
CRPlace: Camera-Radar Fusion with BEV Representation for Place
Recognition

Shaowei Fu, Yifan Duan, Yao Li, Chengzhen Meng, Yingjie Wang, Jianmin Ji, Yanyong Zhang*

Abstract— The integration of complementary characteristics
from camera and radar data has emerged as an effective
approach in 3D object detection. However, such fusion-based
methods remain unexplored for place recognition, an equally
important task for autonomous systems. Given that place
recognition relies on the similarity between a query scene and
the corresponding candidate scene, the stationary background
of a scene is expected to play a crucial role in the task.
As such, current well-designed camera-radar fusion meth-
ods for 3D object detection can hardly take effect in place
recognition because they mainly focus on dynamic foreground
objects. In this paper, a background-attentive camera-radar
fusion-based method, named CRPlace, is proposed to gener-
ate background-attentive global descriptors from multi-view
images and radar point clouds for accurate place recogni-
tion. To extract stationary background features effectively, we
design an adaptive module that generates the background-
attentive mask by utilizing the camera BEV feature and radar
dynamic points. With the guidance of a background mask,
we devise a bidirectional cross-attention-based spatial fusion
strategy to facilitate comprehensive spatial interaction between
the background information of the camera BEV feature and
the radar BEV feature. As the first camera-radar fusion-
based place recognition network, CRPlace has been evaluated
thoroughly on the nuScenes dataset. The results show that our
algorithm outperforms a variety of baseline methods across a
comprehensive set of metrics (recall@1 reaches 91.2%).

I. INTRODUCTION

Place recognition serves as a pivotal function in au-
tonomous driving by addressing the fundamental question
of “where am I within a predefined reference map”. As an
essential component of global localization, it enables the
retrieval of a place within a large map database that closely
matches the current place [2]. Furthermore, it plays a vital
role in Simultaneous Localization and Mapping (SLAM),
aiding in the detection of loop closures to rectify drift and
tracking errors [3].

Cameras and LiDAR are the most commonly used sensors
in place recognition. Visual place recognition [2], [4]–[6]
has been widely studied due to the low cost and rich
texture information provided by cameras. However, it is
susceptible to challenges posed by visual degradation such
as night, rain, and direct sunlight [7]. On the other hand,
methods based on LiDAR [8]–[12] offer improved robustness
against illumination conditions but lack rich texture features.
Recent efforts have sought to fuse these two modalities for
place recognition [1], [3], [13]–[15], resulting in significant

* The corresponding author.
School of Computer Science and Technology, University of Science

and Technology of China, Hefei, 230026, China {fushw, dyf0202,
zkdly, czmeng, yingjiewang}@mail.ustc.edu.cn,
{jianmin, yanyongz}@ustc.edu.cn.

Fig. 1: An illustration of (a) place recognition task with
camera and radar fusion and (b) the place recognition results
using image-only and fusion-based methods, respectively.
Given an image query (marked in blue bounding box) that
includes multiple dynamic objects, the image-based place
recognition [1] retrieves an incorrect candidate due to the
influence of dynamic objects (marked in red bounding box),
while our method retrieves the correct candidate successfully
(marked in green bounding box) with the image-radar query
acquired from the same place.

enhancements in performance and robustness. Nevertheless,
these methods still fall short under adverse weather condi-
tions such as rain, snow, and fog [12].

Unlike cameras and LiDAR, millimeter-wave radar (re-
ferred to as radar in this paper) remains nearly unaffected
by harsh weather conditions and obstacles. It can provide
3D geometry information like LiDAR but is more lightweight
and inexpensive. Consequently, radar is becoming an increas-
ingly attractive sensor in autonomous driving. Due to the
challenges of sparsity and noisy measurements in radar, it
has become a common practice to fuse radar with camera or
LiDAR to exploit their complementary characteristics for 3D
object detection [16]–[18]. However, these methods mainly
focus on pre-defined foreground objects, rendering them un-
suitable for place recognition. Specifically, place recognition
retrieves candidates by querying the most similar scene in
the database (Fig. 1(a)). In this demand, the moving objects
from the scene could be misleading instead. We provide
an example in Fig. 1(b), the image-based place recognition
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method [1] fails to retrieve correct candidates since the
disturbance from dynamic objects could not be eliminated.
Therefore, it is necessary to extract global descriptors1 that
focus on stationary background information with the help
of the velocity-sensitive radar data. Although studies have
attempted to exploit the unique characteristics of radar data
for place recognition [7], [19], [20], how to effectively fuse
the complementary characteristics of camera and radar data
while focusing on the background remains a challenge.

