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ABSTRACT
In this paper, we introduce a Variational Autoencoder (VAE)
based training approach that can compress and decompress
cancer pathology slides at a compression ratio of 1:512, which
is better than the previously reported state of the art (SOTA)
in the literature, while still maintaining accuracy in clinical
validation tasks. The compression approach was tested on
more common computer vision datasets such as CIFAR10,
and we explore which image characteristics enable this com-
pression ratio on cancer imaging data but not generic images.
We generate and visualize embeddings from the compressed
latent space and demonstrate how they are useful for clinical
interpretation of data, and how in the future such latent em-
beddings can be used to accelerate search of clinical imaging
data.

Index Terms— Histopathology cancer slides, autoen-
coder, image compression, latent space, clinical image search

1. INTRODUCTION

Histopathological images derived from cross sectional tissue
microscopy are used in the clinical setting for diagnosis of
various diseases and conditions [1]. Hemotoxylin and Eosin
(H&E) staining, which introduce a contrast dye for the dis-
cernment of nuclear and cytoplasmic structures, has long been
used to determine carcinomal regions of excised tissue from
cancer patients [2]. For this reason, databases of tumor pa-
tient slides, such as the NIH Genomic Data Commons (GDC),
have been compiled for researchers to access tens of thou-
sands of cancer patients’ histopathological data. The GDC
itself contains more than 30,000 Whole Slide Images (WSIs)
which, with each slide representing over a billion pixels each,
is stored on over 20 TB of data. Most purposes, from retrieval
to transmission, local storage, and data analysis would benefit
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Fig. 1. (a) Overview of the VAE training pipeline. (b)
Overview of the pipeline at inference. For generating UMAP
plots, a similar patch sampling as training is used.

from efficient, indexable storage structures of this WSI data
[3]. This is especially applicable to image search algorithms
for large whole slide image databases [4].

Several solutions have been proposed for the efficient stor-
age and indexing of cancer tissue image data. Classic com-
pression formulas such as JPEG2000 can successfully reduce
image size at a compression ratio of 32:1 before becoming un-
usable for histopathological classification of malignancy [5].
Compression and scaling has also been found to adversely ef-
fect tissue segmentation up to ratios of 50:1 [6]. In contrast to
discrete cosine transformation models, neural networks have
been proven to retain high efficiency and fidelity in the lossy
compression of image data [7]. While neural networks seek
to store image data in latent space representations, not ev-
ery network does this at equivalent efficiency or accuracy [8].
Several studies have demonstrated that Variational Auto En-
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Fig. 2. (a) Example of how normalization affects the per-
formance of our pipeline. Both models are trained using the
exact same hyper-parameters (latent dim = 64). (b) The
effect of batch size and latent dimension of validation loss.
For better visualization, early stopping is not used for these
experiments.

coders (VAEs) retain higher image quality and lower noise
ratios at extreme compression ratios [9, 10, 11]. Tellez et
al., [12] showed in a benchmark study that VAE compression
of medical tissue images to a latent space of 128 (>5000:1
compression ratio) retained the most details of the original
whole slide image compared to 4 other encoders. In the cur-
rent study, we develop a VAE to compress and index images
in latent space for fast complex search of whole slide H&E
cancer images.

2. METHODS

2.1. Dataset

The dataset we used for this study is publicly available at
the NCI GDC data portal (Sec. 5). These are real sam-
ples from cancer patients in the US, and all samples contain
cancerous cells. For this study, We downloaded 20% of the
available .svs samples for primary sites: ”Brain”, ”Breast”,
”Bronchus and Lung”, and ”Colon” (647, 551, 580, and 267
images, respectively).

