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ABSTRACT

Concept-based models naturally lend themselves to the de-
velopment of inherently interpretable skin lesion diagnosis,
as medical experts make decisions based on a set of visual
patterns of the lesion. Nevertheless, the development of
these models depends on the existence of concept-annotated
datasets, whose availability is scarce due to the specialized
knowledge and expertise required in the annotation pro-
cess. In this work, we show that vision-language models
can be used to alleviate the dependence on a large number
of concept-annotated samples. In particular, we propose an
embedding learning strategy to adapt CLIP to the down-
stream task of skin lesion classification using concept-based
descriptions as textual embeddings. Our experiments reveal
that vision-language models not only attain better accuracy
when using concepts as textual embeddings, but also require a
smaller number of concept-annotated samples to attain com-
parable performance to approaches specifically devised for
automatic concept generation.

Index Terms— Concept-based Models, Interpretability,
Skin Cancer, Vision-Language Models, Dermoscopy

1. INTRODUCTION

Automated computer-aided diagnosis systems for disease de-
tection from medical images have undergone a remarkable in-
crease in performance, primarily attributed to the enhanced
capabilities of deep learning models. This paradigm has led
to a substantial increase in the precision of these systems in
providing accurate diagnosis in various medical image tasks,
such as skin lesion diagnosis, assuring in some cases results
that match the performance of dermatologists [1, 2]. How-
ever, the “black-box” nature of these deep learning-based sys-
tems in dermatology poses the most significant barrier to their
broad adoption and integration into clinical workflow [3]. To
alleviate this problem, interpretability methods have emerged
to ensure the transparency and robustness of medical AI sys-
tems. Among these interpretable strategies, Concept Bottle-
neck Models (CBM) [4] are growing in popularity in medi-
cal imaging analysis [5, 6, 7], since they allow to explain the
decision process based on the presence or absence of human-

understandable concepts, which aligns perfectly with the way
clinicians draw conclusion from medical images. Further-
more, several studies concluded that humans prefer concept-
based explanations over other forms of explanations, such as
heatmaps or example-based [8]. In spite of their popularity,
the development of concept-based models depends on dense
annotations of human-understandable concepts [9], which are
time-consuming and require expertise from domain experts,
limiting the adoption of such models in medical image tasks.
Several works [9, 10, 11, 12] attempt to mitigate this prob-
lem by querying Large Language Models (LLMs) to generate
additional information about target classes to form candidate
concepts.

In this work, we show that despite these advances, de-
tailed concept-based descriptions generated from LLMs lead
to inferior classification accuracy when compared with the
use of textual embeddings derived directly from dermato-
scopic concepts. Specifically, we compared the performance
of LLMs on three well-known skin lesion datasets [13, 14, 15]
using three distinct strategies for measuring the similarity be-
tween a given query skin image and textual embeddings: (i)
utilizing the target class as textual embedding; (ii) using a set
of dermoscopic concepts annotated by board-certified derma-
tologists as textual embeddings; and (iii) leveraging concept
descriptions generated by ChatGPT as textual embeddings.
Our experiments reveal that (i) relying on expert-selected
dermoscopic concepts as textual embeddings leads to better
performance in distinguishing melanoma from other diseases,
in addition to providing concept-based explanations and (ii)
a simple and efficient embedding learning procedure on top
of feature embeddings of CLIP [16] could attain comparable
performance to models specifically designed for the task of
automated concept generation of dermoscopic features.

Our contributions can be summarized as follows: (i) we
introduce an efficient and simple embedding learning proce-
dure to improve the performance of CLIP models in the down-
stream task of melanoma diagnosis; (ii) we alleviate the an-
notation burden of CBMs by using zero-shot capabilities of
Vision Language Models (VLMs) to automatically annotate
concepts; (iii) we provide concept-based explanations for the
model prediction based on expert-selected dermoscopic con-
cepts.
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Fig. 1: The workflow of our proposed strategy. After learning the new multi-modal embedding space (left), we predict the
presence of melanoma by linearly combining the similarity scores with the melanoma coefficients acting as the bottleneck layer
of CBM. The result of this operation is then compared with a threshold value to predict the presence or absence of melanoma.

