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 

Abstract—Bin picking systems in factory automation usually 
face robustness issues caused by sparse and noisy 3D data of 
metallic objects. Utilizing multiple views, especially with a one-
shot 3D sensor and “sensor on hand” configuration is getting 
more popularity due to its effectiveness, flexibility, and low 
cost. While moving the 3D sensor to acquire multiple views for 
3D fusion, joint optimization, or active vision suffers from low-
speed issues. That is because sensing is taken as a decoupled 
module from motion tasks and is not intentionally designed for 
a bin picking system. To address the problems, we designed a 
bin picking system, which tightly couples a multi-view, active 
vision scheme with motion tasks in a “sensor on hand” 
configuration. It not only speeds up the system by parallelizing 
the high-speed sensing scheme to the robot place action but also 
decides the next sensing path to maintain the continuity of the 
whole picking process. Unlike others focusing only on sensing 
evaluation, we also evaluated our design by picking 
experiments on 5 different types of objects without human 
intervention. Our experiments show the whole sensing scheme 
can be finished within 1.682 seconds (maximum) on CPU and 
the average picking complete rate is over 97.75%. Due to the 
parallelization with robot motion, the sensing scheme accounts 
for only 0.635 seconds in takt time on average. 

I. INTRODUCTION 

Bin-picking has been under study both in academia and 
industry for a long history due to the huge demand for factory 
automation. Typical and mainstream bin picking systems in 
factory automation usually utilize 3D sensors as input devices 
because massive target objects come without texture and 
most vision controllers are not equipped with GPUs for deep 
learning on RGB images. Unfortunately, piled metallic 
objects with a specular surface may cause severe reflection 
and inter-reflection issues to 3D sensors, which leads to very 
sparse, noisy, and incomplete 3D data, thus failing 6D pose 
estimation and the whole picking system afterward. 
Nevertheless, lots of recent work for picking tries to solve the 
problem by focusing on 6D pose estimation [1][2][3] instead 
of input data. Several recent papers [4][5][6-8] are showing 
the remaining challenges. Since the pose estimation 
algorithms using 3D data are heavily affected by input data, 
also stated in [7], we do believe that improving sensing 
quality is more effective for a robust bin picking system.  

Towards this direction, compared with the single-view 
approach (usually with a multi-shot, phase-shifting 3D sensor 
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[9] fixed on top), multi-view approaches (especially with a 
one-shot, active stereo camera [10] in a “sensor on hand” 
configuration) are getting more popularity due to its 
effectiveness [12-19], flexibility and low cost. Despite the 
advantages, the multi-view “sensor on hand” bin picking 
systems [12-19] are still suffering from low-speed issues. 
That explains why this kind of system is usually seen in labs. 
In this paper, we try to address this problem, so that low-cost 
(with a one-shot 3D sensor), multi-view bin picking systems 
can also be deployed for time-critical applications in factory 
automation where takt time is highly appreciated.  

As is shown in Fig. 1, except for the cost-down from the 
multi-shot 3D sensor to the single-shot 3D sensor, the “sensor 
on hand” systems can also capture images from flexible 
views with robot motion. Furthermore, they can also deal 
with multiple bins without requiring multiple fixed 3D 
sensors. With this flexibility, “sensor on hand” systems can 
enhance sensing quality through volume-based 3D fusion 
[11-12] or conduct joint optimization [13-17] with multiple 
views, while fixed systems have no observation from another 
view to correct errors. As a tradeoff, conventional “sensor on 
hand” systems move and stop robots, to acquire multiple 
views passively [11-12] or from predefined locations [13] 
with redundancy. More complicated ones utilize active 
vision/sensing path planning to decide the “next best view” 
based on complex models [8] or virtual rendering [18] in an 
online manner. These facts show conventional systems just 
naively apply multi-view sensing to picking systems as a 
decoupled component from robot motion, ignoring the takt 
time requirement from various aspects: <1>All these systems 
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Fig. 1.  Typical bin picking systems versus ours. Left: the system comes
with an expensive multi-shot 3D sensor fixed on top, leaving the sensing 
error as it is due to no observations from other views; Middle: the system 
comes with a cheaper one-shot 3D sensor on robot arm, enabling multi-
view sensings (optimization) with multiple stops when approaching 
objects. Right: our system comes with the same sensor as in the middle, 
but sensing multiple views (optimization) with robot in motion when 
leaving objects. Unlike the system in the middle, our sensing is parallel to
robot place action and plan continuous sensing path for the next cycle. 
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follow the serial task order of sensing (approaching target 
objects), processing, and grasping. It means sensing and 
processing costs extra time in a picking cycle; <2>The 
processing such as conventional 3D fusion algorithms [11] 
involves time-consuming processes such as sensor pose 
tracking, and volume-based 3D data refining; <3> For perfect 
hand-eye synchronization, the robot stops to acquire robot 
kinematics when sensing from each view. The purpose is to 
transfer 3D data between sensor and robot coordinate systems 
for robot picking; <4>To decide the “next best view” costs 
extra processing time, which even deteriorates the waiting 
time among robot stops; <5> These active vision strategies 
are designed to improve sensing quality for grasping in the 
current cycle. They do not guide the robot to observe a 
suitable area for the next picking cycle, where recognizable 
target objects may exist. Therefore, the picking process may 
be discontinued, which is another reason for the low speed. 
Besides, these sensing paths do not cater to short motion 
paths as a picking system. To summarize, the mentioned 
problems are because existing works do not make sensing 
and motion fully benefit each other as a tightly coupled 
system. The sensing is not intentionally designed for bin 
picking systems, whose purpose is to empty the bin at a high 
speed, instead of perfect sensing results. 

