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Abstract— Event cameras are an interesting visual extero-
ceptive sensor that reacts to brightness changes rather than
integrating absolute image intensities. Owing to this design, the
sensor exhibits strong performance in situations of challenging
dynamics and illumination conditions. While event-based simul-
taneous tracking and mapping remains a challenging problem, a
number of recent works have pointed out the sensor’s suitability
for prior map-based tracking. By making use of cross-modal
registration paradigms, the camera’s ego-motion can be tracked
across a large spectrum of illumination and dynamics conditions
on top of accurate maps that have been created a priori by
more traditional sensors. The present paper follows up on a
recently introduced event-based geometric semi-dense tracking
paradigm, and proposes the addition of inertial signals in
order to robustify the estimation. More specifically, the added
signals provide strong cues for pose initialization as well as
regularization during windowed, multi-frame tracking. As a
result, the proposed framework achieves increased performance
under challenging illumination conditions as well as a reduction
of the rate at which intermediate event representations need
to be registered in order to maintain stable tracking across
highly dynamic sequences. Our evaluation focuses on a diverse
set of real world sequences and comprises a comparison of
our proposed method against a purely event-based alternative
running at different rates.

I. INTRODUCTION

Event cameras have recently become popular in the vision
and robotics community but remain less explored than their
traditional camera correspondents. Unlike the latter, event
cameras—also called Dynamic Vision Sensors (DVS)—react
to brightness changes rather than integrating absolute image
intensities. Each pixel acts asynchronously and fires an either
positive or negative event whenever the perceived brightness
level augments or decrements by a certain threshold amount.
Each event comes with a high resolution time-stamp in the
order of micro-seconds, and the camera has high dynamic
range (120dB compared to 60dB for regular cameras). Owing
to these properties, event cameras do not suffer from tradi-
tional blur effects and lend themselves to strong performance
in challenging illumination and dynamics conditions. Often
referred to as a silicon retina [1], this power-efficient bio-
inspired sensor therefore has evolved into a promising choice
for motion sensing in a variety of contexts, including eye
tracking [2], hand tracking [3], human body tracking [4],
[5], and—as targeted in this work—ego-motion tracking.

The traditional solution to vision-based ego-motion track-
ing is given by the Simultaneous Localization And Mapping
(SLAM) paradigm [6], and has already been proposed for
event cameras [7], [8]. However, unlike for regular cameras,
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Fig. 1. Illustration of EVIT. Rather than registering only single time-surface
maps with respect to a semi-dense point cloud, we propose to do windowed
joint registration of multiple adjacent TSMs, which improves registration
stability. The added IMU integration terms form the connections between
adjacent keyframes, thereby creating a virtual multi-camera rig with elastic
connections.

the measurements returned by an event camera are no longer
just a function of pose and scene geometry or appearance,
but also the instantaneous relative dynamics of the camera.
Combined with the unusual and noisy nature of events,
the solution to the full SLAM problem with DVS sensors
remains an ongoing challenge.

In this paper, we address the question how we can solve
the ego-motion estimation problem under the often practical
assumption of an existing prior map generated by a different
sensor? If the mapping problem is taken out of the equation,
the target simply becomes prior map-based tracking. We
follow up on the recently proposed strategy of abstracting the
map of the environment in the form of a semi-dense point
cloud [9]. The semi-dense map can be generated from regular
imagery, and each point in the representation corresponds to
a location in space around which we commonly observe high
appearance gradient (i.e. structural edges and discontinuities,
or textural appearance boundaries). Based on the assumption
that the generated events pre-dominantly react to such high-
gradient regions, the current location of the event camera can
be optimized by aligning edges in the surface of active events
with the reprojected semi-dense point cloud. While this semi-
dense cross-modal registration paradigm has already been
proposed in prior art [10], [9], challenges remain in case of
high dynamics or ambiguous event distributions.