2. METHOD

Figure 1 presents an overview of the proposed method. The
training phase consists of learning a new multi-modal embed-
ding space for approximating image and textual embeddings
of the same category (section 2.1). The learned projection
layers are then used to calculate the feature embeddings of
both the image and textual descriptions in order to predict
melanoma (section 2.2) by: (i) calculating the cosine similar-
ity between the image feature and the text encoding of each
disease label; (ii) calculating the cosine similarity between
the image and a concept c in the concept set C, whose scores
are then fed into the classification layer to determine the pres-
ence of melanoma; or (iii) calculating the cosine similarity
between the image and a set of m concept descriptors per
concept c, average the scores per concept, and then fed into
the classification layer as in (ii).

2.1. Embedding Learning

LetD = {(i, y)} be a batch of image-label pairs where i is the
image and y ∈ Y , is a label from a set of N classes. We ex-
tract the features of the frozen CLIP image encoder I(.) and
the text encoder T (.) to obtain the feature embedding of the
image x = I(i) ∈ Rd and the feature embedding of the label
l = T (y) ∈ Rd. The training phase (Figure 1) thus consists of
learning a new multi-modal embedding space by jointly train-
ing an image projection layer WI and text projection layer
WT to maximize the cosine similarity of the image feature
WI .x and text feature WT .l embeddings of the n pairs shar-
ing the same disease while minimizing the cosine similarity

of embeddings of the pairs from different diseases. For this,
we define a target matrix as having ones on image-label pairs
sharing the same disease label, and zeros in the remaining
pairs. We adopt the objective function used in [16].

2.2. Strategies for Melanoma Diagnosis

Baseline The most straightforward strategy for using CLIP
in the task of melanoma classification is to calculate the
similarity between the visual descriptor of the image x = I(i)
and the textual feature representation of the N disease labels
l = T (y), y ∈ Y . The predicted disease label is given by
ŷ = argmaxy∈Y Sc(WI .x,WT .l), where Sc is the cosine
similarity.

CBM Alternatively, we can calculate the degree to which
a dermoscopic concept c ∈ C = {c1, ..., cNc} is present in
the image by measuring the similarity between the feature
embedding of the image x = I(i) and each feature embed-
ding of concept c given by EC ∈ RNC×d, where each row of
EC is a text feature T (c) ∈ Rd of a concept c. Then, we
employ the dermoscopic concept coefficients (MEL Coefs in
Figure 1) extracted from a previously trained linear model
for melanoma prediction [17], denoted as Wmel ∈ R1×NC ,
and multiply them with the obtained concept scores p =
Sc(WI .x,WT .EC), p ∈ RNC×1. Let V = Wmel ⋅ p. The

final prediction is thus given by ŷ = {0, if V < t
1, if V ≥ t , where t is

a threshold value tuned on the validation set.

GPT + CBM We query ChatGPT with a designed prompt
to generate a set of m textual descriptions for a given der-
moscopic concept c. The chosen prompt “According to pub-



lished literature in dermatology, which phrases best describe
a skin image containing {concept}?” returns a total of five
descriptions for each individual concept c (see supplemen-
tary). We obtain the feature embedding for the m descriptions
Esc = T (sc1, ..., scm), Esc ∈ Rm×d of a concept c. We calcu-
late the concept scores as pc = 1

m ∑
m
i=0 Sc(WI .x,WT .Esci

).
Let V = Wmel ⋅ ∑Nc

c=0 pc. The final score indicating the pres-

ence of melanoma is thus given by ŷ = {0, if V < t
1, if V ≥ t .