As shown in Fig.1 and Fig. 2, targeting a multi-view bin 
picking system with a one-shot active stereo camera and a 
“sensor on hand” configuration, we solve these issues with a 
“tightly coupled” solution enabled by an active vision 
scheme. The solution includes the following components: 

 Firstly, unlike any existing multi-view, “sensor on 
hand” systems, we reorganize the workflow and 
parallelize the whole sensing scheme to robot 
motion (part of place action in “pick and place”) 
without any stops. Our assumption is if the sensing 
scheme can be finished within the process of place 
action without any extra cost, the sensing scheme 
accounts for zero in takt time. Therefore, only 
reorganizing and parallelization are not enough. 

 Secondly, to remove the necessity of multiple stops in 
multi-view sensing, we designed a unique and high-
speed 3D fusion mechanism that can operate 
efficiently on CPU. We enable continuous multi-
view sensing under imperfect hand-eye 
synchronization (robot in motion) without affecting 
accurate 3D fusion results in the robot coordinate 
system. The customized 3D fusion algorithm further 
speeds up by utilizing robot kinematics for sensor 
pose tracking as [12] and conducting lightweight 
data refining on a single depth image instead of a 
volume-based space.  

 Thirdly, to avoid the discontinuity of the picking 
process, we apply a unique and lightweight active 
vision strategy to dynamically decide the next 
sensing path (instead of independent “next best 
view” at each stop) for continuous sensing. It 
guarantees the moving camera faces the central area 
where target objects potentially exist. Our path 
planning not only improves sensing quality, 
guarantees the continuity of the whole picking 
process but also balances the short motion path.  

To our best knowledge, this is the first try to build a high-
speed, active vision bin picking system for factory 
automation. The systematic solution differs from any existing 
ones and is considered as our biggest contribution in this 
paper. The sensing components in both data collection and 
processing are also our contributions, except for the sensor 
pose tracking [12]. Without loss of generality, it can be 
customized and applied to a wide scope of pose estimation 
algorithms and multi-view systems for a dramatic speed-up. 
Our experiments show the whole sensing scheme which only 
requires 3 or 4 views can be finished within 1.682 seconds 
(maximum) on CPU and the average picking complete rate is 
over 97.75%. Due to the parallelization with robot motion, 
the sensing scheme accounts for only 0.635 seconds in takt 
time on average, including the extra motion distance (extra 
cost) for active sensing. 

II. RELATED WORK  

A. 3D fusion via multiple views 

The 3D fusion technique is mainly for SLAM 
(Simultaneous Localization and Mapping) with a hand-held 
depth camera. A popular 3D fusion work is from [11], which 
utilizes vision features to track camera pose in frames and 
keep a volumetric representation to store and optimize multi-
view 3D data. [12] borrows this idea for a picking system. It 
acquires camera pose directly via robot kinematics for fast 
speed and higher robustness, but it requires multiple stops for 
simple hand-eye synchronization. [7] focuses on improving 
volumetric integration in a probabilistic way by estimating 
uncertainty maps in a bin picking scenario. Unfortunately, it 
assumes multiple views come with known camera poses. 