We propose to tackle this issue by fusion with an Iner-
tial Measurement Unit (IMU). This achieves the following
contributions and advancements:
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• Rather than doing single frame registration, the addition
of an IMU permits the joint registration of multiple
adjacent frames in the form of a windowed tracking
problem. The states corresponding to the individual
times of each registered frame are lifted to include
first-order translational velocity and IMU bias terms,
thereby enabling the use of IMU pre-integration terms
for a pair-wise regularization of adjacent frames. Sets
of multiple adjacent frames are thereby considered as
a virtual multi-camera rig with elastic connections. The
joint registration of multiple frames helps in avoiding
unobservable directions of displacement caused by am-
biguous event distributions in individual frames (e.g.
events distributed along multiple parallel lines).

• IMU pre-integration terms may again be used in order to
create improved initialization of new frames. Especially
in situations of jerky motion with sudden abrupt changes
in the direction of motion, the inertial signal-based
prediction strongly outperforms vision-only alternatives
such as constant-velocity motion models.

• Owing to poor prediction abilities, handling situations
of high acceleration in a vision only setting typically
requires a high temporal density of tracked frames. In
turn, the superior prediction ability offered by IMU sig-
nals enables a substantial reduction of the frame density
during windowed optimization. In fact, we propose an
adaptive mechanism that places frames in dependence
of the number of occurred events.

We test our new framework—Event-based Visual-Inertial
Tracking (EVIT)—on publicly available benchmark se-
quences covering a variety of challenges such as normal mo-
tion, changing illumination, and high dynamics. As demon-
strated, the addition of an IMU strongly supports tracking
performance with respect to the vision-only alternative. We
also plan to release the complete framework code later to
enable re-usability.

II. RELATED WORK

A good survey paper on event-based vision is given by
Gallego et al. [11]. The addressed topics in the literature
cover many aspects such as human motion tracking [4], [5],
hand tracking [3], and eye ball tracking [2]. The current
literature review focusses on SLAM and motion tracking
with only event cameras or with added inertial readings.

Pure approaches to monocular event camera SLAM have
been proposed by Kim et al. [7] and Rebecq et al. [8]. The
former is a filter-based method reconstructing photometric
depth maps, while the latter is a geometric approach that aims
at the reconstruction of a volumetric event density field [12].
In an effort to increase the performance of event camera-
based SLAM, more recent methods have investigated the
use of line features [13], [14], [15]. The latter two methods
are limited to local dynamics estimation, and all methods
are restricted in that they require a sufficient number of line
features. The inclusion of an IMU into the incremental track-
ing and motion framework is proposed by Zhu et al. [16],
Rebecq et al. [17], Le Gentil et al. [18], and Xu et al. [19].

In particular, the latter two methods are again based on line
features. In general, a truly robust continuous tracking and
mapping framework that employs only a single event camera
as an exteroceptive sensor remains a challenging problem.
Vidal et al. [20] therefore investigate the combination with
a normal camera, and Zhou et al. [21] present a stereo event
camera alternative.

A different line of research that is more related to our
work aims at pure tracking based on known structure priors.
Early approaches make use of fiducial markers [22], [23]
or known targets with distinctive texture [24], [25], [26],
[27]. Of particular interest are the works of Gallego et
al. [28] and Bryner et al. [29], who propose direct tracking
of event cameras from photometric depth maps. However,
their approaches are computationally demanding and fail to
employ a geometrically optimal objective.

The most highly related works to ours are all based on
the idea of using a semi-dense map representation. The
latter have originally been introduced by Engel et al. [30]
through their SDVO framework. Later on, Kneip et al. [31],
Kuse and Shaojie [32], and Zhou et al. [33] have introduced
improved geometric semi-dense registration paradigms for
normal cameras. The latter work in particular has formed
the foundation for the first geometric semi-dense tracking
paradigms for event cameras. Zuo et al. [10] propose DEVO,
an event-based incremental motion estimation framework
that makes use of an additional depth channel. Finally, Zuo et
al. [9] propose Canny-EVT, which applies a similar strategy
to global tracking of a single event camera based on a semi-
dense map. The latter work in particular forms the reference
implementation against which we compare our contribution.

