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Abstract—Everyone “knows” that compressing a video will
degrade the accuracy of object tracking. Yet, a literature search
on this topic reveals that there is very little documented evidence
for this presumed fact. Part of the reason is that, until recently,
there were no object tracking datasets for uncompressed video,
which made studying the effects of compression on tracking ac-
curacy difficult. In this paper, using a recently published dataset
that contains tracking annotations for uncompressed videos, we
examined the degradation of tracking accuracy due to video
compression using rigorous statistical methods. Specifically, we
examined the impact of quantization parameter (QP) and motion
search range (MSR) on Multiple Object Tracking Accuracy
(MOTA). The results show that QP impacts MOTA at the 95%
confidence level, while there is insufficient evidence to claim that
MSR impacts MOTA. Moreover, regression analysis allows us to
derive a quantitative relationship between MOTA and QP for the
specific tracker used in the experiments.

Index Terms—Video compression, object tracking, video cod-
ing for machines

I. INTRODUCTION

Video compression is ubiquitous in entertainment, moni-
toring, law enforcement, consumer products, and many other
industries. At the same time, object tracking is the corner-
stone of many video analysis applications, such as event
detection and recognition, visual odometry, navigation, crowd
analysis, and so on. Intuitive expectation is that compression
degrades tracking accuracy. Yet, there is virtually no evidence
in the available literature to support this expectation. The
closest available experimental evidence links compression and
object detection/classification. The earliest known study on
this topic [1] shows that JPEG and Advanced Video Coding
(AVC)-based compression impacts pedestrian detection in far
infrared (FIR) images, especially at lower bitrates. In [2], the
impact of JPEG2000 image compression on classifier accuracy
is examined. Dodge and Karam [3] examined the impact of
image quality, including JPEG and JPEG2000 compression,
on deep neural network (DNN)-based image classification,
while [4] examined the impact of image compression on DNN-
based object detection. All three studies revealed accuracy
degradation at lower bitrates. In [5], the impact of High Effi-
ciency Video Coding (HEVC) [6] on DNN-based based object
detection was examined, with similar qualitative conclusions
as earlier studies. The lack of annotated tracking data on
uncompressed video was highlighted as a major challenge to
making further progress in this area.

This work was supported in part by NSERC grants RGPIN-2021-02485
and RGPAS-2021-00038.

There are a number of tracking annotations for already-
compressed video,1 so one may wonder why this data cannot
be used for studying the impact of further compression on
tracking? The reason is that the effect of double compression
is fundamentally different from that of single compression.
To see this, let X be the original uncompressed signal, and
Y1 = X+N1 be the signal after the first round of compression,
where N1 is the compression (quantization) noise. Another
round of compression would produce Y2 = Y1 + N2 = X +
N1 + N2, where N2 is the noise from the second round of
compression. Hence, the net effect on X is the contamination
by N1 + N2. In a simplified case where the two noises are
independent, the probability density function (pdf) of their sum
is the convolution of their individual pdf’s [7]: fN1+N2

=
fN1 ∗fN2 , which will, in general, be different from either fN1

or fN2 . For example, if N1 and N2 are uniformly distributed,2

then fN1+N2
will be triangular. Hence, its effect on X will

not be the same as that of either N1 or N2.
In this paper, we make use of the recently released dataset

called SFU-HW-Tracks-v1 [8], which contains tracking anno-
tations for a subset of HEVC Common Test Condition (CTC)
uncompressed video sequences. Since this dataset is based
on uncompressed video, we are able to properly study the
effects of compression on object tracking performance. Sec-
tion II describes data and methods, while Section III presents
regression analysis of the influence of compression on tracking
performance. Conclusions are presented in Section IV.

II. DATA AND METHODS

A. Dataset

As mentioned earlier, in this study we use the recently
released dataset called SFU-HW-Tracks-v1 [8]. The dataset
contains object tracking annotations of 13 uncompressed test
video sequences. This is an extension of the SFU-HW-Objects-
v1 dataset [9], which is currently used for exploration exper-
iments in MPEG Video Coding for Machines (VCM).

