss in the encoder-decoder
network. We proposed to take the maximum distances to
achieve a more accurate estimation of joint positions in cases
where the joints are very close together, such as during
walking. The logarithmic transformation is then applied to
the maximum values to increase the penalty in the loss
function as illustrated in equation 3. The effect of this
transformation on one of the instances can be shown in
Figure 5

L = −ln(Dmax)/10 (3)

The encoder-decoder network takes as input the point
cloud (i.e., a matrix I of size n × 3) and outputs a matrix
D̂ of size n×m, where m represents the number of joints
to be predicted.

The final step in predicting joints involves utilising the
distance predictions from the PointNet++ model to estimate
the positions of the joints. In line with prior research [38], we
propose employing the multilateration technique to enhance
joint estimation accuracy as in equation 4. Specifically, we



designate the first point within the area of interest of the point
cloud as the anchor and apply the least squares method to
determine the joint positions. This area of interest constitutes
a subset of points with the lowest estimated Dmax, as
illustrated in Figure 9. Formulations 5 and 6 allow predicting
joints’ position outside of the point cloud in the case where
the underlying shape is convex, where dn is the Dmax. A
sample of the joint detection using multilateration of the
nearest point cloud group to a joint is displayed in Figure 9.

ε =

N∑
i=1

(
√
(xi − x)2 + (yi − y)2 + (zi − z)2)− d̃i)

2 (4)

2x2 2y2 2z2
...

...
...

2xn 2yn 2zn


xy
z

 =

x2
2 + y22 + z22 − d22 + d21

...
x2
n + y2n + z2n − d2n + d21


(5)

x̂ = (HTH)−1HT b̃ (6)

Where H =

2x2 + 2y2 + 2z2
...

2xn + 2yn + 2zn

,

b̃ =

x2
2 + y22 + z22 − d22 + d21

...
x2
n + y2n + z2n − d22 + d21

 , and x̂ =

xy
z


We thereafter employ a Multilayer Perceptron (MLP)

model, consisting of 3 hidden layers (with 9, 7, and 5
neurons for each layer) with ReLU activation functions,
to estimate the hip height. The model is trained using the
Adam optimiser on a dataset comprising 175 instances of real
animals, applying the leave-one-out technique to ensure fair
evaluation. The features used for this prediction contain the
coordinates of the keypoint related to the hip of the animal
and information related to the backbones (i.e., their length
and the vector from joint to joint). The backbones used in
this module include Femur, Tibia, and Fibula. While the hip
keypoint is the joint between the Ilium and Lumbar Vertebrae
bones, as indicated in figure 3.

In summary, we employ the heat kernel method [36] to
compute the maximum value between the distance on the
manifold D, obtained via the tufted Laplacian [37] on the
mesh, and the euclidean distance from each joint to the point
clouds. Subsequently, we utilise a barycentric calculation
to derive the geodesic distance of each point cloud to the
vertices of each triangular face of the mesh. This distance on
the manifold is then treated as a feature and learned using an
encoder-decoder network. The inputs of the encoder-decoder
consist of the point cloud size, represented by a matrix I of
size n × 3, while the outputs correspond to the number of
joints to be predicted, represented by a matrix D̂ of size
n×m.

IV. EXPERIMENTS

Utilising the annotated dataset derived from [13] and
employing the joint prediction methodology detailed in Sec-

Fig. 5: Predicted distance on the manifold. Points coloured
in blue represent the nearest points to a joint. Left the rear
leg and right the front leg are being evaluated.

Fig. 6: Joints estimation error of synthetic data set. Joint
names starting from left to right: Carpal joint left, Elbow
joint left, Carpal joint right, Elbow joint right, Tarsal joint
left, Stifle joint left, Hip joint left, Tarsal joint right, Stifle
joint right, Hip joint right, Front spine, and Illium joint

tion III, we calculate the joints estimation error based on a
simulated test dataset, as illustrated in Figure 6. The analysis
reveals a mean error in joints estimation of 0.03 and a
standard deviation of 0.01.

