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Abstract— Evaluating and training autonomous driving sys-
tems require diverse and scalable corner cases. However,
most existing scene generation methods lack controllability,
accuracy, and versatility, resulting in unsatisfactory generation
results. Inspired by DragGAN in image generation, we propose
DragTraffic, a generalized, interactive, and controllable traffic
scene generation framework based on conditional diffusion.
DragTraffic enables non-experts to generate a variety of realistic
driving scenarios for different types of traffic agents through an
adaptive mixture expert architecture. We employ a regression
model to provide a general initial solution and a refinement pro-
cess based on the conditional diffusion model to ensure diversity.
User-customized context is introduced through cross-attention
to ensure high controllability. Experiments on a real-world driv-
ing dataset show that DragTraffic outperforms existing methods
in terms of authenticity, diversity, and freedom. Demo videos
and code are available at https://chantsss.github.io/Dragtraffic/.

I. INTRODUCTION

The safety of autonomous driving systems relies heavily
on the richness of the dataset scenarios. However, due
to various constraints such as safety issues, geographical
environment, and weather changes, it is difficult for collected
data to cover all situations. This poses challenges for training
and evaluating planning and prediction modules, especially
for extreme scenarios. To address this, simulators such as
SUMO [1] and CARLA [2] have been used to manually set
scenarios. While rule-based simulations offer interpretability
and viable trajectories without extensive data, they have lim-
itations in accuracy, generalization, and adaptability. Further-
more, they require substantial expert knowledge to establish
the necessary rules.

In contrast, data-driven methods have been developed to
enable agents in these environments to emulate the behaviors
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Fig. 1: The dataset sample space. The left image illustrates
the distribution of the collected data, while the right image
shows the expanded sample space achieved through data
augmentation. In this context, x represents the different
dimensions that constitute the dataset, and v represents the
specific samples collected.

of real traffic participants. The recent Sim Agents Chal-
lenge [3] based on the Waymo dataset provides a standard
benchmark and specifies input and output forms for scene
generation tasks. Several works have used learning-based
methods to achieve good results, particularly in terms of
accuracy [4] [5] [6]. However, most of these works formu-
late the scene generation task as a motion prediction task,
requiring 10 frames of historical information as input and
limiting the freedom of scene construction. As a result, they
can only reason about future scenarios based on existing
historical trajectories, while ignoring requirements such as
scene editing and agent insertion. Other researchers have
looked at generating challenging scenes in a more flexible
way, such as SceneGen [7] and TrafficGen [8], which pro-
pose building scenes in two stages: vehicle placement and
trajectory generation. However, a main shortcoming of these
methods is the lack of controllability, which means they
cannot ensure expected behavior. This serious problem leads
to the generation process being directionless and extremely
inefficient when the sample space is large, as shown in
the Figure 1. The ideal sample data distribution should
be distributed in all dimensions. However, due to factors
such as cost and security, high-value data is often scarce.
Another problem is that they only focus on vehicles and
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ignore other types of traffic participants, even though these
participants have many interactions. Meanwhile, generative
models have been well developed in contentmade great
progress in sequence generation tasks such as text, pictures,
and videos [9] [10] [11] [12] [13]. Some prior works are
inspired of using generative models to create traffic scenes
such as [14], [15] utilizing generative adversarial networks
(GAN) to generate multiple trajectories for traffic agents.
In order to obtain a more operational trajectory generation
method, some researchers try to use conditional diffusion
models such as motiondiffuser [16], and SceneDM [17] etc.
These studies provide a good foundation for using generative
models to create scenes, but there is a general problem. They
require significant expert knowledge to establish the complex
definition of loss function or post-processing. CTG++ [18]
provides a idea to introduce the large language model in
loss function design in a user friendly way. However, this
method requires repeated and complex training processes for
different tasks.

In this paper, we propose DragTraffic, an instance behavior
level traffic scene generator that is capable of generating
realistic and diverse scenes while maintaining a high degree
of freedom on controllability. To achieve realism, we employ
a regress model to provide initial guesses. To account for the
behavioral differences among various traffic agents, we adopt
a symmetric hybrid expert architecture that imitates the real
behavior of traffic participants on the road from an agent-
centric perspective by using a separate model dedicated to the
corresponding agent. Inspired by Draggan [19], we adopt the
conditional diffusion model to achieve diversity and specific
defined context, including position, velocity, heading, length,
and width. All these controls can be done through dragging
or typing context in an interactive and user-friendly way. Our
contributions include:

• First, we propose an interactive traffic generation frame-
work, which, to the best of our knowledge, is the first
to offer a high degree of freedom for generating and
editing traffic scenes.

