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Abstract
Optical coherence tomography (OCT) of the macular cube has become an increasingly important
tool for investigating and managing retinal pathology. One important new area of investigation is
the analysis of anatomic variably across a population. Such an analysis on the retina requires the
construction of a normalized space, which is generally created through deformable registration of
each subject into a common template. Unfortunately, state-of-the-art 3D registration tools fail to
adequately spatially normalize retinal OCT images. This work proposes a new deformable
registration algorithm for OCT images using the similarity between pairs of A-mode scans. First, a
retinal OCT specific affine step is presented, which uses automated landmarks to perform global
translations and individual rescaling of all the subject’s A-mode scans. Then, a deformable
registration using regularized one-dimensional radial basis functions is applied to further align the
retinal layers. Results on 15 subjects show the improved accuracy of this approach in comparison
to state of the art methods with respect to registration for labeling. Additional results show the
ability to generate stereotaxic spaces for retinal OCT.
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1. INTRODUCTION
There has been increased interest in optical coherence tomography (OCT) in recent years, in
part because of the high resolution (typically 2.5–10µm), convenience, cost, and patient
comfort of OCT imaging. Though a more important factor in its rising popularity is the
direct correlations that can be seen from OCT measurements—i.e., retinal morphology and
layer thickness—to the clinical status of patients, such as multiple sclerosis (MS) [2].
Atlasing of macular cube OCT images can be used to understand the deviations of a subject
from the normal population. The construction of retinal stereotaxic spaces is dependent on
the ability to deformably register OCT images. However, state of the art registration
techniques, such as the symmetric inverse consistent diffeomorphic fluid based registration
method SyN [1], perform poorly on retinal OCT data (see Fig. 1). There are several potential
reasons for the failure of such registration algorithms: 1) Unlike computed tomography and
magnetic resonance imaging where voxels are acquired mostly independently, OCT images
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are acquired as a large collection of one-dimensional reflectivity profiles in the acquisition
direction (A-mode scans). Hence, voxels along these A-mode scans are highly dependent on
the voxels before it, and interference at the start of a scan (such as a blood vessel) can
dramatically change the entire A-mode scan; 2) the image slices (B-mode scans) are often
separated by large gaps making correspondences between adjacent slices less reliable and,
therefore, degrades the overall registration accuracy; 3) The field of view (FOV) is
inconsistent across subjects, giving rise to boundary issues; 4) Noise in the vitreous humour
and choroid can confound current registration techniques. Problem 2, can be partially
addressed by upsampling the image to isotropic resolution. However, this makes the data
size unmanageable, as a typical retinal OCT image would become on the order of 4GB in
size. In addition, interpolation across such large gaps are typically unreliable. Problems 3
and 4 can be addressed by masking regions of interest; however this requires some a-priori
knowledge and manual intervention.

In this work, we propose a registration algorithm that respects these limitations in OCT
images. Rather than allowing the registration to deform freely across the image, our
algorithm makes the assumption that, after a translation to align the fovea, accurate
correspondences are best found within two A-mode scans. This assumption can be partially
justified by the fact that, aside from the fovea, there are very few landmarks which can be
used to find correspondences across subjects in a macular scan. This restriction is imposed
by constraining the registration to find deformations in the direction of each A-mode scan,
simplifying the problem into a series of registrations between every pair of A-mode scans in
the subject and target images. An automated retinal boundary detection method is used to
help the translation alignment of the foveae.

2. METHODS
2.1. Overview

Our proposed registration approach is divided into two steps. First, we perform a retinal
OCT specific affine alignment (A-OCT) by translating the foveae between the two images
and then individually scaling each subject A-mode scan to match the corresponding target
A-mode scan. Then, a deformable registration (D-OCT) in the A-mode direction is used to
further align the retinal layers.

Outside of the initial fovea alignment, the registration is performed by only comparing the
similarity between pairs of A-mode scans. Hence, we index the images with the subscripts

(a,b) and (a,b), where a and b refers to the location of an A-mode scan within a B-mode
scan in the subject and target image, respectively.

2.2. Background Removal and Affine A-Mode Alignment
All images were preprocessed by first automatically removing the background above the
inner limiting membrane (ILM) and below the Bruch’s membrane (BM) boundaries. This
was performed by first filtering with a 1D Gaussian kernel having a standard deviation of 5
in the lateral direction, followed by a morphological closing operator with a vertical line
structuring element of length 5. A vertical Sobel gradient filter was applied to extract the
image gradient in the direction of each A-mode scan. The ILM is taken to be either the
largest or second largest negative gradient along each A-mode scan, depending on which
gradient is closest to the top of the image. The second largest gradient is also constrained to
be at least 25 pixels from the largest gradient. The gradient closest to the bottom of the
image is taken to be the inner segmentouter segment (ISOS) boundary. The BM is taken to
be the largest positive gradient below the ISOS. Simple outlier detection and smoothing is
then performed on the surfaces to extract their final positions.
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Once the background has been removed, the foveal centers are detected as the A-mode scans
with the thinnest portion along the retina, denoted f and f for the subject and target
respectively. We build a vector, c, that describes the perpendicular translation from f to f
and apply it to all the subject A-Mode scans. This gives us the fovea aligned subject A-mode
scans:

(1)

After the fovea alignment, for each individual pair of A-mode scans in the subject and target
image, we perform a linear scaling of the subject scan such that the top and bottom
boundaries are aligned with the target scan. This can be regarded as a landmark-based linear
rescaling at each individual A-mode scan, where we use the outer edge of the ILM and BM
layers as anatomical landmarks. If we denote the location of the ILM and BM boundaries in

each target and subject A-mode scan as , respectively, then the
rescaled subject A-mode scans can be described as:

(2)

We refer to this collection of preprocessing steps followed by affine A-mode alignment as
A-OCT. Its purpose is to approximately align the A-mode scans between the subject and
target images using linear transformations and to provide an initialization for the deformable
registration.