B. Joint optimization via multiple views 

      [13] applies object segmentation on 2D images captured 
from 15-18 predefined views, then filters the segmentation 
masks and projects them to 3D space. The fused 3D points 
are aligned to pre-scanned 3D models for estimating the 6D 
pose. [14] makes pose proposals from every single view and 
keeps those accumulated proposals for future joint 

Fig. 2. The workflow and components of our system. The sensing 
scheme is divided into 2 phases: data collection phase, with robot 
following sensing path (red); data processing phase, with robot following 
dorpping path (blue). The system starts with leaving the bin instead of 
approaching as conventional ones. Parallel to this place action, the 
system conducts contionus multi-view sensing, 3D data generation from 
different views, customized 3D fusion, 6D pose/grasping estimiation and 
path planning. Path planning is for grasping(green), next sensing(red)
and next dropping(blue). Our core components are in dark orange, and
those in light orange are based on existing approaches. 
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optimization by collision-based pose refinement. [15] 
estimates the poses of different objects from every single 
view and then match these object candidates across views by 
“two-view candidate pair selection”. [16] extracts image 
features from multiple RGB images and performs a 3D point 
cloud fusion at the same time, then feeds to pose estimation. 
[17] acquires rotation measurements from different 
viewpoints and optimizes the rotation estimation with a 
mixture distribution. These approaches usually require 
multiple views and require multiple stops. Besides, they lack 
a policy to guide the sensor to the next view. 

C. Active vision / Sensing path planning 

In addition to accumulating pose proposals and clustering 
hypotheses from different views for joint optimization, [18] 
and [19] also use the active vision approach to decide 
entropy-based “next best view”. The purpose is to maximize 
the sensing information from “selected” views to deal with 
occlusion and clutter in bin picking. [18] and [19] differ in 
how to predict the “next best view”. [18] is based on virtual 
rendering and [19] is based on the pose-leaf mapping table 
built with random forest. [8] digs more into information loss 
related to surface normal, photometric response, and 
reflective model of reflective objects. In addition to the 
demand for multiple stops, these approaches further 
deteriorate the takt time among robot stops due to 
complicated active vision policies. Besides, these policies 
target sensing quality instead of picking continuity.  

III. OUR SOLUTIONS 

A.  General idea 

As is shown in Fig. 2, under the scope of multi-view, 
“sensor on hand” picking systems, our solution is based on 
the unique idea of re-organizing the workflow and 
parallelizing the whole sensing scheme to robot motion (part 
of the place action in “pick and place”) without stops. It also 
requires 3 core components:  

1) High-speed 3D fusion mechanism, which involves 
continuous multi-view sensing and customized 3D 
fusion.  

2) Active vision/sensing path planning. 

3) Parameter (e.g. view number, robot speed etc.) 
determination for active vision.  

The first is to remove the necessity of multiple stops in 
multi-view sensing even under imperfect hand-eye 
synchronization (robot in motion) and speed up 3D fusion 
processing. The second is to maintain the continuity of the 
whole picking process.  

The whole sensing scheme, with a one-shot active stereo 
camera, is tightly coupled with robot motion. As is shown in 
Fig. 2, it is further divided into two phases and related tasks 
in each. Unlike conventional systems, our picking cycle starts 
with the robot arm leaving the picking bin instead of 
approaching it. 

1) Data collection phase (including continuous multi-
view sensing etc.), with the robot following the 
sensing path required by active vision. 

2) Data processing phase (including 3D generation from 
stereo images [20], customized 3D fusion, 6D 
pose/grasping estimation [21], active vision/sensing 
path planning, etc.), with robot following the 
dropping path. 

     We will first introduce how the whole system works with 
these components and the logic behind the design. Then, we 
will explain our 3 core components in detail. Components 
based on existing algorithms [20][21] are skipped. 

In data collection phase: the robot arm moves by 
following the sensing path (the former part of the place 
action) calculated from the last cycle (the path can be 
predefined at the first cycle); The sensor on hand captures n 
pairs of 2D images at time interval t. When each pair of 
images is captured, robot kinematics is also acquired by 
calling robot SDK, without perfect hand-eye synchronization 
(due to robot motion). The n pairs of images are not 
processed to depth images or 3D points in this phase.  