3. EXPERIMENTAL SETUP

We evaluate different CLIP variations, using our proposed
embedding learning, and compare it with MONET [17], a
foundation model trained on dermatological images, under
the previously defined strategies (section 2.2) on three dermo-
scopic datasets. Also, we report the performance of a black-
box linear probing model to assess whether our approach
can maintain black-box accuracy without compromising in-
terpretability.

Datasets Three dermoscopic datasets were selected for our
experiments, namely: PH2 [13], Derm7pt [14] and ISIC
2018 [15]. The PH2 dataset encompasses dermoscopic im-
ages of melanocytic lesions, including “melanoma” and two
types of “nevus” that were merged and treated as singular
“nevus”. For PH2, we used 5-fold cross-validation. Derm7pt
comprises clinical and dermoscopic images, which we filtered
to obtain images of “nevus” and “melanoma” classes. ISIC
2018 is composed of dermoscopic images including different
types of skin lesions, namely “melanoma”, “melanocytic ne-
vus”, “basal cell carcinoma”, “actinic keratosis”, “benign ker-
atosis”, “dermatofibroma”, and “vascular lesion”. Detailed
statistics of the datasets, including the train/val/test splits, are
presented in Table 11.

Dataset Classes Train size Validation size Test size

PH2 [13] 2 160 (28 to 34) - 40 (6 to 12)
Derm7pt [14] 2 346 (90) 161 (61) 320 (101)
ISIC 2018 [15] 7 8,012 (890) 2,003 (223) 1,511 (171)

Table 1: Dataset statistics. Numbers between rounded
brackets represent the # of Melanoma examples in the split.

3.1. Implementation Details

Embedding Learning The projection layers (section 2.1)
were trained on Derm7pt and ISIC 2018 datasets using the
AdamW optimizer with a learning rate of 1e−5. Also, a learn-
ing rate decrease policy was used with a patience of 1 and a
factor of 0.8. The trainable projection layers are linear lay-
ers with the same dimension of the output of image and text

1We followed the split partition adopted in [14] for the Derm7pt dataset
and in [18] for ISIC 2018.

encoder of CLIP2. For the evaluation of MONET we follow
the proposed strategy by the authors to calculate the concept
scores. For the black-box linear probing, we follow [16] and
use image features taken from the penultimate layer of each
model, ignoring any classification layer provided. A logis-
tic regression classifier is trained on the top of the extracted
image features using scikit-learn’s L-BFGS implementation,
with maximum 1,000 iterations.
Preprocessing The input images were preprocessed ac-
cording to the transformations defined in the original image
encoders of CLIP variations. Additionally, and following [7],
we use segmented versions of the images. This strategy en-
sures that solely the area of the lesion is considered, prevent-
ing the model from giving attention to artifacts in the image.
Most importantly, this procedure allows improving the final
classification results.

4. RESULTS

4.1. Quantitative Analysis

Comparison with Original CLIP and MONET Table 2
compares the performance of the original CLIP model with
our method across three different strategies on two datasets.
The reported results represent the average Balanced Accuracy
(BACC) obtained across CLIP model variations for each spe-
cific strategy. Our method outperforms CLIP original varia-
tions by an average of 11.5% and 9.2% on both datasets, re-
spectively. The most significant improvement is observed on
the Baseline strategy for Derm7pt, and on CBM strategy for
ISIC 2018. Figure 3 (left) shows the efficiency of our method
in comparison to the MONET model. Notably, our method
achieves a comparable level of performance of MONET while
requiring significantly less training time. On the other hand,
Figure 3 (right) depicts the evolution of AUC (in %) as more
image-label pairs are added into the training set of ISIC 2018.
The results show that CLIP RN50, CLIP ViT L/14 and CLIP
ViT-B/32 attain comparable performance with MONET when
using only between 40-60 image-label pairs in the training set.