B. Methods

Experimental pipeline is shown in Fig. 1. An uncompressed
sequence in the YUV420 format is encoded using HEVC HM
version 16.20 in the Low Delay format, for various pairs of
QP and motion search range (MSR), as shown in Table I.
The resulting bitstream is then decoded back into a YUV420

1https://motchallenge.net
2A common model for quanitzation noise.
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Fig. 1: Experimental pipeline.

TABLE I: QP and MSR values used in the experiment.

HEVC parameter Values
QP [18, 22, 26, 30, 34, 38, 42, 46]

MSR [8, 16, 32, 64]

sequence, and each frame is converted to RGB format using
ffmpeg and stored as PNG. Such frames are then input into
the tracker (whose details are given below) and the resulting
tracking output is compared to the ground truth using various
Multiple Object Tracking (MOT) metrics, as described below.

1) Tracker: We use a tracker that follows the tracking-by-
detection approach. Specifically, object detection is performed
using the Ultralytics implementation3 of YOLOv3 [11], while
the tracking mechanism is based on Simple Online Realtime
Tracking (SORT) [12]. According to [12], SORT serves as
a baseline method for more sophisticated trackers, as it is
constructed from well-known and interpretable components
such as Kalman filtering and the Hungarian algorithm. It
is worth noting that the current exploration experiments in
MPEG VCM use the Joint Detection and Embedding (JDE)
tracker [13], whose object detection component is based on
the same implementation of YOLOv3 used here. While the
tracker used in our experiments is not necessarily state-of-
the-art (SOTA) in terms of tracking accuracy, it is based on
similar components as SOTA trackers, and provides a solid
interpretable baseline for benchmarking tracking performance.

2) Tracking metrics: Tracking accuracy on the uncom-
pressed and compressed videos is measured using the software
framework4 implementing various tracking metrics from [14]–
[17]. Among the various metrics available, we chose the
Multiple Object Tracking Accuracy (MOTA), defined as

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

, (1)

where t is the frame index, FNt and FPt are false negatives and
false positives in object detection in frame t, IDSWt represents
the number of object ID switches in frame t, and GTt is
the number of ground-truth trajectories in frame t. MOTA
is the gold-standard in multiple object tracking accuracy and
correlates well with human visual assessment [18].

3https://github.com/ultralytics/yolov3, pre-trained on COCO [10].
4https://github.com/cheind/py-motmetrics
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Fig. 2: Average MOTA scores across all video sequences for
all object classes, for uncompressed sequences (dashed line)
and different (QP, MSR) pairs.

III. ANALYSIS

The goal of our analysis is to evaluate and quantify the
nature of the relationship between compression and tracking.
More specifically, we are interested in the effects of the values
of MSR and QP on MOTA, as explained before. As described
in section II, for each pair of values of QP and MSR we have
the MOTA score for multiple video sequences. We being by
evaluating the average effect of QP and MSR on MOTA as
can be seen in Fig. 2. The average MOTA score is computed
across all video sequences and all object classes5 at different
QP and MSR values. As shown in the figure, MOTA scores are
highest, on average, on uncompressed sequences, and degrade
as the sequence is compressed, i.e., as QP increases. This
seems to agree with intuition. On the other hand, MOTA
scores do not seem to depend much on MSR, at least for
the tracker employed in our experiments.6 In the remainder of
this section we employ regression analysis [20] to statistically
verify observations from Fig. 2. The same type of analysis can
be applied to other tracking metrics, other parameters (besides
QP and MSR) and other trackers.

A. Regression model

Because the relationship between MOTA and QP shows
clear non-linearity in Fig. 2, we first transform QP so that
MOTA and the transformed predictor variable QP′ form an
approximately linear relationship. To find the appropriate
transformation for QP, we experimented with various forms
and eventually decided on the following one:

QP′ =
1

QP
52 − 1

, (2)

where 52 was chosen to allow the full range of QP values
[0, 51] [6], without the danger of a zero denominator.

The scatter plots of MOTA vs. QP and MOTA vs. QP′ on
BasketballPass are shown in Fig. 3 where we can see the
transformation indeed makes the relationship between QP′ and
MOTA approximately linear. On the other hand, from Fig. 2

5Here, “all” object classes means all classes that exist in the ground truth
for each sequence.