In this work, we propose CRPlace, a novel place recog-
nition method that fuses the complementary characteristics
of multi-view camera images and radar points to generate
background-attentive global descriptors. Specifically, CR-
Place first engages a Background-Attentive Mask Generation
(BAMG) module to adaptively create an attention mask that
focuses on the stationary background feature while ignor-
ing the dynamic feature. Guided by the background mask,
a Bidirectional cross-attention-based Spatial Fusion (BSF)
module is then devised to enable thorough background fea-
ture interaction and learn the soft association between camera
and radar BEV features. In detail, the Radar-to-Image (R2I)
fusion takes each pixel in the camera BEV feature as a query
to learn spatial background information from the radar BEV
feature, and the Image-to-Radar (I2R) fusion utilizes rich
contextual background information from the image feature to
enhance the sparse radar feature. Additionally, we establish
a baseline for camera-radar fusion-based place recognition
by directly combining the feature extraction module of the
SOTA fusion-based detection network, i.e., BEVFusion [21],
and the global descriptor aggregation module of the SOTA
360-degree visual place recognition network vDiSCO [1].
We refer to this baseline as BEVFusion in the remainder of
the paper, which also supports camera-only and radar-only
methods.

We evaluate our method on nuScenes dataset [22]. We
compare CRPlace with several state-of-the-art camera-based,
radar-based, and camera-radar fusion-based methods, all of
which do not take into account the influence of dynamic
objects. CRPlace outperforms these methods with significant
margins (with the relative recall@1 increase of 3.6% to
12.9% ). We also validate the robustness of our method
in rain conditions, achieving a relative recall@1 increase of
30.1%. In summary, our contributions are:

• We propose a novel and robust background-attentive
Camera-Radar fusion-based place recognition method,
namely CRPlace, to combine the complementary char-
acteristics of camera and radar in the BEV representa-
tion. To the best of our knowledge, this is the first work
that effectively fuses multi-view cameras and radars for
the task of place recognition.

• We design an adaptive background-attentive mask gen-
eration module and a bidirectional cross-attention-based
spatial fusion module to learn and interact with station-
ary background features effectively.

• We conduct extensive experiments on the nuScenes

1We usually use global descriptors to describe a place.

dataset to validate the merits of our method and show
considerably improved performance.

II. RELATED WORK

A. Single-modal Place Recognition

Camera, LiDAR, and radar have all been employed for
place recognition.
Camera-based Methods. In camera-based methods, hand-
crafted local features [23]–[25] and their vector of locally
aggregated descriptors (VLAD) [26] are traditionally used
for recognition, but they have been replaced by convolutional
neural networks (CNNs) like VGG [27] and AlexNet [28].
NetVLAD [2] is an end-to-end learnable method specifically
designed for large-scale place recognition. It first extracts the
local feature using VGG/AlexNet, followed by a differen-
tiable VLAD layer used for local feature aggregation, which
can be plugged into various learning-based feature extractors
and trained through backpropagation. Similarly, Generalized-
Mean Pooling (GeM) [4] is an efficient aggregation method,
enabling the network to aggregate a compact global descrip-
tor end-to-end.
LiDAR-based Methods. Some LiDAR-based methods
project point clouds to 2D structures such as Scan Context
[29] and Scan Context++ [30], while MinkLoc3D [12] and
Locus [11] directly operate in 3D space by discretizing it
into voxel grids. Inspired by NetVLAD, PointNetVLAD [8]
combines PointNet [31] and NetVLAD to enable end-to-
end training and extraction for the global descriptor from
3D point clouds. OverlapNet [9] and DiSCO [10] try to
simultaneously estimate the relative yaw between pairs of
scans and their similarity.
Radar-based Methods. In radar-based methods, UnderTher-
adar [20] uses intermediate features as global descriptors.
Kidnappedradar [19] exploits a variant of NetVLAD as the
feature extractor to improve rotation invariance. AutoPlace
[7] is the first work that uses single-chip automotive radar
for place recognition. It first removes the dynamic points
from instant Doppler measurement and then extracts spatial-
temporal features from radar point clouds with a compact
deep neural network. Subsequently, the obtained candidates
are re-ranked using Radar Cross Section (RCS) measurement
to refine the recognition accuracy.