III. METHOD

In this section, we present our newly proposed event-
inertial, semi-dense point cloud-based tracking system EVIT.
The framework comprises an efficient adaptive measure-
ment preprocessing module, a loosely coupled bootstrapping
scheme, and a tightly coupled back-end optimization for
the event camera-IMU setup. The structure of the proposed
framework is shown in Fig. 2, in which we highlight the
essential modules by dashed lines.

Let us define notations used in this paper. The ultimate
goal for this framework is to estimate the body frame pose
Tw

b = [Rw
b ,p

w
b ] ∈ SE(3) (transformation from the body

frame to the world frame) of the event camera and IMU rig.
For practical reasons, we set the IMU frame equal to the
body frame, denoted by b. The constant extrinsic transfor-
mation Tc

b between IMU and event camera is assumed to be
well calibrated. Visual-inertial tracking introduces additional
variables to the state estimation, leading to the expanded state
vector

Si = [θi,pi,vi,bαi
,bωi

], (1)

where θi is a minimal rotation representation, pi is the
position of the body frame, vi is the velocity in the world
reference frame, and bαi

and bωi
are the accelerometer and

gyroscope biases, respectively.
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Fig. 2. Block diagram of the full event-based visual-inertial tracking pipeline. The system takes stream of events and IMU measurements (colored block)
as input and tracks against the reconstructed semi-dense map. The measurement processing module (Section III-B) dynamically choose keyframes and
process raw data stream into usable single frame observations. The initialization (Section III-C) module utilizes high frequency event localization results
to provide bootstrapping states for subsequent prediction and optimization. The optimization module (Section III-D) tightly fuses IMU pre-integration
measurements and TSM representations to achieve accurate state estimation.

A. System overview

We start by introducing the entire pipeline and describing
the functionality of each core module in our framework. The
framework starts with an offline-constructed, inertial-aligned
semi-dense point cloud and takes as input a stream of events
and IMU measurements from a calibrated event-inertial sen-
sor setup. A specially designed data collection module is re-
sponsible for the asynchronous collection of these two types
of data thereby achieving maximum effectiveness. The data
collection module is followed by a measurement processing
module that takes the quasi-continuous input stream of data
and converts it into compact single frame observations (i.e.
time surface maps and IMU pre-integration terms). The
generated frames are henceforth referred to as keyframes.
Details on the intermediate, frame-based event representa-
tion are provided in Section III-B. Note that the rate at
which keyframes are generated is adaptive and depending
on the actual number of events that have elapsed since
the last keyframe generation. The generation of IMU pre-
integration terms adjusts to the asynchronous keyframe rate.
The proposed dynamic, adaptive frame generation strategy
simultaneously satisfies two objectives. First, it avoids the
generation of redundant keyframes when no actual change
or camera motion has happened. Second, it avoids a lack of
sufficient observations under fast displacements.

During the initialization phase (cf. Section III-C), we per-
form high-frequency event-only single keyframe localization
to retrieve initial body frame poses. When the displacement
is sufficient, a closed-form visual-inertial solver is executed
in order to give coarse initial values for IMU states to be
estimated, meaning the camera velocity and IMU biases.
After successful bootstrapping, the tracking module (see
Section III-D) starts to predict poses for new keyframes
using a second-order motion model (i.e. using IMU forward
integration) and activates a tightly coupled event-inertial
back-end optimizer employing a sliding window over a fixed
number of recent keyframes. Rather than only optimizing
keyframe poses, this factor graph optimization module op-
timizes the full above-mentioned inertial states including
camera velocity and biases for each keyframe. The addition

of inter-frame pre-integration terms adds regularization con-
straints between adjacent keyframes, and thereby transforms
the registered set of keyframes into a virtual multi-camera
rig with elastic extrinsic connections.