One of the purposes of this design is to guarantee the 
system finishes data collecting within the shortest time and 
the shortest sensing path. Then, the dropping path (the latter 
part of place action) can purely cater to the shortest motion 
path. The sensing path also balances with the short motion 
which will be explained later. Another purpose is to 
guarantee the system observes target objects from very close 
views. This is based on our observations and assumptions but 
also proved by our experiments. 3D error data of metallic 
objects are mainly because of direct light reflections or inter-
reflections of illumination, so slightly different views see 
dramatic changes in error data (directions of light 
reflections). This indicates that 3D fusion with close views is 
effective in removing errors and filling “missing holes” with 
a voting mechanism. It is also a reason why our multi-view 
sensing can speed up without “seeing” around that much.  

    In data processing phase: the robot arm keeps moving by 
following the dropping path (the latter part of place action) 
calculated from the last cycle; In this phase, the system 
finishes all processing without observation requirement to 
robot motion, so the dropping path is purely based on the 
shortest path. Firstly, n depth images from different views 
are generated from the n pairs of 2D images. Secondly, a 
customized 3D fusion algorithm fuses these depth images 
from different views into a single depth image as the target 
view (e.g. the first view). Thirdly, the 3D fusion result is 
further fed into a lightweight 6D pose estimation algorithm 
[21] for fast speed, which optionally takes a depth image as 
input and only requires CPU. The template-based 6D pose 
estimation algorithm [21] is suitable since only the piled 
objects on top are prioritized for recognition in each cycle. 
After 6D pose estimation, the grasping points are 
immediately determined since we register the grasping 
points on CAD models in advance. Fourthly, based on 
recognized objects in 6D pose estimation and sensor-robot 
coordinate system transformation, the system decides the 
grasping path (for the current cycle), sensing path (for the 
next cycle), and dropping path (for the next cycle) in the 
robot coordinate system. Among these paths, the sensing 
path is considered as our active vision strategy, while the 



  

grasping path and dropping path are simply based on the 
shortest path. 

B. High-speed 3D fusion mechanism 

        There are 3 bottlenecks for achieving a high-speed 3D 
fusion in robot vision: <1> sensor pose tracking; <2> 
sensing with robot stops due to imperfect hand-eye 
synchronization; <3> volume-based data refining. We will 
discuss each of them and its corresponding counterplan. 
Except the first counterplan, the second and the third are all 
based on our own ideas. 

1) Sensor poses tracking with robot kinematics  
    Sensor pose tracking in conventional 3D fusion is based 
on vision features [11]. It is computationally heavy and may 
fail in a textureless environment. This can be solved by 
utilizing robot kinematics, just as in [12]. The sensor pose 
can be directly acquired through robot pose (end effector 
pose by calling robot SDK) and hand-eye calibration result.  

2) Continuous sensing without robot stops 
Unlike other systems, we remove the necessity for multiple 

stops when the sensor captures multiple images along with 
robot motion. We realize that 3D fusion and sensor-robot 
coordinate transformation are two different things, which 
were mixed by other existing works [12][13][14].  

3D fusion is to get the “shape” of an object in a reference 
coordinate system, which corresponds to a specific sensor 
pose. Comparative rotation and translation between different 
camera poses are allowed to have slight errors (e.g. due to 
imperfect hand-eye synchronization) because fusion usually 
applies ICP (Iterative Closest Point) [22] for refinement at 
last. Sensor-robot coordinate transformation is to convert the 
fused “shape” from the reference coordinate system to the 
robot coordinate system. If the first sensor pose is acquired 
when the sensor is just about to move (perfect hand-eye 
synchronization), we can take this camera coordinate system 
(e.g. the first sensor pose) as the referenced coordinate 
system. It is used for fused “shape” and as the bridge for 
further sensor-robot coordinate system transformation. Fig. 3 

explains the method in detail.  

In most picking systems, after the gripper grasps an object 
in the bin, there is an action to “pull up” the object out of the 
bin for obstacle clearance and then quickly place it in another 
location. At the end of the “pull-up” action, the robot stops 
very shortly. We set this moment to capture the first view in 
our multi-view capturing process, and the corresponding 
sensor pose is considered as the reference coordinate system. 