2.2. Latent Variables and VAE

For an observation x(i), its latent vector of variables is as-
sumed to be an unobserved random variable z(i) sampled
from a lower dimension space (latent space) that is involved
in producing xi in a random process [13]. For a particular
task, it is assumed that using latent variables removes non-
informative dimensionality and is suitable for downstream
machine learning tasks. Since the latent space is unobserved,
latent variables should be somehow inferred. Autoencoders
and Variational Auto Encoders are two very effective meth-
ods for inferring these latent variables and encoding very
high-dimensional data into highly compressed latent space
with minimal loss of information. VAEs, as opposed to reg-
ular Auto Encoders, try to find a distribution for each latent

variable, rather than single point estimate, resulting in a reg-
ularized latent space with generative capability.

VAEs are comprised of two parts: an encoder and a de-
coder (Fig.1-a). If the latent variable z(i) and data point x(i)

are sampled from parametric probability distributions pθ(z)
and pθ(x|z) for some parameter θ, then the encoder will
try to estimate the approximate posterior qφ(z|x) with vari-
ational parameter φ. The decoder tries to find the likelihood
pθ(x|z). The model can be trained by minimizing the loss in-
troduced in Eq.1 over all observations ([13]). The first term of
the loss is called the Kullback–Leibler (KL) divergence term,
which is introduced to ensure that the variational approxima-
tion is as informative as the generative true posterior. The
second term is reconstruction loss, which makes sure the gen-
erated output from the learned latent distribution is close to
the original input. In our experiments, we used a weighted
loss with a KL term coefficient of 0.1.

L
(
θ,φ;x(i)

)
=−DKL

(
qφ

(
z|x(i)||pθ (z)

))
+ Eqφ(z|x(i))

[
log pθ

(
x(i)|z

)] (1)

2.3. Training and Inference Pipelines

As illustrated in Fig.1, we use two pipelines for training and
inference. For the training phase (Fig.1-a), a selected num-
ber of patches from whole slide images (WSIs) in the training
and validation set are randomly sampled. A white space fil-
ter is utilized to ensure that these patches are not blank, and
that they do not overlap. The mean and standard deviation of
all patches sampled from the training set is calculated and all
patches are normalized using the standard score method with
these values (not shown in Fig.1). The inverse transforma-
tions are also stored to be applied to the outputs of the model.

Our model assumes a Gaussian prior and a Gaussian ap-
proximate posterior. The encoder learns the parameters of
the Gaussian prior and the decoder uses a re-parameterized
sample from this prior and tries to reconstruct the input. Both
encoder and decoder use ResNet18 ([14]) architectures. A
ResNet50 archiecture (not-shown) provides similar perfor-
mance; ResNet18 was selected to keep the number of model
parameters as small as possible for future downstream de-
ployment in the clinic.

During inference (Fig.1-b), to perform a a compres-
sion/decompression task, the test image is fully tiled. Each
patch is then fed into the trained networks and stitched to-
gether once all patches are reconstructed. However, for the
UMAP experiment, the same patch sampling algorithm used
for training is used to generate random patches to be fed to the
model. For the reconstruction task, we want a whole image,
but for the UMAP plot, sample latent variables are enough.
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Fig. 3. Effect of dataset entropy and color content on perofor-
mance. All hyper-parameters are the same for all 5 models.

2.4. Dimension Reduction and UMAP

Uniform Manifold Approximation and Projection ([15]) is a
manifold based dimensionality reduction algorithm used for
visualizing and clustering high dimensional datasets. This al-
gorithm tries to reduce the points in a manner that the distance
between resulting points would be still meaningful. UMAP is
utilized to visualize and demonstrate that not only do the la-
tent vectors learned by our pipeline provide visually accurate
decompressed images, but also they contain relevant clinical
information from different cancer types (Fig.4). UMAP can
use many metrics for distance calculation; ”cosine similarity”
was selected for its ability to capture correlation features.

3. SETTINGS AND EXPERIMENTS

In this section, we summarize different scenarios and their
experimental settings used for training and validating the
compression and latent space approximation of histopathol-
ogy images, and establish that the compression ratio our
pipeline achieves is state of the art.