B. Multi-modal Place Recognition

Many efforts have been made in various works towards
LiDAR and camera fusion-based multi-modal place recog-
nition. CORAL [3] first builds the elevation image from 3D
points, which is then enhanced with projected RGB image
features. In this way, the structural features and visual fea-
tures are fused in the bird-eye view. MinkLoc++ [14] extracts
the global descriptor for LiDAR point cloud and RGD image
separately and fuses them in the last channel. Considering
the fact that the importance of camera and LiDAR varies as
the environment changes, AdaFusion [13] tries to learn the
adaptive weights for both image and point cloud features.



Fig. 2: The network architecture of the proposed CRPlace. Given multi-view images and radar point clouds, two modality-
specific streams separately extract features and transform them into the same BEV space at first. Next, the Background-
Attentive Mask Generation (BAMG) module uses radar dynamic points and camera BEV features to create a background
attention mask adaptively. Then the Bidirectional Spatial Fusion (BSF) module attentively fuses background BEV features
from these two modalities. Finally, the Global Descriptor Generator uses the fused BEV features to generate rotation-invariant
global descriptors.

However, methods based on camera-radar fusion for place
recognition have not yet received any attention.

C. Rotation Invariance

Rotation invariance is crucial in place recognition. Bird’s
Eye View (BEV) representation has a natural advantage in
achieving rotation invariance, which has been widely used
in LiDAR-based methods [9], [10], [30]. OverlapNetVLAD
[32] is a coarse-to-fine place recognition framework that effi-
ciently uses BEV features to perform loop closure. Previous
visual place recognition methods use single-view image to
extract the global descriptor, which fail to retrieve the correct
candidates when revisiting the same place from different
perspectives. Pioneering works LSS [33], BEVFusion [21]
and BEVFormer [34] have demonstrated that aggregating
features from multi-view images into a unified BEV repre-
sentation can significantly improve detection and segmenta-
tion performance. Inspired by these methods, a recent work,
called vDiSCO [1], proposes a method to employ BEV repre-
sentation for 360-degree visual place recognition, achieving
remarkable results. vDiSCO extracts BEV features from
multi-view images based on BEVFormer, then combines
the polar transformation and the Discrete Fourier transform
to aggregate rotation-invariant global descriptors from BEV
features. It also supports the vision-LiDAR fusion method.
This method has effectively demonstrated the advantages of
BEV representation in the task of place recognition.

III. METHOD

In this work, we present CRPlace, a background-attentive
camera-radar fusion network for place recognition. As shown
in Fig. 2, multi-view images and radar point clouds are sep-
arately fed into the camera feature stream and radar feature
stream to extract their BEV features. Next, we involve a

Background-Attentive Mask Generation (BAMG) module to
create a background attention mask adaptively by combining
camera BEV features and radar dynamic points. Then a Bidi-
rectional cross-attention-based Spatial Fusion (BSF) module
is devised with the guidance of the attention mask to interact
with the background features attentively. Subsequently, the
rotation-invariant global descriptor is generated according to
the method in vDiSCO [1]. Following this way, a place can
be represented by a background-attentive global descriptor,
denoted as Dp, so that we can generate a global descriptor for
each place in a given map to build a database {Di}. We also
generate the global descriptor for the current query place, say
Dq . By comparing the Euclidean distance between the query
place descriptor and the place descriptor in the database, the
current place can be finally recognized as the one in the map
with the minimal difference, denote the i∗th place as:

i∗ = argmin
i

∥Dq −Di∥2 . (1)

Below we will present the details of CRPlace.