6There are trackers, such as MV-YOLO [19], that directly use motion
vectors from the video bitstream, and these may be more sensitive to MSR.

https://github.com/ultralytics/yolov3
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(b) MOTA vs. QP′ scatter plot

Fig. 3: Scatter plots of MOTA vs. QP before and after QP
transformation on the BasketbalPass sequence; the four MOTA
values at each QP are produced by different MSR values.
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(a) MOTA vs. QP′ scatter plot
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(b) MOTA′ vs. QP′ scatter plot

Fig. 4: Scatter plots of MOTA vs. QP′ before and after MOTA
transformation (4) across all video sequences.

(as well as Fig. 3), MOTA is approximately constant with
MSR, and thus already approximately linear, and appropriate
for linear regression.

Because the MOTA scores, even for uncompressed videos,
vary greatly between the sequences (as seen in Fig. 4a), we
need to isolate the effect of compression on tracking before
performing regression. We do this by modeling the effects of
compression using a subtractive term on MOTA:

MOTAi(Q) = MOTA0
i −MOTA′i(Q), (3)

where i is the sequence index, MOTA0 is the MOTA of an
uncompressed sequence, and MOTA′(Q) is the degradation in
MOTA due to compression under parameters Q (in our case,
Q = (QP′,MSR)). Re-arranging (3), we obtain:

MOTA′i(Q) = MOTA0
i −MOTAi(Q), (4)

Fig. 4 shows the scatter plots of MOTA and MOTA′ at
each QP′, i.e., before and after MOTA transformation. We
will demonstrate below that the deviations of MOTA′ from
the regression model are approximately Gaussian. This will
validate the use of statistical tests such as t-test, which rely
on the Gaussianity (normality) of regression errors [20].

With QP and MOTA transformed, we can now represent a
multiple linear regression model as:

MOTA′i,j = β0+β1 ·QP′j +β2 ·MSRj +β3 ·QP′j ·MSRj + εi,j
(5)

where j is the index of the compression parameter combina-
tion, β0, β1, β2, and β3 are regression parameters, and εi,j is
assumed to be an independent normally distributed (Gaussian)
error with mean 0 and unknown variance σ2

j (note that the
variance only changes with j, not i). The normality of errors
will be verified below.

TABLE II: Regression model parameter estimates across all
object classes and all video sequences.

Parameter Estimated value p-value
β0 −4.32 < 10−6

β1 −2.97 < 10−9

β2 < 10−2 0.83
β3 < 10−2 0.77

Allowing σ2
j to vary with j, we apply a weighted least

squares method [20] to estimate β’s, with the weight w(Qj)
given by

w(Qj) =
1

s2(Qj)
, (6)

where s2(Qj) is the sample variance of MOTA′i,j at a given set
of parameters Qj (taken over the different video sequences).

B. Results
Utilizing Statsmodels [21], we obtain regression results

shown in Table II. As seen in the table, estimated regression
parameters β2 and β3 are very small, suggesting that MOTA′

is not influenced by MSR or the product of MSR and QP′.
To test the significance of each parameter, we performed the
following individual hypothesis test for each βc as a t-test:

H0 : βc = 0

H1 : βc 6= 0
(7)

where c ∈ {0, 1, 2, 3}. The null hypothesis H0 is βc = 0,
meaning that the corresponding predictor variable does not
impact the response variable MOTA′. The alternative hypoth-
esis H1 is βc 6= 0, meaning that the corresponding predictor
variable impacts MOTA′. The p-value for each hypothesis test
is given in Table II.

The results show that H0 can be rejected for β0 and β1 (p-
values are very small), meaning that these values significantly
differ from 0. In other words, QP′ has a significant impact
on MOTA′. On the other hand, p-values for β2 and β3 are
fairly large. Since they are larger than 0.05, this means there
is insufficient evidence to reject H0 for these parameters at
the 95% confidence level. We presented individual hypothesis
tests for simplicity, but a joint hypothesis test for (β2, β3)
gives similar results. Hence, from the available data, we cannot
conclude that MSR impacts MOTA′.

