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Abstract

We propose an automated method to segment cortical necrosis from brain FLAIR-MR Images.
Cortical necrosis are regions of dead brain tissue in the cortex caused by cerebrovascular disease
(CVD). The accurate segmentation of these regions is difficult as their intensity patterns are
similar to the adjoining cerebrospinal fluid (CSF). We generate a model of normal variation using
MR scans of healthy controls. The model is based on the Jacobians of warps obtained by
registering scans of normal subjects to a common coordinate system. For each patient scan a
Jacobian is obtained by warping it to the same coordinate system. Large deviations between the
model and subject-specific Jacobians are flagged as “abnormalities'. Abnormalities are segmented
as cortical necrosis if they are in the cortex and have the intensity profile of CSF. We evaluate our
method by using a set of 72 healthy subjects to model cortical variation.We use this model to
successfully detect and segment cortical necrosis in a set of 37 patients with CVD. A comparison
of the results with segmentations from two independent human experts shows that the overlap
between our approach and either of the human experts is in the range of the overlap between the
two human experts themselves.

Index Terms
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1. INTRODUCTION

The World Health Report of 2003 estimates that CVD results in 16.7 million global deaths
per year. The disease often causes premature death of brain tissue (necrosis), which is
classified based on its location as either subcortical necrosis or cortical necrosis. Many
clinical studies investigating CVD rely on manual segmentation of the necrosis obtained
from FLAIR-MRI (Fluid attenuation inversion recovery Magnetic resonance imaging) [1].
On FLAIR, subcortical necrosis are clearly visible as they are surrounded by living tissue.
However accurately outlining cortical necrosis is generally very difficult as the intensity
pattern of the pathology is similar to the adjacent CSF (See Figure 1). Due to these
difficulties, studies frequently use human experts to generate the segmentations. These
segmentations generally suffer from large inter- and intra-subject variability. Further manual
analysis is time consuming and costly. In this paper we propose a fully automatic
segmentation method for this task.

A short survey of related literature is given below. In [2] an intensity-based segmentation by
fuzzy c-means algorithm is applied and tissue probability maps are created. These maps are
compared with spatial tissue distribution maps obtained from an atlas, and the
inconsistencies between two maps are segmented as necrosis. However the authors reported
that the method was not successful in the cortical region, mainly due to the high anatomical
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variation of the cortex, which was not properly captured by the atlas. A promising approach
using brain symmetry to detect necrosis is described in [3] but finding the axis of symmetry
is not trivial. [4] suggests the use of Jacobian maps for detecting patholody. They register
follow up scans to the base line scan of the subject in order to identify multiple sclerosis
lesions.

Like [4], we use Jacobian maps to detect and segment cortical necrosis. Unlike [4] we use a
set of Jacobian maps generated by non-rigidly aligning FLAIR images of healthy subjects to
model the normal variation of the cortex. We use this ‘model’ to then detect and delineate
“abnormalities' from a subject scan. All “abnormalities' found in the cortex that fit the
intensity profile of CSF are labeled as cortical necrosis. We evaluate our method by
quantifying 1) how well it detects the presence of cortical necrosis in a large set of test
images only some of which contain cortical necrosis 2) comparing the segmentation
obtained using our method to the segmentation of cortical necrosis done by two human
experts.

2. METHODS

As stated before we detect cortical necrosis as deviations from a normal cortex. To do this,
we aim to encode the normal variation of the cortex using a database containing normal
subjects only. This is challenging because the inter-subject variability of the cortex is very
high. The method we propose to deal with cortical variability and segment cortical necrosis
is comprised of three steps: 1) Generation of Jacobian deformation maps by registering MR
scans of healthy controls to a common template; 2) Extraction of abnormal cortical regions
using the Jacobian deformation maps; 3) Accurate delineation of cortical necrosis by using
additional information from original FLAIR-MR scans. Each of these steps are described in
more detail below.

2.1. Generation of Jacobian deformation maps

Jacobian deformation maps capture the rate of change of volume at every voxel that occurs
when a subject scan is registered non-linearly to a template scan. If a subject scan contains a
cortical necrosis, then the non-linear registration attempts to register this necrosis to a
normal sulcus in the template scan. This results in an extremely large change in volume in
the regions close to such cortical necrosis. Thus, the values of the Jacobian determinants are
high in these regions.