• Second, we introduce a solution that utilizes a regres-
sion model for initial solutions, a conditional diffusion
model for diversity, and a Mixture of Experts (MoE)
to accommodate multiple agent types. This approach
enables us to generate realistic and diverse traffic scenes
with a high level of controllability.

• Third, we conduct experiments on a real-world driving
dataset to evaluate the performance of DragTraffic.
The results show that DragTraffic outperforms existing
methods in terms of authenticity, diversity, and freedom,
among other metrics.

II. RELATED WORK

A. Trajectory Prediction

Current methods for testing and developing autonomous
driving systems, such as scenario replay and rule-based ap-
proaches, have limitations in accuracy, generalization ability,
and adaptive updating. These methods also require a large

amount of expert knowledge to build the rules. To ad-
dress these shortcomings, recent studies have explored deep
learning-based motion prediction methods that can model
multi-modal traffic scenes [4] [6] [20] [21]. These methods
can be broadly categorized into supervised learning and
generative learning approaches. Supervised learning trains a
model with logged trajectories with supervised losses such
as L2 loss. One of the challenges is to model inherent
multi-modal behavior of the agents. For instance, Trajeglish
[4] employs the template sets to help the model generate
realistic multi-modal trajectories by providing a structured
framework for interactions. A series works, MultiPath++
[22], DenseTNT [23] and GANet [24] use static anchors or
learned goals to represent the multiple hypothises. GoHome
[25] and YNet [26] predict future occupancy heatmaps, and
then decode trajectories from the samples. Many of these
approaches use ensembles for further diversified predictions.
The next section covers generative approaches.

B. Generative models for Scene Generation

Generative models have made significant progress in se-
quence generation tasks such as text, pictures, and videos.
Some prior works have explored the use of generative models
to create traffic scenes. For example, GANs have been
used to generate multiple trajectories for traffic agents in
[14] and [15]. Variational Autoencoders (VAEs) have been
employed in MTG [27] and CVAE-H [28] to extract repre-
sentations of historical trajectories of agents and generate
future trajectories. CTG [18] uses a conditional diffusion
model for generating controllable traffic simulations, while
CTG++ [18] introduces a scene-level conditional diffusion
model guided by language instructions. MotionDiffuser [16]
and SceneDM [17] both use diffusion-based models for
predicting multi-agent motion and achieving state-of-the-art
results on the Waymo Open Motion Dataset and Waymo Sim
Agents Benchmark, respectively. While the above methods
have achieved good performance, they often require profes-
sionals to design complex optimization constraints and loss
functions. In contrast, our proposed framework simplifies
the task of scene generation by allowing users to control
the generation process through simple drag and click, while
ensuring the quality of the generated scenes.

III. PROBLEM FORMULATION

Our aim is to generate the expected future motions for
agents in a scenario. We adopt a structured vectorized
representation to depict the map and agents. The trajectory of
a specific agent is denoted as τ0:t = {s0, s1, ..., st}, where
st ∈ RD indicating the states including the type, location,
heading angle, velocity at time step t. The road map is
denoted as L = {li}, where li ∈ RN×H representing ith
lane has N segments and each segment has H lane semantic
attributes (e.g., intersections and crosswalks). Specifically,
for the task of existing scenario augmentation or editing,
we aim to generate tF steps future trajectories

τ1:tF = f(s00...s
M
0 , s0tF ,L),



where s0
1...s0

M indicates the initial states of M agents.
s0tF represents the condition information. For the task of
new scenario creation, we aim to generate tF steps future
trajectories following

τ1:tF = f(G(L), s0tF ,L),

where G(·) indicates the initial states generation, which can
be simply achieved through dragging, typing or an agent
placement module.