3.1. Training Settings

For hyperparamter tuning, the effect of normalization of data
on the quality of outcome was tested (based on visual inspec-
tion), and it was concluded that normalization is necessary for
acceptable results (Fig. 2-a). Since all datasets are normalized
using the same procedure, the validation can be perceived as
a metric to compare the performance of different models on
different datasets. All experiments are conducted using and
early stopping on validation loss with patience = 5 unless
mentioned otherwise.

As illustrated in Fig. 2-b, higher batch sizes result into
faster objective minimization, but lower batch sizes eventu-
ally results in better validation loss due to a higher regulariza-
tion effect ([16]). To take the middle ground, all experiments
were conducted using a batch size of 128 unless mentioned
otherwise. Also, as expected, higher latent dimensions re-
sulted into a better performance.

The model is developed with PyTorch Lightning API. All
experiments were conducted using the DDP parallelization
strategy on an NVIDIA DGX A100 with 8, 80 GB A100
GPUs, and a learning rate of 10−4.

3.2. Compression Experiments

Experimental results demonstrate a better performance of our
compression model on histopathology slides than is achieved
on images of every day objects datasets such as in CIFAR10
([17]). We first hypothesised that this diffeence is rooted in
the difference of entropy between the average image in these
two datasets. Entropy is a way of calculating the context in-
formation of a datapoint. We reasoned that low entropy im-
ages are more compressible han high entropy ones. There-
fore, we divided the CIFAR10 dataset by entropy with a high
entropy fold (average entropy = 7.623) and a low entropy fold
(average entropy = 7.039), each containing 30,000 images,
and ran two experiments to see which one is more compress-
ible when fed through our model. For both experiments, batch
size was set to 256, latent dimension was set to 16, and the in-
put images were of dimension 32 × 32 × 3. The results are
shown in Fig. 3. The final validation loss for low entropy
and high entropy datasets are 0.601 and 0.570, respectively
contradicted our original hypothesis. We ran the same exper-
iment on the same number of patches sampled for the breast
cancer slides, and although having lower entropy, it showed
a better performance (numbers are reported in Fig3). Hence,
we concluded that entropy is not a reliable factor to explain
the SOTA performance of our VAE compression pipeline on
cancer imaging data.

We then hypothesized that color distribution may be a
contributing factor. H&E slides are limited to the colors
present in tissue, while CIFAR10 images have a more di-
verse color distribution. For this hypothesis, we randomly
chose 30,000 images from CIFAR10 dataset. Using the same
settings, we ran one experiment on the sampled images and
another on the same images but with grayscale transforma-
tion to eliminate olor diversity. The final validation loss for
colored dataset is 0.599 and for the grayscale dataset is 0.525
(Fig. 2-a). The lower validation loss indicates that less color
content can be attributed to a better comprehensibility.

3.3. Validation Experiments

In order to examine whether the latent space preserves nec-
essary information for downstream clinical tasks, we tested
the accuracy of original slide images against regenerated slide
images on CLAM ([18]), the state-of-the-art model in lung
cancer classification from H&E slides. We first used CLAM
on the original test set for the two classification tasks, i.e. ”tu-
mor vs. normal” and ”sub-typing” between Lung Adenocar-
cinomas (LUAD) and Squamous Cell Carcinomas (LUSC).
Then, we created a reconstructed (post compression) version
of the test set using our inference pipeline (Fig. 1-b). This



Fig. 4. (a) The reconstruction results for breast cancer tissues
at 5 different compression ratios. (b) UMAP plot generated
on 4 different tissue types with a compression ratio of 1:64.

reconstructed test set was then run through the same classi-
fication problems as the original images. We then calculated
the percentage of the images that had the same label for both
original and reconstructed images over all test images as a
measure of performance and observed that our compression
did not decrease performance on clinical application tasks.

To test the clinical information preservation of the latent
space, we chose a model trained on lung tissues with the high-
est compression ratio (1:512) in our pipeline (Sec. 3.3). This
compression ratio is twice as high as the best models intro-
duced in the literature ([12, 19]). For the ”tumor vs. normal”
task, the reconstructed images did not show loss of perfor-
mance, however, this level of compression made it difficult
for lung cancer sub-typing model to perform as before.