2.3. Deformable Registration Using A-Mode Similarity
The goal of the deformable registration step (D-OCT) is to solve for a mapping υa,b : a,b
→ a,b between each pair of subject and target A-mode scans after the A-OCT step,
where · is the respective domain of each A-scan. We restrict υa,b such that I + υ : a,b →

a,b is a one to one onto continuous map with a continuous inverse (i.e., a
homeomorphism), where I is the identity transformation. This allows the transformation to
preserve the topology of the image and prevent “folding” and “tearing” artifacts.

In our algorithm, the mapping υa,b is built as a summation of radial basis functions (RBFs),
ϕ(x), a model which has been previously used in brain registration [3]. Since our registration
is restricted to pairs of A-mode scans, this mapping is represented as a one-dimensional
deformation field,

(3)

where ci and xi determine the size and center of each RBF, respectively. For ϕ(x), we chose
the same RBF as presented in [3], which has properties such as smoothness, positive
definiteness, and compact support. Our algorithm finds υ(x) by uniformly placing RBFs
along the entire A-mode scan and then optimizing each ci such that the similarity is
maximized between the target and deformed subject A-mode scan. Sum of squared
differences between the A-mode scans is used as the similarity measure in our algorithm,
which gives us the energy function,

(4)
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Optimizing the deformation field on independent pairs of A-mode scans can lead to
discontinuities in the deformation, and potentially ignore useful neighboring information
that can be used in the optimization. To address this, we introduce a regularization term,

(5)

where R determines how many adjacent A-mode scans to use in the regularization. Note that
we do not regularize across B-mode scans, which follows our premise that the large
separation between B-mode scans provide poor correspondences for the registration.
Naturally, for data that do not suffer from this limitation, this regularization can be easily

extended to use B-mode scans as well. We combine both energy terms ,
which we then use to optimize each RBF.

3. RESULTS
3.1. OCT Data

OCT volumes were acquired using a Spectralis OCT scanner (Heidelberg Engineering,
Germany). Macular raster scans (20° × 20°) consisting of 49 B-mode scans (each separated
by 122 µm) were acquired utilizing automatic real-time (ART) to increase image quality by
averaging multiple images of the same location. Scans with ART ≥ 12 (number of scans
averaged) and with signal quality of at least 20 dB were used in this study. Each B-mode
scan has 1024 A-mode scans (separated by 5.5 µm), and each A-mode scan has 496 pixels
(with 3.8 µm resolution). Each volume was manually segmented using an internally
developed software and protocol; a list of the segmented layers is shown in Fig. 3.

3.2. Evaluation Against Manual Segmentations
Fifteen volumes with manual segmentations of eight of the retinal layers were used to
evaluate our registration approach. Two of the images were randomly chosen as atlases and
registered to the other thirteen images (26 registrations in total for each method). With the
estimated deformation field, atlas labels were transformed to each target space and the Dice
coefficient between each of the eight layers are reported. Our approach (with R = 3, chosen
empirically) was compared to each of SyN [1] (a highly ranked algorithm for brain image
registration [4]), ABA [3], and a directional constrained ABA (both available in the JIST
software package [5]). In addition, all four methods were ran from both the initial
background removed images and the images after our A-mode affine alignment (A-OCT),
see Tab. 1 for results. The subject and target images are shown in Fig. 1, as well as the
results of the SyN registration. Other registration results are shown in Fig. 2.

3.3. Average Atlas Construction
An important application of deformable registration is the ability to construct average atlases
by registering a group of subjects into a common space [6]. Fig. 4 shows such an atlas
created using our deformable registration approach. The registrations were performed
relative to a randomly selected template. Although not ideal because of atlas bias, it
demonstrates a proof of concept for the construction of retinal average atlases, which can be
used for the study of population and pathology.

4. DISCUSSION AND CONCLUSION
We have proposed a new approach for performing deformable registration of retinal OCT.
We show considerably higher accuracy when compared to existing 3D registration methods,
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when performing segmentation of the layers. In addition, we have introduced a simple and
effective approach for performing affine scaling of OCT images to initialize deformable
registration. Our results show this step dramatically improved the registration accuracy,
regardless of which algorithm it was used with (see Tab. 1).

To extend this work, we intend to address the limitations from B-mode scan separations,
such that the B-mode directions can be used in the regularization. In addition, we will
construct an unbiased average atlas of the retina using an approach similar to that presented
in [6]. Such an atlas will allow us to directly apply a number of existing computational
anatomy tools, which will allow us to look at the variability of the retinal layers between
individuals and study population differences across pathology.
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Fig. 1.
Retinal OCT images used as subject and target and the result of deformably registering them
using SyN [1].
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Fig. 2.
Example results of various registration techniques. From top to bottom, the images are: our
A-mode affine alignment A-OCT (Sec. 2.2); A-OCT followed by SyN registration [1]; ABA
[3] registration without A-OCT; ABA registration after A-OCT; and A-OCT followed by
our deformable registration D-OCT. See Fig. 1 for the subject and target images, and the
results of using SyN without A-OCT.
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Fig. 3.
List and partial examples of layers manually segmented in our fifteen subject cohort, and
their abbreviations (Abbr.).
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Fig. 4.
Average atlas constructed using our deformable registration approach.
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