B. Measurement preprocessing

In traditional visual-inertial tracking frameworks, it is
common to select keyframes based on image rate given
that conventional cameras are synchronously triggered and
usually operate at frequencies lower than IMUs. Consider-
ing a single event provides limited information, for event
cameras we are equally inclined to preprocess events and
somehow group them in batches that are triggered within a
specific time interval so they can be jointly aligned against
the map. In analogy to the work of Zuo et al. [9], we
propose to summarize the contribution of entire intervals of
events in snap-shots of the Time Surface Map (TSM), which
can then be used to extract edges and perform individual
frame alignment against the reprojected semi-dense map. The
question is at what rate such TSM-based keyframes should
be generated.

1) Adaptive keyframe determination: An event camera
measures motion with respect to the scene, and the rate at
which events are generated is related to the actual amount
of displacement. The fixed frequency keyframe selection
scheme proposed in previous works [21] therefore is sub-
ideal and would lead to inferior optimization performance.
It would either lead to redundant frames if little motion
occurs, or insufficient frame density and large inter-keyframe
baselines under fast displacements. Considering the IMU, the
pre-integration also requires sufficient readings in order to
ensure noise cancellation effects and good Signal-to-Noise
Ratio (SNR). We therefore propose an adaptive keyframe
generation scheme that buffers events and inertial readings
and—only when a minimum number of both events and
IMU readings has been surpassed—outputs the accumulated
series of observations to the frame builder. The latter then
processes the raw data into TSMs and IMU pre-integration
terms. The thresholds for the minimum number of events and
IMU observations are denoted nevent and nimu, respectively.



The time stamp of the keyframe is determined by the last
IMU measurement.

2) Event representation: As mentioned, we rely on snap-
shots of the Time Surface Map (TSM) for semi-dense regis-
tration. The latter is efficient to update and does not involve
costly feature extractors. It is defined as follows. Let us
assume a stream of N events denoted as ei = {xi, ti, pi}, i ∈
N, which includes location xi = {ui, vi}, timestamp ti and
polarity pi ∈ {−1, 1}. A time surface map is a 2D map in
which the value at a pixel x is defined by the most recent
event occurring at that location. It is notably depending on
an exponential decay kernel defined as

T (x, t)
.
= exp

(
− t− tlast(x)

δ

)
(2)

where δ is a constant decay rate parameter typically set to a
small value. tlast(x) is the timestamp corresponding to the
most recent triggered event at x. t is a given time stamp
for which the TSM is constructed. Note that in the context
of our work, the TSM can be regarded as the historical
trajectory of scene edges moving in the image plane, and
sharp contours remain identifiable at the reprojection location
of the currently observed edges in the scene. It is this
phenomenon that encourages a direct use of TSMs towards
semi-dense registration.

For practical use, we usually use the inverse (or negated)
TSM given by

T (x, t) = 1− T (x, t).

It has the advantage that the locations corresponding to the
reprojection of the currently observed edges now present the
lowest values in the map. As a result, the negated TSM can
be directly used as a cost field against which the reprojected
semi-dense map can be registered in nonlinear optimization.
The relationship between an actual distance field and the
negated TSM is introduced in [21]. We may readily perform
nonlinear optimization on this geometric field.

For the sake of efficient measurement preprocessing, we
maintain a global surface of active events (SAE) [34] which
stores the most recent event time stamp at each pixel. We
also map the pixel values in the TSM from [0, 1] to [0, 255]
for easy visualization and stable numerical computation. We
make use of the truncated TSM in which all values below a
given threshold δ are set to 0. Finally, we apply a Gaussian
kernel on the TSM to further smoothify the field, reduce
ripple effects, and reduce the influence of outlier events.