We used 900 images from the GDC TCGA (Sec. 5) in-
cluding 450 samples for each LUAD and LUSC sub-types for
training and 100 images (50 LUAD, 50 LUSC) for testing.
The CLAM model has 10-fold validated pre-trained weights;
thus, we calculated the performance in a 10-fold setting, too.

3.4. UMAP Experiments

To show that the latent space preserves important and clini-
cally relevant information, 4 models were trained with a la-
tent space of size 64 on different tissue types (brain, breast,
bronchus and lung, and colon) on 20,000 patches of size 64×
64 pixels, and tested them on 10,000 patches from their re-
spective tissue type. We then ran the latent vectors of the test
patches through the UMAP algorithm using the ”cosine” dis-
tance as the similarity metric. The results are shown in Fig.4.

4. RESULTS AND CONCLUSION

Fig. 4-a shows the impact of various compression ratios on
VAE output images. At lower compression ratios, recon-
structed images more closely resemble original input images.
Importantly, we see a marked improvement in histologic
features that are critical for interpretability such as refined

cell-to-cell borders and sharper demarcation of cytoplasmic
vs. nuclei compartments. Moreover, in Fig. 4-b, we use
UMAP to visualize the latent space vectors learned by our
pipeline. The UMAP captures intra-tumor and across-tumor
relationships, separating all four tissue types into distinct
clusters. Interestingly, clusters of brain and colon cancers
share overlapping boundaries whereas the breast cancer clus-
ter is uniquely separated from the brain cancer cluster. Also,
the UMAP identifies a distinct sub-cluster of brain tumor
samples that does not overlap with any other cancer types.

We envision our pipeline being useful to clinicians and
researchers across multiple domains. One potential applica-
tion is more accurate sub-typing and diagnoses of poorly un-
derstood cancers. A notable example of this is brain cancer,
which contains over 150 different histologic subtypes, many
of which are so rare that a pathologist may only encounter a
handful of cases in his or her career ([20]). In our UMAP vi-
sualization of the latent space, there is an unexpected but dis-
tinct sub-cluster of brain tumor samples that does not overlap
with other cancer types (Fig. 4-b). Further characterization of
this sub-cluster and its unique attributes could provide novel
insights into intra-tumor relationships in brain cancer.

Our pipeline also facilitates experiments across differ-
ent tumor types. The latent space separates breast, colon,
lung/bronchus, and brain tissue into unique clusters, demon-
strating the preservation of important histological features.
Interestingly, we see a closer clustering between brain and
colon cancer versus brain and breast or lung (Fig. 4-b).
More investigation into these relationships is warranted –
one possible explanation of this phenomenon could be due to
both brain and colon tissue containing ganglion nerve cells
whereas breast and lung tissue do not. In the future, our em-
bedding approach could be deployed to a hospital system and
linked to the electronic health record (EHR) to help clinicians
diagnose patients with rare disorders: the images closest to
that of the input patient in UMAP embedding have the most
similarities, and their records could be retrieved to better
contextualize a differential diagnosis for the query patient.

However, our pipeline carries several limitations. To
start, we will need to further explore acceptable thresholds
of reconstruction loss introduced via our VAE-based archi-
tecture. Additionally, our model architecture lacks human
interpretable features, which may lead to higher levels of
end-user distrust as “peeking under the hood” to audit our
model for biases or errors may be more limited. Along these
lines, any insights or novel conclusions will still require man-
ual review and interpretation by human pathologists. In future
iterations of this work, we intend to improve upon these areas.

5. DATA AND CODE AVAILABILITY

All dataset used in this study are accessible from NCI GDC
portal at portal.gdc.cancer.gov/repository. The code is also
accessible at github.com/jacobluber/uta cancer search.

https://portal.gdc.cancer.gov/repository
https://github.com/jacobluber/uta_cancer_search
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