Strategy Derm7pt [14] ISIC 2018 [15]

Orig. Ours Orig. Ours

Baseline 61.3 ± 2.4 75.0 ± 2.5 54.1 ± 5.0 63.2 ± 1.4
CBM 65.4 ± 2.6 75.4 ± 2.3 60.6 ± 3.0 70.4 ± 3.0
GPT+CBM 64.1 ± 6.3 74.9 ± 2.6 61.2 ± 3.2 69.9 ± 3.2

Table 2: Performance gains of CLIP with our proposed em-
bedding learning strategy in terms of BACC.

Evaluation of different VLMs for melanoma diagnosis
The results presented in Figure 2 show the performance in
terms of BACC. For the PH2 dataset, the results represent the
average performance over 5-fold cross-validation. The results

2The source code and supplementary material are available at
https://github.com/CristianoPatricio/concept-based-interpretability-VLM
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Fig. 2: Evaluation results (in BACC %) of the different classification strategies (Baseline, CBM and GPT+CBM) on three
datasets (PH2, Derm7pt and ISIC 2018) for melanoma detection. Black-box linear probing performance is marked with ★.

30 40 50 60 70 80 90 100
Training Time (s)

CLIP
(RN50)

CLIP
(RN101)

CLIP
(ViT-B/32)

CLIP
(ViT-B/16)

CLIP
(ViT-L/14)

CLIP
(RN50x16)

MONET
(ViT-L/14)

82.99

73.99

74.51

74.43

76.87

76.98

6000

20 40 60 80 All
# of image-text pairs per class in training set

40

50

60

70

80

90

100

AU
C 

(%
)

MONET
ViT-L/14
RN50x16
ViT-B/16
ViT-B/32
RN101
RN50

Fig. 3: Computational performance analysis of our proposed
embedding learning procedure.

reported for Derm7pt and ISIC 2018 datasets are the aver-
ages obtained from four separate runs. The results on PH2

dataset suggest that the GPT-CBM strategy outperforms both
the Baseline and CBM strategies for CLIP ViT-B/16. Addi-
tionally, the CBM strategy demonstrates statistically signifi-
cant improvement over the GPT+CBM strategy when applied
to RN50x16. Regarding the Derm7pt dataset, all strategies
exhibit comparable performance. However, a marginal gain
of GPT+CBM over CBM and the Baseline is noticeable in 4
out of 7 models. In the case of ISIC 2018, the results show
significant improvement of both CBM and GPT+CBM strate-
gies over the Baseline (p < 0.05).

4.2. Interpretability by Dermoscopic Concepts

Utilizing dermoscopic concepts for melanoma detection en-
sures the interpretability and transparency of the model’s
decision-making process. In Figure 4, we present two il-
lustrative examples, each accompanied by the predicted der-
moscopic concepts. In the upper image, the model classi-
fies it as non-melanoma, as indicated by the negative con-
tributions of dermoscopic concepts typically associated with
melanoma. Conversely, the lower image was correctly clas-
sified as melanoma, as evidenced by the positive contribu-
tions of melanoma-specific concepts, which align with the
ABCDEs of melanoma [19]. Additional examples can be

found in the supplementary material.
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Fig. 4: Examples of dermoscopic images classified based on
dermoscopic concepts.

5. CONCLUSIONS AND FUTURE WORK

This paper presents an efficient embedding learning proce-
dure to enhance the performance of CLIP models in the
downstream task of melanoma diagnosis, utilizing various
strategies. Our comparative evaluation of VLMs’ efficacy
in melanoma diagnosis indicates that predicting melanoma
based on expert-selected dermoscopic concepts is more re-
liable than using the textual description of the target class,
promoting interpretability in decision-making. Additionally,
our experiments suggest that incorporating detailed descrip-
tions of concepts as a proxy to use them directly in predicting
melanoma does not lead to statistically significant improve-
ments. In future research, we plan to expand the analysis to
other imaging modalities to foster trust and acceptance of au-
tomated diagnosis systems in daily clinical practices.
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