3) Imu pre-integration: The IMU provides measurements
for acceleration αb and angular velocity ωb of the sensor at
a high frequent rate. We follow the IMU sensor model and
continuous-time quaternion-based derivation of IMU pre-
integration terms introduced in previous work [35] [36]. The
raw IMU measurements α̂t, ω̂t are given by

α̂t = αt + bαt
+Rt

wg
w + nα

ω̂t = ωt + bωt
+ nω

where noise is modeled as Gaussian white noise, i.e. nα ∼
N (0,σ2

α),nω ∼ N (0,σ2
ω), and biases are modeled as a

random walk.
The pre-integration terms between consecutive frames are

given by

αbk
bk+1

=

∫∫
t∈[tk,tk+1]

Rbk
t (α̂t − bαt − nα)dt

2

βbk
bk+1

=

∫
t∈[tk,tk+1]

Rbk
t (α̂t − bαt

− nα)dt

γbk
bk+1

=

∫
t∈[tk,tk+1]

1

2
Ω(ω̂ − bωt − nω)γ

bk
t dt

where

Ω(ω) =

[
−⌊ω⌋× ω
−ωT 0

]
, ⌊ω⌋× =

 0 −ωz ωy

ωx 0 −ωx

−ωy ωx 0


αbk

bk+1
,βbk

bk+1
, and γbk

bk+1
represent the pre-integrated po-

sition, velocity and rotation measurements. A covariance
matrix Σbk,bk+1

is also calculated during the pre-integration
process. In our practical implementation, we use first-order
integration for processing discrete time IMU measurements.

C. Initialization

Tightly coupled visual-inertial optimization-based tracking
usually needs good initial values for states to achieve con-
vergence. The goal of the initialization module is to align
vision-based and IMU measurements to calibrate the bias
parameters of the IMU and provide initial states. Inspired
by [35], we employ a light-weight loosely coupled initial-
ization method in our localization framework. In contrast to
traditional VIO frameworks, the states to be bootstrapped in
our localization system are fewer and only include velocity,
biases and pose.

The initialization module proceeds by first constructing
many intermediate TSMs between adjacent frames and then
utilizing this information for high-frequency event-based
vision-only localization. This procedure will give initial
poses for each frame, and requires the solution of indi-
vidual optimization problems that minimize the values of
the negated TSM field at the reprojected semi-dense pixel
locations for each frame. The problem formulation for an
individual frame is given by

argmin
θ,p

∑
Pj∈D

ρ(T (πe(R
c
bR

T (θ)(Pj − p) + tcb))), (3)

where ρ is a robust loss function (e.g. Huber loss), πe is
a function which projects the 3D points in event camera
frame onto the image plane, R(·) is the function that maps a
minimal rotation representation to a 3-by-3 rotation matrix,
and Pj ∈ D is a 3D world point within the current field of
view of the event camera.

When sufficiently many frames for bootstrapping have
been collected, we adopt the IMU measurement residual
function from [35] and loosely align the IMU pre-integration
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dense map. Two types of factors are introduced to construct the factor graph: (a) IMU pre-integration factors, (b) event alignment factors using TSMs.
The formulation of these factors are discussed in Sections III-C and III-D. We fix the first node to maintain consistency with matured nodes that left the
window.

terms with the event-based vision-only pose estimations. The
IMU measurement residual function is given by

r(Si,Si+1) =



RT (θi)(pi+1 − pi +
1
2g

w∆t2i − vi∆ti)− α̂i
i+1

RT (θi)(vi+1 + gw∆ti − vi)− β̂
i

i+1

2[Q(θi)
−1 ⊗Q(θi+1)⊗ (γ̂i

i+1)
−1]xyz

bαi+1
− bαi

bωi+1
− bωi


,

(4)
where Q(·) transforms the minimal rotation representation to
a quaternion and α̂i

i+1, β̂
i

i+1, γ̂
i
i+1 represent the IMU pre-

integration vector using raw IMU measurements. Given N
frames, the loosely coupled visual-inertial alignment objec-
tive is given by

argmin
vi,bαi

,bωi

N−1∑
i=1

||r(Si,Si+1)||2Σi,i+1. (5)

Note that we fix the keyframe poses and optimize the re-
maining states only. Since the existing IMU pre-integrations
are based on the old states, they should be re-propagated
using the optimized state once the initialization is finished.