3) 3D Fusion on a single depth image 
3D fusion with conventional volumetric representation, 

such as TSDF (Truncated Signed Distance function) [11] or 
octree-based approach [14], requires huge memory and 
causes heavy computational costs to store and refine data. 
Since we do not need to keep all data for mapping or 
rendering, we fuse all depth images from different views into 
a single depth image of the target view. As is seen in Fig. 4, 
pixels in each depth image can be converted to 3D points and 
then projected to the target view. Each pixel coordinate in the 
target depth image serves as an index to receive multiple 
depth candidates. Finally, each pixel can be refined with 
voting, as shown in a pseudo program of algorithm 1. 

Algorithm 1: To fuse depths from other views into a single 
depth of the target view  
Input: depth_1... n, sensor_pose_1…n 
Output: depth_11  

1.   [depth_11…depth_1n] = Project [depth_1…depth_n, 

                               sensor_pose_1…sensor_pose_n, ICP]   

2.   For each pixel (x,y) in each [depth_11…depth_1n] 

3.        distance = Compare (pixel(x,y), candidates(x,y)) 

4.        If distance < threshold δ (2*sensor accuracy) 

5.             Average (candidate(x,y), pixel(x,y))  

6.             Increase_vote(candidates(x,y))  

7.         Else 

8.              Insert (pixel(x,y), candidates(x,y)) 
9.    For each (x,y) in depth_11 
10.      depth_11(x,y) = FindMaxVotes (candidates(x,y)) 

11.  Return (depth_11) 

Fig. 3.  3D fusion/Transformation with imperfect hand-eye 
synchronization data. The system captures n views (paired images for 
depth images, 3D data) and n robot kinematics with robot in motion.
Depth images from view n to view 2 are fused to depth 1 of view 1 based 
on inaccurate sensor poses, but followed by ICP. Sensor pose 1/view 1
where the perfect hand-eye synchronization exists, is also used as the 
reference coordinate system to transform the 3D fusion result from sensor 
to robot coordinate system.  
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Fig. 4. Our customized 3d fusion on a single depth image for fast speed. 
Depth images from view 2…view n with their corresponding 3D point sets
and senor poses are reprojected to view 1 as target view. The pixel 
coordinate in target view can be used as the index receiving candidates and 
voting. The 3D points in orange and blue are in close distance (less than 
2*sensor accuracy) and their averaged value is considered as voted result.  
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C. Active vision / Sensing path planning 

1) The definition of sensing path 
     As shown in Fig. 5, we need to determine two sensor 
poses, the starting pose and the ending pose, for a sensing 
path. The sensor always faces the target objects and captures 
multiple images in between. For either starting or ending 
pose, we need to determine two properties: 

 Target center (Where to look at, “star” in Fig. 5 
represents its center). The two poses share the same 
center of the target area. The interpolated path 
between these two poses (a common function inside 
robot SDK) helps to guarantee that the sensor at 
different poses in between still faces the target area. 

 Location (From where to look at the target). The 
distance between the location and the target center 
should be within the sensor working distance. 

Angle β is a parameter called “coverage angle”. It 
guarantees the robot to finish capturing the expected number 
of images by going through the sensing path. 

2) Determine a sensing path for the next cycle 
To decide the target center, we use an “object-oriented” 

strategy.  An example is given in Fig. 6, the left image shows 
the sensing and recognition result in the current cycle. There 
are four objects recognized in green and orange and the one 
in green is selected to be grasped. The target center is set to 
the weighted gravity center of the recognized objects which 
will remain in the next cycle, and calculated by: 

 
1

1

*
Target center

n

k kk
n

kk

Confidence X

Confidence








＝            (1) 

where n is the number of recognized objects (except the one 
to be grasped), Xk, and Confidencek are the position and 6D 
pose estimation confidence of the object k respectively. The 
percentage, representing the confidence in each recognized 
object, is directly from the pose estimation approach [21]. 
With this active vision, the system dynamically shifts its 
sensing orientation to the weighted area where objects with 
proven recognition success in the last cycle may potentially 
exist. It effectively maintains the continuity of the whole 

picking process as shown by our experiments. 

To decide the sensor locations, we search for two points 
M (starting pose location) and N (ending pose location) on 
the intersection between a 3D sphere S (Guarantee all points 
in the best sensor working distance to the target area) and a 
3D plane P (Limit the sensing path inside it to shorten the 
motion path), as shown in Fig. 7. M and N with the target 
center T comprise the coverage angle β. 