A. Modality-Specific BEV Feature Encoding

1) Multi-View Image Feature Encoding: Following BEV-
Fusion [21], we use Swin-T [35] as the image backbone
to encode the multi-view images into deep features. The
Feature Pyramid Network (FPN) [36] is then applied to fuse
the multi-scale features. An adaptive average pooling layer
is applied to better align these features. To transform these
image features from 2D coordinate into 3D ego-car coor-
dinate, we apply the view transformer proposed in [33] to
explicitly predict the depth distribution of each pixel. Then,
the image-view features can be projected onto the predefined
point cloud and a pseudo voxel V ∈ RX×Y×Z×C can be
generated according to camera extrinsic parameters and the
predicted image depth. Note that the depth prediction module



Fig. 3: An illustration of the BAMG module. All dynamic
points are selected from radar point clouds and voxelized into
a grid. Then the radar voxel grid and camera BEV feature are
utilized to generate the background attention mask adaptively
according to their positional relationships. (xne, yne) denotes
the non-empty voxel.

may produce inaccurate depth, leading to the projection of
image features to incorrect BEV positions. Therefore, we
use ground-truth depth derived from LiDAR point clouds to
supervise the depth distribution prediction during training,
following BEVDepth [37]. Subsequently, a BEV pooling is
applied to reshape the pseudo voxel into a BEV feature map
FC ∈ RC×H×W .

2) Radar Feature Encoding: We preprocess the radar
point cloud into a feature set containing the 2D coordinate
(x, y), radial velocity (vx, vy), radar cross-section rcs, dy-
namic property dynProp, cluster validity state invalid state
and timestamp t. Five frames of radar scans within the same
sample are stacked into a full-view radar point cloud in the
LiDAR coordinate. To avoid overly sparse inputs, we further
accumulate a sequence of radar point clouds into one frame.
The dynamic points are identified and removed from the
radar point cloud based on radial velocity, as described in
[7]. Then, we exploit a PillarFeatureNet [38] to extract radar
features which directly converts the radar input to a pseudo
image in the BEV space. This encoder considerably alleviates
the computation of sparse radar data to traverse the BEV
plane in the absence of vertical information. Naturally, the
radar BEV features FR ∈ RC×H×W are generated after a
linear transformation, where C, H , and W are equal to FC .

B. Background-Attentive Mask Generation

Before feature fusion, it is necessary to distinguish which
areas in the BEV features represent dynamic objects and
which represent stationary backgrounds. In our BAMG mod-
ule, a background attention mask M ∈ {0, 1}H×W of the
same size as the camera BEV feature is defined to prevent
attention for dynamic features, where H = W = 128.
As shown in Fig. 3, we first retain all dynamic points
in the radar point cloud and then perform voxelization to
generate a voxel grid V ∈ RH×W . For each non-empty grid
V (xne, yne), it means that there is a dynamic object near

the position (xne, yne). The corresponding position in the
camera BEV feature is also considered to have a dynamic
object because the voxel grid and the camera BEV feature
have been transformed into the same BEV coordinate system.
Furthermore, the incorporation of explicit depth supervision
during the view transformer process of the camera feature
stream further enhances the spatial alignment of the camera
BEV feature and radar voxel grid. While we have a general
idea of the approximate position of the dynamic object, its
spatial extent is not clear. In other words, it is uncertain
which pixels belong to the dynamic features. As a result,
we set a learnable parameter r to allow the network to
adaptively learn the areas occupied by dynamic features.
Specifically, for each non-empty voxel grid V (xne, yne),
if the Euclidean distance between the coordinate (x, y)
of camera BEV feature pixel FC(x, y) and (xne, yne) is
less than the threshold r, it is considered that this feature
pixel belongs to the dynamic feature, and the corresponding
position of background attention mask M(x, y) will be set
to 0. This can be represented using the following formula:

M(x, y) =

{
0, if ∥(x, y)− (xne, yne)∥2 ≤ r

1, else
, (2)

where x, xne ∈ H, y, yne ∈ W and r is initialized to 0.5.

C. Bidirectional Spatial Fusion

While it is possible to identify stationary background
features using the generated background mask, simply fusing
camera features and radar features through element-wise ad-
dition or concatenation would result in spatial misalignment
and significant feature wastage due to the sparsity of radar
measurements. For this reason, our BSF module aims to
fully interact the complementary characteristics and learn the
soft-association between camera features and radar features
attentively under the guidance of the background attention
mask. The BSF module is composed of a stack of 3 identical
blocks. As illustrated in Fig. 4, a block consists of four parts:
a Self-Attention module, a Radar-to-Image Fusion module,
an Image-to-Radar Fusion module, and a convolution-based
fusion operation.