To validate our assumption regarding the normality of
regression errors, we plot the sorted studentized residuals in
Fig. 5, following [20]. The studentized residual ri,j can be
represented as

ri,j =
MOTA′i,j − M̂OTA′(Qj)

s(Qj)
(8)

where M̂OTA′(Qj) is MOTA′ predicted by the regression
model at a given Qj and s(Qj) is the sample standard
deviation of MOTA′ scores at a given Qj . The horizontal
axis represents sorted expected values of studentized residuals
under normality, which can be computed as [20, p. 111]

E[rk] = z

(
k − 0.375

n+ 0.25

)
, (9)
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Fig. 5: Approximate normality of regression errors.
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Fig. 6: MOTA scores averaged over all sequences vs. QP.

where z is a percentile function [20], k is the index of
expected values of studentized residuals under normality, from
the smallest value at k = 1 to the largest value at k = n, and
n is the total number of measurements.7 As shown in Fig. 5,
regression residuals (blue) follow closely the red line, which
shows the expected residual values under normality. In other
words, the residuals are approximately normal. The coefficient
of determination is R2 = 0.985, indicating close fit to the red
line. This validates the regression analysis presented above.

Using the values of β0 and β1 from Table II in (5), and
then substituting transformations from (2), (4), we obtain the
following relationship between the average MOTA across all
video sequences (denoted MOTA) and QP:

MOTA = 58.81 + 2.97 · 1
QP
52 − 1

. (10)

Fig. 6 shows MOTA vs. QP from (10), as well as the average
measured MOTA across all sequences at different QP values.
As seen in the figure, the agreement with measurements is
fairly good. The values obtained from (10) for QP > 46 should
be taken with a grain of salt since there are no data points for
QP > 46, but at lower QP the agreement is good.

C. When does MOTA “drop”?

Using the available data, we can also answer the following
question: At which QP value does MOTA start to significantly
deviate from uncompressed performance? To answer this ques-
tion, we look at the difference between uncompressed MOTA

7n = 384 in our case: 8 QP values × 4 MSR values × 12 sequences.

TABLE III: One-tailed t-test results for (11).

QP Value p-value
18 0.03
22 < 10−2

26 < 10−3

30 < 10−3

34 < 10−4

38 < 10−5

42 < 10−8

46 < 10−11

and compressed MOTA, in other words, MOTA′ defined in (4).
We want to determine when the average MOTA′ becomes
significantly larger than 0, so we formulate the following
hypothesis test at each QP (or, equivalently, each QP′):

H0 : µMOTA′ ≤ 0

H1 : µMOTA′ > 0
(11)

where µMOTA′ is the average MOTA′ at a given QP across all
sequences. Note that we formulate the null hypothesis H0 as
µMOTA′ ≤ 0 instead of µMOTA′ = 0, because a one-tailed t-test
is more powerful than a two-tailed t-test when testing for the
difference in one direction.

One-tailed t-test results are shown in Table III. As seen in
the table, all p-values are less than 0.05, so we can reject H0

for all QP at the 95% confidence level. This means that even
at the lowest QP value of 18, MOTA has significantly departed
(at the 95% confidence level) from its uncompressed value. If
we want to be more strict and ask for 99% confidence, then
the lowest QP for which we can reject H0 is 22, because
p-value for QP = 22 is less than 10−2. Nevertheless, both
QP = 18 and QP = 22 are synonymous with fairly high
quality compression, so we conclude that even high-quality
compression may impact tracking accuracy.

IV. CONCLUSIONS

In this paper, we analyzed the impact of video compression
on object tracking accuracy using rigorous statistics. We made
use of the recently released dataset of tracking annotations on
uncompressed video sequences, and examined the behavior
of Multiple Object Tracking Accuracy (MOTA) on HEVC-
compressed sequences with different QP values and motion
search range (MSR). Tracking was performed using a combi-
nation of YOLOv3 object detection and SORT tracking. Our
regression analysis indicates that QP has a significant impact
on MOTA, while there is insufficient evidence for MSR impact
on MOTA. As a result of regression analysis, we derived a
relationship between MOTA and QP for our chosen tracker,
which can serve as a guideline for estimating the impact of
compression on tracking. Moreover, we showed that even low
to moderate compression can have a statistically significant
impact on tracking accuracy. While numerical values presented
here are specific to the chosen tracker, similar analysis can be
performed on other trackers as well.
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