D. Sliding window optimization
The initialization module constructs a window of frames

with initial states. Once given, we use a second-order motion
model to obtain predictions for each new keyframe state.
In practice, the field of view of frames within the sliding
window typically only covers part of the semi-dense map.
In order to reduce the complexity of the optimization, we
maintain a set of activate points. The set will keep the
points visible in the last sliding window optimization. We
also construct a wider frustum for new keyframes using
their predicted pose to select potentially visible new points
and merge them into the activate points set. We randomly
sample a fixed-size subset P from this set of points to
ensure the optimization maintain approximately constant
time complexity.

Fig. 3 illustrates the factor graph of the concluding tightly-
coupled sliding window optimization framework. The opti-
mization is executed each time a new frame is added to the

window and the oldest frame is removed. It is furthermore
important to remain consistent with mature nodes that al-
ready left the sliding window such that a smoother trajectory
can be maintained. Here we choose a simple solution that
consists of fixing the first node in the graph. Combining
the residuals in (4) and (3), the objective of the event-based
visual-inertial sliding window optimizer finally becomes

argmin
S1,...,SN

∑
Pj∈P

N∑
i=1

ρ(T (πe(R
c
bR

T (θi)(Pj − pi) + tcb)))

+

N−1∑
i=1

||r(Si,Si+1)||2Σi,i+1
. (6)

where N is the sliding window size and P is the maintained
activate point set. We use Ceres solver [37] to solve all above
nonlinear problems.

IV. EXPERIMENTS

We now proceed to the experimental evaluation of our
event-based visual-inertial tracking framework. All experi-
ments are conducted on the small scale sequences of the
publicly available VECtor dataset [38]. The dataset con-
tains event stereo cameras (Prophesee Gen3 CD) with VGA
resolution (640 × 480), only the left one of which we use,
and a nine-axis IMU (XSens MTi-30 AHRS) at 200Hz.
The ground truth is generated by the OptiTrack motion
capture system. All sensors are well synchronised though
a micro-controller unit at hardware level. We noticed that
at certain moments in some sequences, there is only a
small overlap between the event camera’s field of view and
the reconstructed semi-dense map, which leads to tracking
failures for all methods. Therefore, we apply clipping as
necessary on certain sequences. We first compare the pro-
posed EVIT framework against several state-of-art event-
based localization approaches on both normal and challeng-
ing sequences. To conclude, we conduct an ablation study
using different motion models to analyze the impact of using
IMU predictions on tracking performance. We provide both
qualitative and quantitative results to show the robustness
and effectiveness of our method.



We use the evo odometry evaluation tool [39] to align
trajectories and conduct comparisons based on the RMSE
of the average trajectory error (ATE) metric. The trajectories
are aligned by an SE(3) transformation derived from the first
pair of the synchronized camera and ground truth poses.

A. Evaluation on VECtor

In the first experiment, we compare the performance of
the proposed system with existing event-based localization
frameworks. Note that the present work is an extension of the
event vision tracking module Canny-EVT presented by Zuo
et al. [9]. As mentioned in there, the EVT module relies on
a high-frequency localization method which trades efficiency
for robustness, thereby resulting in an offline method with
no real-time capabilities. We compare our proposed EVIT
against EVT running at different rates and on the same semi-
dense map.

The global semi-dense map is constructed from the open-
source framework [40], which uses the probabilistic semi-
dense mapping technique proposed by Mur-Artal and Tardos
[41]. Note that the constructed edges do not necessarily need
to be geometric edges in 3D and may still be appearance
edges. In order to avoid the scale ambiguity issue caused
by monocular slam, we replace each keyframe pose by
the corresponding ground truth pose. We also manually
transform the reconstructed semi-dense map to a global
world reference frame where the negative z-axis direction
aligns with the direction of gravity to ensure consistency
with IMU data.