IV. METHODOLOGY

A. Conditional Diffusion Model Preliminaries

Diffusion models consist of a diffusion process that grad-
ually transforms a data distribution into unstructured noise
and a reverse process to recover the data distribution [29].
The forward diffusion process acting on τ1:F is defined as

q(τ 1:k
1:F |τ 0

1:F ) :=

k∏
k=1

q(τ k
1:F |τ k−1

1:F ),

q(τ k
1:F |τ k−1

1:F ) := N (τ k
1:F ;

√
1− βkτ

k−1
1:F , βkI),

where the variance schedule β1, β2, · · ·βk is fixed and de-
termines the amount of noise injected at each diffusion
step, leading to a gradual corruption of the signal into an
isotropic Gaussian distribution. To generate trajectories, we
aim to reverse this diffusion process by utilizing a learned
conditional denoising model, which is iteratively applied
starting from sampled noise. Given the context information
c(τ0, s

0
tF ,L), the reverse diffusion process is

pθ(τ
0:k
1:F |c) := p(τ k

1:F )

k∏
k=1

pθ(τ
k−1
1:F |τ k

1:F , c),

pθ(τ
k−1
1:F |τ k

1:F , c) := N (τ k−1
1:F ;µθ(τ

k, k, c),Σθ(τ
k
1:F , k, c)).

The distribution p(τ k
1:F ) is a normal distribution and θ

denotes the parameters of the diffusion model. In this work,
we adopt the idea proposed in [30] and use the conditional
diffusion model as a refinement module as shown in Figure
2. This is to say, a skip connection is used to generate τ 0

1:F

following

τ k
1:F ∼ τ ⋆

1:F = finit(c),

τ γ
1:F = fdenoise(τ

γ+1
1:F , c), γ = k − 1, · · · , 0,

where finit(·) is a standard motion forecasting model pro-
viding the initial gueses for better regression performance
purpose, we will elaborate its effectiveness in following
experiments section.

B. Context Description

Due to the high degree of freedom of our generation
scheme, the context description can consist of some or all
of the following information: vehicle type, length and width,
starting position, starting speed, starting orientation, target
position, target speed, target orientation.

C. Initial Trajectory Generation

We utilize Multipath++ [22] as the initial backbone for
trajectory generation, which employs multi-context gating
(MCG) blocks. MCG can be seen as an approximation of
cross-attention. Instead of having each of the n elements
attend to all m elements of the other set, MCG condenses the
other set into a single context vector. The prediction heads
take c then output the future τ and K probabilities. This
initial regression module is trained by minimizing the MSE
loss of the predicted trajectory which is the closest to the
ground truth trajectory.

D. Diffusion Refinement

Here, we detail the design of the denoising module
fdenoise (·) , which denoises the trajectory τ γ+1

1:F conditioned
on context c(τ0, s0tF ,L). The denoising module consists of
two trainable components: a MCG-based context encoder
fcontext(·) that learns a social-temporal embedding for the
current states and condition states and a noise estimation
module fϵ(·) that estimates the noise to be reduced. The γth
denoising step follows

ϵγθ = fϵ

(
τ γ+1
1:F , fcontext(c), γ + 1

)
, (1)

τ γ
1:F =

1
√
αγ

(
τ γ+1
1:F − 1− αγ√

1− ᾱγ

ϵγθ

)
+
√
1− αγz, (2)

where αγ := 1 − βγ and ᾱγ :=
∏γ

i=1 αi are parameters in
the diffusion process and z ∼ N (z;0, I) is a noise.

E. Training Objective

To achieve the agent type sensive performance, we use
a mixture of experts strucure, which includes a gate on the
top to switch the suitable model according to the certain
agent type. Then the scene generation framework served by
symmetric models. Here for simplication purpose, we only
illustrate one of them in details. To train a the dragtraffic
model, we consider a two stage training strategy, where
the first stage trains a denoising module and the second
stage focuses on a leapfrog initializer. The reason for using
two stages is to make the training more stable. The noise
estimation loss is

LNE = ∥ϵ− fϵ(τ
γ+1
1:F , fcontext(c), γ + 1)∥2,

where ϵ ∼ N (ϵ;0, I) and the diffused trajectory τ γ+1
1:F =√

ᾱγτ
0
1:F +

√
1− ᾱγϵ. We backpropagate this loss to update

the parameters in the context encoder fcontext(·) and the
noise estimation module fϵ(·). In the second stage, we
optimize the model by employing a trainable initializer
model, while the denoising modules remain frozen. The loss
function is

L = LMSE + LNLL. (3)

We employ a distance-based loss to minimize displacement
error and use the Negative Log-Likelihood Loss function to
optimize scores, both of which are commonly utilized in
motion forecasting tasks.
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Fig. 2: The generation pipeline. The Condition Context Query gathers personalized information from the user, either
through an interactive UI or by retrieving it from the dataset. The Mixture of Experts Gate selects the appropriate model
for inference based on the agent type. Input data is presented as agent-centric vectors. After obtaining the initial solution,
it is further refined through diffusion to ultimately generate the scene.