1) Radar-to-Image Fusion: Radar-to-Image (R2I) Fusion
provides the spatial background information of radar features
to image features. The positional embedding operation is ap-
plied based on their corresponding BEV spatial coordinates
before fusion. To enhance the intrinsic representation capa-
bility of camera background features, given a C dimensional
camera BEV feature map FC ∈ RC×H×W as queries QI ,
we first perform the deformable self-attention (DSA) for each
query QI

p ∈ QI as follow:

DSA(QI
p) = DefAttn(QI

p, p, V
I), (3)

where QI
p represents the camera BEV query at point p =

(xp, yp), and V I ∈ QI is the features with background
attention mask M(x, y) = 1. Next the radar BEV feature
F ′
R ∈ FR with M(x, y) = 1 is used as key and value to



Fig. 4: An illustration of the Bidirectional Spatial Fusion block. Take camera BEV feature, radar BEV feature, and background
attention mask as input, a Self-Attention module is first applied to these two features respectively. Then a Radar-to-Image
Fusion and an Image-to-Radar Fusion are used for bidirectional spatial interaction. Finally, a convolution-based fusion
operation is performed. A linear layer is used to generate the input of radar feature for the next block.

perform the Radar-to-Image deformable cross-attention as
follow:

R2I(QI
p, F

′
R) =

∑
V ∈F ′

R

DefAttn(QI
p, p, F

′
R). (4)

2) Image-to-Radar Fusion: Image-to-Radar (I2R) Fusion
module utilizes rich contextual background information from
image features to complement sparse radar features. Simi-
larly, a radar BEV feature FR ∈ RC×H×W is used as query
QR

p to perform deformable self-attention as follow:

DSA(QR
p ) = DefAttn(QR

p , p, V
R), (5)

where QR
p represents the radar BEV query at point p =

(xp, yp), and V R ∈ QR is the features with M(x, y) =
1. Then the Image-to-Radar deformable cross-attention is
performed as follow:

I2R(QR
p , F

′
C) =

∑
V ∈F ′

C

DefAttn(QR
p , p, F

′
C), (6)

where F ′
C ∈ FC is the camera BEV feature with M(i, j) = 1.

Subsequently, the output of I2R is fed into a linear layer for
the next (i+ 1)-th block.

3) Convolution-based Fusion: Designed for 2D struc-
tures, convolution kernels are better at extracting local spatial
correlations than 1D attention. Therefore, the outputs of R2I
fusion and I2R fusion are transformed to image style again
and concatenated along the channel dimension, then sent to
the convolution block, expressed as follows:

F i
out = H(R2I(QI , F ′

R) ⊕ I2R(QR, F ′
C)), (7)

where F i
out is the output of the i-th block, and H represents

the convolution-based fusion operation. In this way, multiple
blocks increase the fitness of FC and FR, and the background
BEV features can be enhanced gradually.

D. Global Descriptor Generator

Following vDiSCO [1], the fused background BEV fea-
tures are fed into a Global Descriptor Generator to aggregate
rotation-invariant global descriptors. Firstly, the polar trans-
formation is applied to transform BEV features into the polar

coordinate system, and then DFT is performed on the polar
BEV features to achieve rotation invariance. Specifically, the
rotation invariance is realized by the translation invariant
property of the magnitude spectrum on polar BEV, where
the translation indicates the rotation in the original BEV.

IV. EXPERIMENTS

A. NuScenes Dataset

NuScenes [22] is the first dataset for large-scale environ-
ments with multi-modal sensors, including LiDAR, camera,
and radar. There are six camera sensors installed in front,
front left, front right, back, back left, and back right parts of
the vehicle, and five radar sensors installed at the front, left,
right, and back, covering a 360° FOV. Following AutoPlace
[7], we use the largest split, Boston split to train and evaluate
our CRPlace. This split is divided into database set, training
query set, validation query set, and test query set containing
6312, 7075, 924, and 3696 multi-view images and radar point
clouds, respectively. See AutoPlace [7] for more details about
the dataset.

B. Implementation Details

For multi-view images, we set the image size to 256×704,
and the recognition range of the BEV grid is (−51.2, 51.2)m
for the X,Y axis, and (−10, 10)m for Z axis. To densify
the radar point cloud, we follow typical data pre-processing
of [39] to concatenate the nearest six radar point clouds
using ground truth ego-motion. The radar voxel size is set
to (0.8, 0.8, 8)m. In order to convert camera features and
radar features into a unified BEV space, we transfer the
2D position and velocity of radar points from the radar
coordinates to the LiDAR coordinates.