TABLE I
ABSOLUTE TRAJECTORY ERROR (ATE) ON NORMAL SEQUENCES.

POSITION: [CM], ORIENTATION: [◦]

Sequence Method Frequency 30% sequence 50% sequence 100% sequence

Pos. Orient. Pos. Orient. Pos. Orient.

sofa normal
EVT

300hz 3.26 1.34 3.66 1.75 3.37 1.65
100hz 3.16 1.33 6.98 2.70 5.43 2.28
30hz 3.54 1.58 - - - -

EVPT (dyn) 15.64 5.08 15.27 5.50 - -
EVIT (dyn) 3.23 1.40 3.23 1.56 3.15 1.53

robot normal
EVT

300hz 0.91 0.89 1.04 1.08 1.09 1.31
100hz 0.97 0.91 1.09 1.09 1.16 1.31
30hz 1.02 0.90 1.11 1.11 1.20 1.35

EVPT (dyn) 15.36 9.927 13.40 8.39 14.17 9.03
EVIT (dyn) 0.84 0.89 1.04 1.10 1.00 1.14

desk normal
EVT

300hz 1.21 0.74 1.87 0.81 2.25 0.88
100hz 1.34 0.77 1.87 0.84 2.14 0.92
30hz 1.21 0.77 1.92 0.87 2.30 0.96

EVPT (dyn) 7.71 1.83 11.02 2.61 16.08 3.33
EVIT (dyn) 1.32 0.80 1.79 0.87 2.22 0.94

We also compare the EVIT with the photometric event-
based camera localization method proposed by Bryner et
al. [29]. We refer to it here as EVPT. The photometric
map is directly constructed using the RGBD data and ground
truth poses contained in the dataset. We directly re-project
all valid pixels back into the 3D space and carefully polish
the map by hand to reduce edge effects caused by the RGBD
observations.

Note that not all methods can track the entire sequence so
we define three milestones at 30%, 50% and 100% of the
sequence. The corresponding error is simply not displayed if

a certain milestone is not reached. Since EVIT and EVPT
all adopt dynamic frame determination schemes, the rate
depends on the motion and the scene. The actual rate is lower
for mild motion and higher during aggressive motion, and
typically valies between 30 and 60 Hz. As shown in Table. I,
though the improvement brought by EVIT is not significant
on normal sequences, both EVT and EVIT outperform
EVPT. This is sensible given that photometric localization
methods strongly rely on the consistency of the actual light
conditions when the map was built, which is not only hard to
achieve for varying times of the day, but also hard to achieve
across different sensors. Furthermore, photometric methods
involve error metrics with no direct geometric meaning, and
it is thus hard to ensure optimality of the motion estimation.
In terms of EVIT, it can be observed that the addition of
the IMU arguably offers only a limited improvement over
the event-only alternative when the motion is normal and
not exhibiting strong dynamics. However, EVIT generally
produces small errors, often leading to the absolutely best
tracking result.

TABLE II
ABSOLUTE TRAJECTORY ERROR (ATE) ON CHALLENGING SEQUENCES.

POSITION: [CM], ORIENTATION: [◦]

Sequence Method Frequency 30% sequence 50% sequence 100% sequence

Pos. Orient. Pos. Orient. Pos. Orient.

sofa fast
EVT

300hz 20.45 7.84 - - - -
100hz 22.66 8.56 - - - -
30hz - - - - - -

EVPT (dyn) 25.29 6.53 26.32 6.77 23.24 6.18
EVIT (dyn) 9.02 4.02 8.11 3.60 7.08 3.22

robot fast
EVT

300hz 3.76 2.83 4.12 2.92 - -
100hz 5.47 3.67 9.15 4.49 - -
30hz - - - - - -

EVPT (dyn) - - - - - -
EVIT (dyn) 3.22 2.67 3.24 2.80 3.85 2.98

desk fast
EVT

300hz 4.03 2.47 4.52 2.35 14.65 7.95
100hz 2.24 2.19 2.48 2.52 - -
30hz 5.13 3.35 15.4 7.23 - -