V. EXPERIMENTAL RESULTS

A. Dataset

We utilize the Waymo Open Dataset [31] to train Drag-
Traffic. It consists of around 70,000 scenarios, each with
20-second traffic information. To optimize the dataset for
our purposes, we split each 20-second scenario into 6-
second intervals and removed scenarios with less than 32
agents. We then cropped a rectangular area with a 120-
meter side length centered on the ego agent and classified
scenarios into three datasets: ego-centered, cyclist-centered,
and pedestrian-centered. We further filtered out scenarios
with less than 30 frames and invalid end points, resulting in
49,884, 29,046, and 9,344 cases, respectively. We then split
the remaining cases into training, non-overlapping validation,
and test datasets in an 80%, 10%, 10% ratio. To ensure
fair comparison with other methods, we benchmarked the
trained models on the test set and followed the placement
and generation pipeline of TrafficGen, which we considered
a robust baseline. Our evaluation produced both quantitative
and qualitative results.

B. Metrics

To evaluate the performance of our framework, we em-
ployed two metrics: scenario collision rate (SCR) and motion
forecasting related metrics. The SCR measures the consis-
tency of the generated vehicle’s behaviors by calculating the
average percentage of vehicles that collide with others in
each scenario. We consider two vehicles as colliding if their
bounding boxes overlap above a predefined IOU threshold.
For the open-loop evaluation, we used the common metrics

in trajectory prediction tasks: MinADEk, MinFDEk, Heading
error and Speed error. These metrics are calculated based
on the trajectory with the cloest endpoint to the ground
truth over k predictions. Since our condition context includes
endpoint information, we treated the point before the last one
as the endpoint when calculating the MinFDE.

C. Implementation details

During the model training phase, we pre-train the con-
ditional diffusion model for 100 epochs and then freeze
its parameters. Similar to [30], after obtaining the initial
guess from the regression model, we employ the standard
U-net diffusion model to carry out 5 steps of denoising.
The total number of denoising steps is 100 for both training
and testing. For the Initializer model, we add an MLP layer
on top of the backbone to encode the condition information
of dimension 8 and obtain hidden features of length 1024,
which are then concatenated with the outputs of the state
encoder and the lane encoder. We fine-tune the diffusion
model and the Initializer model together for 40 epochs. All
other baselines that do not utilize the diffusion model are
trained for 150 epochs, with the one showing the lowest loss
selected for experimental evaluation. All models are trained
with a learning rate decay starting at 0.0003 and decaying
to 0.0004, using 4 RTX 3090 GPUs.

D. Results and discussion

We believe that an outstanding scene generator should
possess two essential characteristics. Firstly, it must generate
realistic and reasonable trajectories by providing accurate
context. Similar to the trajectory prediction task, we use



Fig. 3: The demonstration of creating, editing and correction. Colored boxes represent agents, with different sizes for
each type. A motorcycle is depicted as a long bar, while a pedestrian is represented as a square. A series of colored dots in
front of each agent indicates the generated trajectory, and the shadow represents past actions.

displacement error metrics to evaluate its performance. Sec-
ondly, a remarkable scene generator should offer a high
degree of freedom and controllability, enabling users to
create realistic scenes while exploring rare and high-value
corner cases. This is where DragTraffic excels compared to
other existing frameworks. In the following sections, we will
elaborate on the experimental results, focusing particularly
on these two characteristics.

1) Scene Generation: To assess the diversity of scenario
generation, we conducted three subsets of tests on MinADE
and MinFDE for different agent types. The results, presented
in the Table I, demonstrate that our approach achieves
good predictive performance for various agents and can
approximate the ground truth. In contrast, plain TrafficGen
performs well for vehicle agents but exhibits significant
performance degradation for pedestrians and bicycles due



TABLE I: Scene Generation Quality Evaluation

Dataset Model Min ADE6 Min FDE6 Heading Error Speed Error
TrafficGen 3.32 5.41 0.05 0.05

TrafficGen Mixture Training with Condition 3.09 4.40 0.04 0.05Vehicle
DragTraffic with Condition 2.53 3.33 0.05 0.03

TrafficGen 6.50 9.04 0.10 0.40
TrafficGen Mixture Training with Condition 2.05 3.53 0.02 0.36Pedestrian