For generating the database of normal Jacobian deformation maps we register our database
of preprocessed normal FLAIR-MR scans to a normal template using the elastic registration
method described in [5]. Henceforth we denote the Jacobians generated by this registration

process as {%D}:lzl where 7indexes the normal subjects in our database. The preprocessing
done before the registration involves skullstrip-ping with BET [6], bias correction with N3
[7] and 12-dof linear registration to template using FLIRT [8]. For a given subject scan in
which we wish to detect and segment cortical necrosis, we repeat the preprocessing and the
non-linear registration in a similar manner. We denote the Jacobian determinant obtained

from the subject scan as #t. It is important to note that both .#” and _#* are in the template
space.

2.2. Extraction of abnormal cortical regions using the Jacobian deformation maps

n
We now use {fiD},.:] and _#'to pinpoint cortical abnormalities. If the high values of
Jacobian determinants generated above were caused exclusively by the presence of cortical
necrosis, our problem would be solved at this stage. In practice this does not happen. The
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extreme variation of sulcal anatomy results in the presence of subject specific false positive
spikes in the value of the Jacobian determinant at several cortical locations. We deal with
these false positives using the framework described in the following section. The motivating
idea is that if we have a large enough set of normal subjects, such false positives will occur
in one or a few of our normal subjects. This information can then be used to eliminate such
false positives whenever they occur in subject scans. In broad terms we want to detect

n

cortical abnormalities from _#t while modeling cortical variation using {fi }i:r

However for reasons of computational efficiency we do not use the original Jacobian maps
directly. Instead we use a compressed representation of these maps. The compression is
done using wavelets. We provide next a brief description of wavelet based compression
followed by the description of the method used to model cortical variation using the wavelet
representations.

2.2.1. Feature extraction using wavelet compression—A detailed exposition of
wavelet based compression techniques is available in [9, 10]. For the purposes of this paper

it suffices to understand that any Jacobian image _# may be represented as a linear
combination of several predefined “basis images":

q
g =Zaklﬁk @)

=1

where ay are wavelet coefficients sorted in descending order, y 4 are the corresponding
wavelet basis images (functions), and g is the dimensionality of _#(the number of voxels in
the image). In practice a large proportion of the ordered set {at};_, are very close to zero.
This allows us to choose the largest p of them and write

P
jzzaﬂl’j"'% )

J=1

where Z is the residual. Since p K g, a few thousand wavelet coefficients can represent an
image containing more than a million voxels. For our experiments we have g~ 5:6 x 10°
and we use p=10000. We generate compressed wavelet representation for the Jacobian

map(#Y) corresponding to the subject scan:

The feature vector

P
represents the subject after wavelet compression. Note that the basis {‘r’/./'} j=1are selected
based on the subject data only. The exact same basis are then used to generate a compressed

n
representation of each normal Jacobian map fiDG{ffD}i:l:

P
TP AW A (5)
=
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Each row of the matrix A is a set of wavelet coefficients that represent one scan from the
database of MR scans of healthy controls. Centered feature vectors are finally calculated as:

sza—a,C=A-1"a (®)

where 3 is the mean of the rows of A. For the rest of this paper we denote the /th row of the
matrix C as ¢;.

2.2.2. Abnormality detection—Our abnormality detection algorithm is based on the
assumption that the feature vector extracted from a subject scan that does not contain any
cortical abnormality can be expressed as a convex combination of the rows of C. We denote

the collection of the vectors formed by the rows of C as {c;};_,. We seek,the point closest to s

that is inside the convex hull of {¢;}7_,. A point inside the convex hull parametrized by a is
given by:

n
cla) = Za/,-ci with a€[0,1]" (7
=1
We solve:
a*zngnls —c(@] (g

and compute c(a*) using (7). To obtain #t*, the Jacobian deformation map corresponding
to c(a*), we first compute a*

a*=c(@)+a (9

and then plug the components of a* into (3) to get:

P
/I*:Zajlﬁjh@t (10)

j=1
We define the abnormality map corresponding to the subject as:

M; iﬂ[—ft* (11)

Note that 27", contains cortical as well as subcortical abnormalities. Since in this paper we

focus on cortical abnormalities, we mask out the subcortical regions of <7/, using a
precomputed binary mask based on the template.

;2{; is now mapped back to the subject space to get S; using a precomputed deformation
field. S*,, the Jacobian abnormality map in the subject space is used for detecting and
segmenting necrosis. An example of S’ is shown in Figure 2.

2.3. Detection of cortical necrosis

In the detection task, the goal is to detect scans that contain cortical necrosis, in a given set
of subject scans. We do this by defining a cortical abnormality score based on the Jacobian
abnormality maps:
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£ 1@(S, @>0) gy

xeQ

where Q is the image domain, /() is the indicator function and S’, the value of S*, at
location x € Q. 6 is an abnormality threshold. We consider that values higher than the
threshold © may indicate necrosis. If £ = €q then the method flags the subject as containing a
cortical necrosis. In large studies the thresholds 6 and € can be determined from a small
subset of the data for which ground truth is known.