EVPT (dyn) 5.80 2.91 5.63 3.99 7.13 4.27
EVIT (dyn) 1.53 1.69 1.61 2.23 3.59 3.01

In contrast, the numerical results shown in Table. II illus-
trate a substantial improvement in accuracy and robustness
in challenging scenarios. The majority of the alternative
methods either fail to complete the entire sequence or result
in large localization errors. Fig. 4 visualizes a comparison
of actual trajectories from one of the more challenging
sequences, demonstrating how all semi-dense comparison
methods that do not employ inertial readings fail after at
most 4s.

B. Ablation study on motion model

The tracking process in this work is based on the nonlinear
optimization technique which is often sensitive to initial state
given by motion model. Therefore, we also conduct an abla-
tion study to evaluate the effect of different motion models.
The latter can be adopted based on the system’s available
sensors. When there is no internal motion information, a
simple strategy would be the initialize the pose of a newly
incoming keyframe with the pose of the previous one, a
paradigm we may refer to as a zeroth-order motion model.
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Fig. 4. Comparison of trajectories generated by various pure and inertial-supported semi-dense event-based tracking solutions, as well as a photometric
alternative. The sequence is sofa fast from the VECtor benchmark [38]. The method proposed in this work is called EVIT.

A more advanced model could be the first-order motion
model (i.e. constant velocity model), which assumes that the
velocity remains constant over small periods of time, and
thereby permits the initialization of a new keyframe with a
relative pose to the previous one that is similar to the relative
pose between the previous keyframe and its preceding one.
Equipped with an IMU, we can introduce the second-order
motion model, which uses acceleration and angular velocity
readings to propagate the previous pose to the current one.

(a) zeroth-order model (b) first-order model (c) second-order model

Fig. 5. Initial projection of semi-dense cloud on TSM using different
motion models.

The three motion models are tested with the same tightly
coupled optimization back end. Fig. 5 shows qualitative
results for the different models, demonstrating how the
second-order motion model provides better initial poses for
the optimization back end. The full ATE results are listed
in Table. III. Although the differences are not significant on
mild sequences, it shows that even under the same optimiza-
tion scheme, the motion model has a crucial implication in
fast-motion scenarios.

V. CONCLUSION

In this work, we have introduced a novel event-inertial
tracking framework that aligns with previous approaches
in that it proposes the registration of a semi-dense point
cloud with contours observed in the time surface map.
However, rather than simply aligning individual frames, the
introduction of inertial signals permits the joint alignment of

TABLE III
ABSOLUTE TRAJECTORY ERROR (ATE) ON DIFFERENT MOTION

MODELS. POSITION: [CM], ORIENTATION: [◦]

Sequence zeroth-order first-order second-order

Pos. Orient. Pos. Orient. Pos. Orient.

sofa fast - - - - 7.08 3.22

sofa normal - - 2.84 1.60 3.15 1.53

robot fast - - - - 3.85 2.98

robot normal 1.08 1.32 1.46 1.23 1.00 1.14

desk fast - - - - 3.59 3.01

desk normal 3.75 1.59 2.77 1.16 2.22 0.94

multiple adjacent keyframes through the addition of pair-wise
regularization terms. The proposed sliding window alignment
shows benefits in tracking robustness as the contours in a
single TSM are often orthogonal to the projected instanta-
neous direction of motion, and thus do not fully constrain an
individual pose. Furthermore, the addition of the IMU leads
to better initializations and thereby improves tracking per-
formance in highly dynamic situations without a substantial
increase in frame rate. Interestingly, the proposed windowed
tracking method could be equally applied to regular cameras.
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