DragTraffic with Condition 1.59 2.74 0.02 0.40
TrafficGen 17.05 23.62 0.41 0.31

TrafficGen Mixture Training with Condition 3.34 4.31 0.06 0.21Cyclist
DragTraffic with Condition 3.93 6.21 0.07 0.37

to its reliance on vehicle data, which oversimplifies the
problem and reduces model generalizability. To ensure fair-
ness, we trained trafficGen on a mixed dataset, which also
yielded promising results on some metrics. This highlights
the importance of establishing a framework for different
agent types. DragTraffic outperforms other models on both
vehicle and pedestrian datasets, thanks to its MoE structure,
which enhances its generalizability. However, we observe
that DragTraffic does not perform well on the Cyclist dataset,
possibly because the proportion of cyclists in the scene
data is too small. In Table II, we present the results of the
Interaction Reasoning Evaluation with sampling intervals of
3s, 6s, and 9s. We collected 300 scenes with high interactivity
between different agents for evaluation, including 200 scenes
related to pedestrians and 100 scenes related to cyclists. The
performance of DragTraffic under the three sampling condi-
tions is superior to the baseline. Interestingly, we observe
that the SCR varies with the sampling interval, which is
contrary to the results obtained in TrafficGen [8]. However,
we believe this is reasonable because multiple rollouts can
introduce more cumulative errors.

2) Scene Editing & Inpaiting: Fig. 3 demonstrates the
quality of scenes generated by DragTraffic based on existing
data. We use the information of current frame and the 90th
frame in the dataset as conditions. The left-turn and right-
turn scenes at the intersection where the most interactions
occur are respectively shown in columns (a) and (b). These
scenes reflect courtesy and competition for right of way
among different agents. For example, in (a), Agent 9 and
Agent 11 engage in a fierce competition for the right of
way, while Agent 0 gives way. This shows that DragTraffic
can simulate traffic participants in different situations under
highly dynamic and complex traffic intersections to make
reasonable, smooth, and realistic future actions, reflecting
real-world characteristics. Next, we verify that this capability
is not limited to simple log replay in more complex scenarios
(c) and (d). We focus on agent 1, which is waiting at an

TABLE II: Interaction Reasoning Evaluation

Rollout Interval Model SCR(%)

3s T.G. Mixture Training with Condition 15.00
DragTraffic with Condition 9.20

6s T.G. Mixture Training with Condition 14.43
DragTraffic with Condition 8.97

9s T.G. Mixture Training with Condition 13.59
DragTraffic with Condition 3.33

intersection for the motorcycle in front to start. However,
the movement of a large number of pedestrians around
interferes with the decision-making of agent 1, which has a
conservative driving style. As a result, it continues to watch
the movements of pedestrians even when the motorcycle
is already driving to the intersection, leading to the phe-
nomenon of robot freezing, which is common in the fields
of autonomous driving and robotics. To address this issue, we
design similar scenarios by setting the condition information
for agent 1 (100 meters in front of it, longitudinal speed
of 20m/s, and latitudinal speed of -2m/s) to encourage more
proactive behavior. As shown in (d), the results generated by
DragTraffic demonstrate effective control over scene editing.
Note that we only show the control of agent 1 for the
convenience of explanation, but in fact, DragTraffic allows us
to control the generation of multiple agents simultaneously.
Unlike other generation control methods that rely on complex
optimization constraints and loss designs, our generation pro-
cesses require only simple dragging or typing interactions,
showcasing the superiority of this framework.

VI. FUTURE WORK

While our proposed framework can generate realistic and
diverse traffic scenarios, there are still areas for improvement.
For example, we can implement post-processing or sampling
techniques to ensure that the generated driving actions ad-
here to dynamic constraints. Another promising avenue for
future work is to develop a multi-round generation process
incorporating human feedback.

VII. CONCLUSIONS
In this paper, we introduced DragTraffic, a generalized, in-

teractive, and controllable traffic scene generation framework
based on conditional diffusion. Our framework addresses the
limitations of existing scene generation methods in terms
of controllability, accuracy, and versatility, enabling non-
experts to create a variety of realistic driving scenarios for
different types of traffic agents. We achieve this using an
adaptive mixture expert architecture with a regression model
for initial solutions, followed by refinement through the
conditional diffusion model to ensure diversity. The denois-
ing process incorporates user-customized context via cross-
attention, enhancing controllability. The qualitative and quan-
titative results on a real-world driving dataset demonstrate the
effectiveness of DragTraffic, which can significantly aid in
the evaluation and training of autonomous driving systems
by providing diverse and scalable corner cases.
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