2.4. Segmentation of cortical necrosis

The Jacobian abnormality maps give us a coarse delineation of necrosis (Figure 2). In
general, they pick up large regions around the cortical necrosis of interest. For the
segmentation task, we combine the Jacobian abnormality map with an intensity-based
abnormality map, denoted by Zt. %t is obtained by the voxelwise subtraction of the mean of
the FLAIR-MR scans of healthy controls from the subject scan. Prior to subtraction, a linear
histogram matching is performed between each scan and the template. Since the necrosis
intensity profile is similar to that of CSF, the intensity difference has a high positive value in
the region of the necrosis (Figure 2). The necrosis segmentation is obtained by thresholding

the voxelwise multiplication of S*, and Z:
M =(2"-5" )21 @3

using a threshold < that can be learned from a manually segmented training dataset.

As a post-processing step, the regions that are segmented as necrosis, and that have a
volume less than 27 cubic milimeters have been removed, as this is consistent with the
clinical practice of necrosis detection.

3. RESULTS

A dataset of 72 FLAIR MRIs belonging to healthy subjects is used for modeling the normal
variation of the cortex. We applied the proposed method on a dataset of 37 FLAIR images
belonging to subjects with CVVD. We compared the results of our method to the
segmentations performed by two human experts. Both experts detected cortical necrosis on
the same 4 subjects, and created manual necrosis masks for these subjects.

3.1. Detection

As a first task, we applied our method for classifying subjects into two classes according to
whether they have cortical necrosis or not. A Leave-One-Out (LOO) cross validation
strategy is applied in order to detect the optimal parameter values © and & defined in
Section 2.3 automatically from the data. For each LOO iteration, one subject is selected as
the test image, and the remaining 36 scans and their labels are used as the training set. The
abnormality score (€) of each training subject is calculated for a set of values of 6. The &g
value that give the highest rate of correct classification is detected for each 6 value. The {6,
€} pair that obtains the highest classification accuracy is selected. The left-out subject is
classified according to the selected {6, £y} values.

We obtained a classification accuracy of 97.3 %. All 4 subjects with cortical necrosis were
classified correctly, while only 1 subject without cortical necrosis was classified as having
cortical necrosis.
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3.2. Segmentation

The segmentation method described in Section 2.4 is applied on the 4 scans for which
manual necrosis masks were provided. The automated segmentation (M) is compared to
both manual masks (Mg, Mg). Inter-rater variability is also measured by comparing Mg
with Mg,. The overlap between a pair of masks is measured by calculating the Dice score.

An LOO strategy is applied to determine the value of the parameter . At each iteration, the
scans of the remaining three subjects are used for training purposes. Dice scores between the
pairs {M, Mg}, and { M4, Mg} are calculated for these scans, for each setting of . The
value of < that maximizes the average Dice score is used for segmenting the left-out subject.

Figure 3 presents the Dice scores obtained for the 4 target scans. The resulting Dice scores
show that the variation between our approach and either of the human experts is in the same
range as variation between the human experts themselves. We observed that, on difficult
subjects, for which the segmentation by the two experts do not agree, the automated method
also had a low Dice score. Figure 4 shows the principal regions with cortical necrosis on
each target scan, and the corresponding automated and manual segmentations. From Figure
3 and Figure 4 we see that the automated segmentations are comparable to the human expert
generated segmen tations.

4. CONCLUSION

Segmentation of cortical necrosis is a difficult problem. The inter-rater agreement between
human experts may be quite low for the segmentation of cortical necrosis. Hence developing
automated methods to perform this task is very challenging. The method proposed here uses
the Jacobian determinants to encode the spatial abnormality information and attempts to
detect and segment cortical necrosis by using a model of “normality’ derived using a
database of healthy brain scans. We obtained a high detection rate, and a segmentation that
is comparable to the manual masks created by experts.
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Fig. 1.
Typical cortical necrosis as seen on FLAIR MRI.
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Fig. 2.

From left to right, the original FLAIR-MR scan, the Jacobian abnormality map S;, the
intensity-based abnormality map 2"
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Dice coefficients between human experts { Mg vs. Mg}, and between automated method

and experts {M4 vs Mg} and {Mavs Mg}
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Image

Fig. 4.
From left to right: Cortical necrosis on 4 subject scans, segmentation by the human experts,
and by the automated method.
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