 3D sphere S: Centered at point T, the center of the 
target area; the radius is the best working distance of 
the 3D sensor. 

 3D plane P: The target object is to be picked from 
point A and to be lifted out of the box vertically to 
point B. Point B is vertically above the bin at a 
certain fixed distance (e.g., 10cm). After that, the 
robot moves from B to C (the dropping point), going 
through the sensing path MN and the dropping path 
NC. A, B, and C decide the 3D plane P. 

     Angle γ is a predefined constant parameter (e.g. 5 degrees) 
to help the sensing path get tilted to the dropping point, to 
shorten the motion path. The pseudo program of algorithm 2 
shows the process of finding the locations of the two poses.  

Fig. 6. The method to decide target center for sensing path in next cycle. 
Left: the current sensing and recognition results (the object in green is to 
be grasped, the objects in orange will remain.) Right: the weighted gravity 
center of the remaining objects in orange is set to be the target center. Our
active vision strategy guides the sensor to observe the area where objects
are likely recognizable and potentially exist for next sensing. 

Current sensing result Target area (next cycle)

Objects recognized Objects to be grasped

Fig 7.  The geometry and the method of determining locations of starting 
pose and ending pose. Two locaions M and N are searched on the
intersection (Arc L) of the sphere S (centered at target center with the 
radius of best sensor working distance) and plane P (decided by grasping 
object A, its lift-up B and dropping location C). The “coverage angel” β is 
to make sure the expected number of views are captured in between. Angle 
γ is set to 5 degrees as a constant. 
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Fig. 5. The definition of our sensing path. It includes two poses, starting
pose and ending pose. Each pose includes its target center and location
(within sensor working distance). The two poses share the same target 
center so that interpolated poses in between along with the sensing path
also face the target center (“star”). Angel β is a parameter to make sure 
the expected number of views are captured within the sensing path. 
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Algorithm 2: To find the locations of starting pose and 
ending poses for a sensing path  
Input: 3D sphere S, 3D plane P, Point A, B,  
Output: Point M, N 

1.   Arc L = Intersect (S, P) 

2.   Line A’B = Rotate (Line AB, by B, angle γ, within P)  

3.   Point M = Intersect (A’B, L) 

4.   Line M’T = Rotate (Line MT, by T, angle β, within P) 

5.   Point N = Intersect (M’T, L) 

6.   Return M, N 

D.  Active vision parameters (e.g., view number…) 

1) Definition of sensing path parameters 
As seen in the right of Fig. 8, within the sensing path we 

assume that the robot moves at a constant speed v and n 
images are captured at time interval t. A more natural way to 
understand it is from the left of Fig. 8, the arc (sensing path) 
degree angle β and the interval angle α that averagely divides 
this arc into n-1 parts. Angle β is called the “coverage angle”. 
The two sets of parameters are interchangeable. We assume 
the same type of randomly piled objects exhibit similarities 
on the subsurface, so the same parameters are applied.  

2) Determining sensing path parameters 
The parameters are determined through an offline process 

and are set only once for each type of object. It takes less 
than 15 minutes since we can remove redundant data 
collection and process data in parallel. Motivated by a high-
speed sensing scheme, we aim to find the optimal parameters 
that achieve the minimum view number, the fastest robot 
moving speed, and the highest number (ideal) of recognized 
objects. We first determine robot speed v, time interval t, and 
the number of views n with the experiments, then change 
them to angle α and β for further use. Due to symmetry, we 
move the sensor randomly on a 1/8 sphere surface (center: a 
certain location of piled objects, radius: sensor best working 
distance) and keep it facing the sphere center. During the 
movement, the sensor keeps capturing images (50 in total) 
with different v and t (discrete values: v<=80% every 10%, 
t<=80ms every 10ms). Actually, t is fixed to 10ms since its 
data can propagate to 20…80 ms. This process is repeated 10 
times with random paths. The data will be processed with 
different n (limited to 10) images/views till 6D pose 
estimation. We take the number of recognized objects as a 
criterion for evaluation. The steps to decide parameters are as 

follows: <1>Assume the numbers of recognized objects 
follow a Gaussian distribution. Filter the data with the range 
from σ to 2σ to avoid noise. <2>Filter the rest of the data with 
the most frequent value of n. <3> Find the highest value of v 
from the rest. Speed is represented as a percentage in our test 
robot. We roughly proportionate 100% to 1 meter/second. 