For the network training, we follow the common practice
[1], [7] to adopt metric learning with triplet margin loss.
Multi-view images and a corresponding radar point cloud
form a mini-batch. Each batch consists of several mini-
batches that can be divided into a query, positive and negative
samples. Following the scale of AutoPlace [7], we regard
places in the database that are within the radius=9 m area
to the query as positive samples, while those are outside the



radius=18 m area as negative samples. The loss term is given
as:

L =
∑
k

max{∥f(q), f(p)∥2 −
∥∥∥f(q), f(nk)

∥∥∥
2
+m, 0}, (8)

where f(·) denotes the network mapping a mini-batch to a
feature vector, ∥·∥2 means Euclidean distance, q is the query
sample, p is the best positive matching sample, nk is the
negative sample, m = 0.1 is the predefined margin, and
k = 10 is the number of negative samples. We use a batch
size of 4 and SGD with an initial learning rate of 0.001,
momentum of 0.9, and weight decay of 0.001. We decay the
learning rate by 0.5 every 5 epochs.

C. Evaluation Metrics

We use Recall@N [2], precision-recall curve [40], max F1

[19] and average precision (AP) [40] to evaluate the per-
formance of different place recognition methods. Recall@N
measures the percentage of successfully localized queries
using the top N candidates retrieved from the database.
Localization is successful if one of the top N retrieved
candidates is within d meters of the ground truth. In our
experiments, d is set to 9m.

D. Comparison with State-of-The-Art Methods

We compare our method with both single-modality (cam-
era or radar) and multi-modality (camera-radar) place recog-
nition methods, including:

• Camera-based methods: NetVLAD [2], vDiSCO [1],
and BEVFusion [21] (camera-only). The input of
NetVLAD is the front-view images, and the others are
multi-view images.

• Radar-based methods: AutoPlace [7], and BEVFusion
[21] (radar-only).

• Camera-Radar fusion-based method: BEVFusion [21].

We adapt the implementation of the above works to the
settings of the nuScenes dataset.

Table I shows the comparison results of place recog-
nition methods on the nuScenes dataset. For visual place
recognition, the multi-view methods with BEV representa-
tion vDiSCO and BEVFusion outperform the single-view
method NetVLAD, achieving 86.0% and 85.5% recall@1,
respectively. This is because BEV representation can provide
rotation-invariant global descriptors. For radar-based place
recognition, they both underperform compared to visual
methods because images have stronger representational ca-
pabilities. AutoPlace is the SOTA radar-based method as it
converts radar point clouds into images. Instead, BEVFusion
(R) has inferior performance because it directly extracts
features from radar point clouds. Notably, BEVFusion (C+R)
outperforms those based on a single modality in all metrics,
which indicates the effectiveness of the fusion approach.
Our method further improves recall@1, max F1, and AP
to 91.2%, 0.96, and 0.98, respectively. We can also ob-
serve a similar trend from Fig. 5 that camera-radar fusion-
based place recognition methods are outperformed by single

TABLE I: Comparison results of place recognition methods
on the nuScenes dataset. C denotes camera, and R denotes
radar.

Method Modality Recall@1/5/10 max F1 AP

NetVLAD [2] C 80.8/86.2/87.6 0.91 0.95
vDiSCO [1] C 86.0/88.6/89.2 0.95 0.96
BEVFusion [21] C 85.5/87.9/88.7 0.94 0.96

AutoPlace [7] R 77.8/82.3/83.7 0.94 0.97
BEVFusion [21] R 72.5/79.0/80.8 0.89 0.92

BEVFusion [21] C+R 88.0/89.9/90.6 0.95 0.96
CRPlace (ours) C+R 91.2/92.6/93.3 0.96 0.98

Fig. 5: Precision-recall curve of SOTA methods on the
nuScenes dataset.

modality-based methods. Still, CRPlace exceeds the others
by a significant margin (from 3.6% to 12.9% relative increase
of recall@1).

We also provide qualitative analysis in Fig. 6. As we can
see, when a query is surrounded by many dynamic objects
(first row) and also in the rain conditions (second row),
BEVFusion will retrieve a false positive, while CRPlace can
still retrieve the correct match.

E. Ablation Study

To understand how each module in CRPlace affects the
place recognition performance, we conduct ablation studies
by evaluating different groups shown in Table II.

Method (a) is our camera-radar fusion-based baseline
BEVFusion, which achieves recall@1 of 88.0%, recall@5
of 89.9%, and recall@10 of 90.6%.