We assess the sim2real gap, resulting from training the
network on a simulated dataset, via the consistency of joint
predictions on a real animal walking through the race.
We analyse the variation in bone length estimations and
distance between joints across eighteen consecutive frames
(instances); the findings of this evaluation are detailed in
Figure 7, shedding light on the stability and reliability of the
model’s predictions of joint location in real-world scenarios.

A further quantitative evaluation is conducted by estimat-
ing the hip height of 175 real animals where the cattle were
subsequently restrained to manually measure hip height. This
evaluation is depicted in Figure 8. As detailed in Section III,
the features employed for this prediction encompass the
length of the back bones, the geometric vectors associated
with these bones, and the highest point among the estimated
nearest points of the hip keypoint.

V. DISCUSSION

The results obtained from the joint estimation error anal-
ysis reveal a mean error in joint estimation of 0.026 and
a standard deviation of 0.012, with the majority of errors
falling within the range of 100 mm. This indicates a certain
level of accuracy in the joint prediction methodology utilised,



Fig. 7: Bone length estimation on a walking animal. This
estimation was performed over eighteen consecutive frames
while the animal walked through the race. For each bone
length, we denote the mean, standard deviation and mini-
mum/maximum estimate on the box plot. The scapula and
spine are the longest bone structures.

Fig. 8: Predicted vs actual values of hip height estimation
for a dataset comprising 175 instances of real animals, using
the leave-one-out technique. The R2 score is 0.64, and the
Root Mean Square Error (RMSE) is 2.97. The green dashed
line represents the ideal output, while the red dashed lines
indicate a margin of ±3.

although there is room for improvement, particularly in
reducing the maximum error.

Moving on to the quantitative evaluation of the sim2real
gap through hip height estimation, we observe a coefficient
of determination (R2) of 0.64 and a root mean square error
(RMSE) of 2.97. Despite the absence of certain segments
within the real animal testing dataset, these metrics suggest
a moderate level of predictive capability, implying that the
trained network can reasonably estimate hip height based on
the features employed.

Figure 7 illustrates the model’s predictions of bone lengths
for 18 consecutive walking cattle, offering insights into the
accuracy and reliability of these predictions. Our findings
reveal a smaller difference between the minimum and max-
imum values, indicating minimal variation in bone lengths
during walking motion and suggesting the model’s accuracy
in predicting such changes. This consistency across diverse
bones, including the left and right femur, ilium, scapula, and

(a)

(b)

Fig. 9: (a): The blue points represent the complete set of the
lowest estimated Dmax values. The area of interest, shown
in black, highlights a subset of these points with the lowest
estimated Dmax. This output corresponds to the front left
joint. (b) Represents joints prediction of an instance (red
spheres are the ground truth and green are the estimated
joints) with the error between both in meters

spine, underscores the precision of the model’s estimations.
These results contribute to the understanding of how predic-
tive models can effectively estimate bone lengths in dynamic
scenarios, such as walking, in cattle.

Overall, these results demonstrate the effectiveness of
the employed methodologies in estimating joint positions,
hip height, and bone lengths, with some limitations and
opportunities for further refinement.

VI. CONCLUSION

This study presents a novel method for predicting joints
using synthetic auto-annotated datasets. By estimating key-
points outside the mesh and utilising created point clouds, we
address the challenge of bridging the gap between training
deep models with simulated datasets and real-world data for
this specific application.

Although our findings demonstrate promising results in
joint prediction, further exploration is warranted to evaluate
the potential applicability of this approach to other domains,
such as health-related metrics. Additionally, future research
could explore the development of anatomically accurate
models for muscle and fat layers attached to the joints.
Creating such models is a complex task typically undertaken
by only a select few highly skilled 3D artists. Moreover,
making these models parametric to encompass various body
conditions for extensive data augmentation would introduce
additional challenges to the process.
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