IV. EXPERIMENTS  

A. Hardware configuration 

In our experiment, as you can see in Fig. 9, we attach a 
one-shot active stereo camera (view area: 75cm*50cm @ 
best working distance 30cm), similar as Intel Realsense D435 
or Ensenso N30 (single-shot mode), to an OMRON Adept 
robot arm S650. The projector of the 3D sensor is customized 
to keep illumination always on when the 3D sensor 
continuously captures multiple images in a short time. Due to 
strong active illumination, the exposure time for all target 
objects is set to 3 ms to avoid blur. The sensor is connected to 
a PC (Intel® Core™ i5-7440EQ, 8 GB DDR4) without GPU 
for all vision processing, which simulates a typical vision 
controller. A program running on a robot motion controller 
can acquire robot kinematics and set an I/O to trigger our 3D 
sensor for capturing images (built-in memory). For picking, a 
two-finger gripper and a vacuum gripper are used for 
different types of target objects.  

B. Target objects 

     Fig. 10 shows the target objects with sizes. They all have 

Fig. 8.  The description of sensing path parameters. Two ways (left and 
right) to define parameters, but interchangeable. Left: the parameters are 
defined as angle α and β. β is called coverage angel to guarantee sensor 
capture n views with interval α along the sensing path. Right: the robot
moves at a constant speed v and n images are captured at time interval t. 
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Fig. 9.  The hardware of our bin picking system. The picking system
comes with a customized one-shot active stereo camera (view area
75cm*50cm @ 30cm) on the top of a robot arm (OMRON Adept S650). 
Two-finger gripper and vacuum gripper are used for different types of 
shiny objects randomly piled in a box (50cm*25cm). 

One-shot active 
stereo camera

OMRON 
Adept robot arm 

S650
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Shiny Objects 
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Fig 10 . Top: the 5 different target objects with shiny surfaces and 
different shapes. Bottom: 20 piled target objects in each box (50cm*25cm)
for picking experiments. 



  

high reflectance rates but differ in shape to cover diversity. 
For each type of object, we pick 20 objects within a box 
whose size is around 50cm*25cm. 

C. Time of the whole sensing scheme  

     Table I shows the way to calculate the time for the whole 
sensing scheme. n is the number of views and t is the time 
interval for image capture. The total time can be calculated 
by: 

Total time = 343n+t*(n-1) + 220  ms                     (2) 

where the max in our picking test (n=4, t=30) is 1682 ms. 

TABLE I.  TIME ESTIMATION OF THE WHOLE SENSING SCHEME 

Paired 2D 
images 

Kinematics 3D  Estimation 
Path 

planning 

1. Exposure 
2. Transfer 
3. Interval  

Aquirement 
and transfer 

1. Each view 
2. 3D fusion 

6D pose and 
grasp 

Sensing, 
dropping, 
and grasping 

3n+90n+t*(n-1) 20n 150n+80n 200 20 

Total:  343n+t*(n-1) + 220     /     Total max (n=4, t=30):  = 1682 ms 
(n: view number, t: time interval, unit: milliseconds) 

D.  Experiments 

We focus on three indicators: Sensing results (between 
two baselines A, B, and ours); Sensing time in takt time 
(between typical “sensor on hand” systems and ours); Picking 
complete rate of our picking test (5-type objects). 

1) A (Single view + active vision) versus ours (multi- 
view + active vision) 

      As in Fig. 11, this experiment (target objects: small 
screw) shows that the sensing and recognition result (in 
green) using a single view (in the left collum) compared 
with that using multiple views (in the right column, 4 views). 
With a smaller number of objects, the single view sensing is 
more prone to totally failed recognition, which may 
discontinue the picking process frequently. In this case, if 7 
out of 20 objects are left, the picking complete rate is 65%. 

2) B (Random sensing + multi-view) versus ours (active 
vision + multi-view) 

     As in Fig. 12, this experiment (target objects: the first 

row, mirror nut / the second row, small screws) shows that 
the sensing and recognition result (in green) using random 
sensing (in the left collum) compared with that using active 
vision (in the right column). Our active vision always makes 
the sensor face the central area where objects with proven 
recognition success in the last cycle exist, for better sensing 
results. For the case in the first row, where 9 out of 20 
objects are left, the picking complete rate is only 45%. 