Method (b) extends (a) by simply adding the BAMG
module. The background mask is directly added to the
camera and radar BEV features, and then the original feature
fusion module in BEVFusion [21] is performed. However,
this method does not yield a significant improvement in



TABLE II: Ablation Study of CRPlace.

Method BAMG BSF Recall@1/5/10 max F1 AP

(a) 88.0/89.9/90.6 0.95 0.96
(b) ✓ 88.2/89.9/90.5 0.94 0.96
(c) ✓ 90.4/91.3/92.2 0.96 0.97
(d) ✓ ✓ 91.2/92.6/93.3 0.96 0.98

TABLE III: Comparative study of feature aggregation meth-
ods on CRPlace.

Aggregation Recall@1 max F1 AP

NetVLAD [2] 87.4 0.95 0.96
GeM [4] 89.7 0.96 0.96
DFT [1] 91.2 0.96 0.98

performance. We believe this is because the original feature
fusion module does not effectively leverage the background
mask to learn background features.

Method (c) extends (a) by replacing the original feature
fusion module with our BSF module. Even without explicit
guidance from a background mask, this method still improves
recall@1 by 2.4%. This shows that our BSF module has
powerful feature fusion capabilities.

Method (d) is our CRPlace. By combining the BAMG
module and the BSF module, it achieves a gain of 3.2% for
recall@1 compared to BEVFusion. This indicates that our
BSF module can effectively utilize the background mask to
fuse background features attentively.

We also investigate the impact of different feature aggre-
gation methods on CRPlace, including NetVLAD [2], GeM
[4], and DFT [1], which are used for generating global
descriptors. As shown in Table III, unsurprisingly, DFT
outperforms other methods as it generates rotation-invariant
global descriptors.

TABLE IV: Comparison results of place recognition methods
in rain conditions.

Method Modality Recall@1/5/10 max F1 AP

NetVLAD [2] C 65.8/75.4/77.1 0.86 0.93
vDiSCO [1] C 70.2/76.6/80.4 0.89 0.94
BEVFusion [21] C 69.9/76.4/80.1 0.88 0.94

AutoPlace [7] R 75.7/82.0/83.5 0.94 0.96
BEVFusion [21] R 71.6/77.4/79.7 0.88 0.93

BEVFusion [21] C+R 83.8/87.3/87.9 0.93 0.96
CRPlace (ours) C+R 85.6/88.6/89.1 0.95 0.96

F. Comparison in Rain Conditions

To verify the robustness of our method under varying
environmental conditions, we filter the rain-affected samples
from the Boston split in nuScenes dataset as the validation
set for additional evaluation. As indicated in Table IV,
visual place recognition methods demonstrate considerable
performance deterioration in these conditions. For instance,
the recall@1 of NetVLAD drops to only 65%, while vDiSCO
and BEVFusion (C) show similar diminished effectiveness,

(a) Query (b) BEVFusion (c) CRPlace

Fig. 6: Qualitative comparison between BEVFusion and our
CRPlace. (a) are queries influenced by (1) dynamic objects
(first row) and (2) dynamic objects + rain conditions (second
row). (b) is an incorrect retrieval using BEVFusion, and (c)
is a correct retrieval using CRPlace.

each achieving around a 70% recall@1 rate. In contrast,
radar-based methods and camera-radar fusion-based methods
maintain relatively strong performance. Notably, the efficacy
of radar-based approaches has now surpassed that of purely
visual methods in rainy conditions. Our methodology stands
out in this challenging environment, showcasing an improve-
ment in recall@1 ranging between 2.1% to 30.1% compared
to other methods. This demonstrates its considerable poten-
tial for reliable performance in rain-impacted scenarios.

V. CONCLUSION

In this paper, we introduce CRPlace, a background-
attentive bidirectional fusion method that fuses the com-
plementary camera and radar data for improving place
recognition. Unlike existing camera-radar fusion schemes
that focus on dynamic features in 3D object detection, we
leverage the dynamic properties of radar points to adaptively
discern which features belong to the stationary background.
Subsequently, a bidirectional cross-attention mechanism is
employed to interactively fuse background features from
both the camera and radar. With our background-attentive
bidirectional fusion method, CRPlace outperforms earlier
schemes for place recognition on nuScenes dataset.
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