3) Sensing time cost in takt time (Conventional “sensor 
on hand” systems versus ours) 

     Table II shows the estimated sensing time of several 
multi-view “sensor on hand” picking systems [6-
8][12][14][16] from their papers or videos. Unfortunately, 
[6-8][16] assume multiple views with known camera poses 
already exist even most of them target picking applications. 
If the sensing is for multiple objects pickings, averaged time 
is used. None of them parallelize the sensing and processing 
with robot motion as ours. Our sensing scheme is faster than 
place action (assuming average place action > 2 seconds 
[12][14]), so it can be finished in parallel. It accounts for 
only 0.635 (instead of 1.682) seconds in takt time on average 
in our picking tests, including the extra motion distance for 
active sensing (Difference between trajectory B-M-N-C and 
B-C in Fig.7). Even sensing costs 1 second in takt time, 
(assuming grasp and place costs 4 seconds.), 10 hours can 
lead to 1800 picking cycles difference. 

TABLE II.  SENSING TIME COST IN TAKT TIME 

Robot 
Fusion 

[12] 

More 
Fusion 

[14] 

MV6D,  
ROBI-related  

[16], [6-8] 
Ours* 

≈6.0 s ≈8.0 s Not applicable ≈0.635* s 

* Due to the parallelization with robot motion, our sensing scheme 
accounts for only 0.635 seconds in takt time on average, including the 
extra motion distance for active sensing. 

4) Picking test  
Picking test with single view or random sensing is   

skipped since either of them frequently fails the recognition 

Fig. 12.  The result of baseline B (random sensing + multi-view) versus 
ours. Objects in green represent successful 6D pose estimation. Left
column: result of B; Right column: ours. Top row (mirro_nut) and Bottom 
row (small screw) are two different types of objects. Ours always observes
the objects with proven recognition success in the last cycle and from the 
view center for better sensing results. 

Fig. 11.  The result of baseline A (single view + active vision) versus ours.
Objects in green represent successful 6D pose estimation. Left column: 
result of A; Right column: ours. Top row (small screw): more objects
case; Bottom row (small screw): less objects case. Ours always gets better
recognition results due to multi-view sensing. 



  

and the picking process, especially when half objects remain. 
We conduct 20 times picking tests for each type of target 
object directly with our approach. In each experiment, the 
robot proceeds picking experiments on 20 objects without 
any human intervention. As is shown in Table III, target 
objects only require 3~4 views. In 100 (20*5) experiments, 
all objects (20*5*20) are successfully recognized till the last 
one. Searching is rarely triggered (averagely < 1 time for the 
whole picking process) to recover the failed recognition. 
Failed picking actions are due to the interference between the 
gripper and the box. The average picking complete rates for 5 
target objects are 100%, 97.75%, 98.75%, 100%, and 100%. 
With carefully designed gripers and grasping policy (not our 
focus in this paper), the picking complete rate can be further 
improved. Fig. 13 shows an example (target object: Lan 
connector) of sequential status in different picking cycles 
within the same experiment. 

TABLE III.   PICKING TEST RESULTS 

Gripper Two-finger Vacuum 

Objects 
Small 
screw 

Lan 
connector 

Mirror 
nut 

Pencil 
coupler 

Circle 
nut 

Sensing 
Parameters 
(view number, 
interval, speed) 

4 views 
30ms 
70% 

4 views 
30ms 
80% 

3 views 
60ms 
60% 

4 views 
30ms 
80% 

4 views 
30ms 
80% 

Average 
complete rate 

100% 97.75% 98.75% 100% 100% 

Lowest 
complete rate 

100% 90% 90% 100% 100% 

Highest 
complete rate 

100% 100% 100% 100% 100% 

V. CONCLUSION 

In this paper, to fill the high-speed gap between existing 
multi-view “sensor on hand” picking systems and time-
critical industry picking applications, we designed a unique 
sensing scheme, which is tightly coupled with robot motion, 
to form a fast active vision picking system as the first try. 
There is still space to improve the sensing scheme to 
approach 1 second. Without loss of generality, our idea can 
be customized and applied to a wide scope of pose 
estimation algorithms and multi-view systems for a dramatic 
speed-up. In the future, we want to adapt the system to other 
multi-view approaches (e.g. those with multiple 2D images 
instead of 3D fusion) for generalization. 
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