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Abstract—Driver behavior profiling is one of the main issues in
the insurance industries and fleet management, thus being able
to classify the driver behavior with low-cost mobile applications
remains in the spotlight of autonomous driving. However, using
mobile sensors may face the challenge of security, privacy, and
trust issues. To overcome those challenges, we propose to collect
data sensors using Carla Simulator available in smartphones
(Accelerometer, Gyroscope, GPS) in order to classify the driver
behavior using speed, acceleration, direction, the 3-axis rotation
angles (Yaw, Pitch, Roll) taking into account the speed limit
of the current road and weather conditions to better identify
the risky behavior. Secondly, after fusing inter-axial data from
multiple sensors into a single file, we explore different machine
learning algorithms for time series classification to evaluate which
algorithm results in the highest performance.

Index Terms—Artificial intelligence, intelligent transportation
systems, driver profiling, time series classification.

I. INTRODUCTION

Over the last two decades, Road Traffic Accidents (RTAs)
are increasingly being recognised as a growing public health
problem. A statistical projection of traffic fatalities for 2020
from the National Highway Traffic Safety Administration
(NHTSA) shows that an estimated 38,680 people died in motor
vehicle traffic crashes on U.S. roadways, an increase of 7.2
percent compared to the previous year [1]]. Aggressive driving
is one of the major causes of traffic crashes, according to
the NHTSA, which listed impaired driving, over-speeding and
sudden lane change as ones of main behaviors causing fatal
accidents [2]]. Therefore, urgent solutions to control road traffic
and monitor driving behavior are becoming a necessity for
many countries to cope with RTAs [J3]].

Road safety systems and strategies have been developed to
safeguard road users and avoid inevitable errors that they might
make. They aim to reduce risky behaviors and identify the
factors of accidents if they occur. Another approach to promote
safe driving is adopted by insurance companies. Premium
plans such Usage-Based Insurance (UBI) or Pay-How-You-
Drive (PHYD) are proposed to customers to reduce automobile
insurance costs by rewarding those who adopt safe driving
behavior [4f]. Nevertheless, tracking the driving behavior in
real-time and providing feedback on how a driving is behaving
on road is not a straightforward task. Traditional techniques
such as the ones using exclusively GPS data to identify
the driver behavior are not always effective [5]. However,
Artificial Intelligence (AI) and the Internet-of-Things have
shown promising results in tackling this complex task [6]—
[10].

Two categories of sensors are usually involved to monitor
the driving behavior: vehicle dynamics and driver dynam-
ics [6]. Vehicle dynamics mostly rely on the signals of sensors,
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Fig. 1: Proposed workflow of the Al-based driver behavior
classification.
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such as Global Positioning System (GPS), accelerometers,
gyroscopes, and magnetometers. On the other hand, driver
dynamics mostly rely on the signals of active sensors, such
as video-cameras located inside the vehicle that observe the
driver’s behavioral biometrics. Using vehicle dynamics, more
precisely smartphone sensors, for driving behavior analysis is
the focus of this study due to the fact it has been shown that
it is more suitable to use than CAN-bus sensors for driver
behavior classification [7]]. Furthermore, we are looking to
design reliable and low-cost solution.

Recently, the authors of [11]] have conducted a complete lit-
erature review on existing studies and techniques about various
sensors, technologies, data, and machine learning algorithms
used to investigate driver behavior. They also suggested a
conceptual framework that uses smartphones to identify the
driver behavior. Another study utilized UAH-DriveSet which
is a public dataset that provides a wide range of smartphone
sensors (e.g., GPS, accelerometers) and even video recordings
to distinguish between three driving behaviors; normal, aggres-
sive, and drowzy using Long Term Short Memory (LSTM)
and LSTM-Fully Convolutional Network [6], [9]. In order
to examine the performance of different types of Recurrent
Neural Networks (RNNs), the authors of [12] used only data
that can be obtained from the smartphone’s sensors, such
as acceleration and GPS. They gathered information from
four distinct car routes driven by two different drivers in
identical weather conditions. The RNNs were evaluated using
seven different driving events, and it was shown that the
Gated Recurrent Unit (GRU) outperformed the LSTM and
simpleRNN methods for this dataset.

In this paper, we propose to classify the driving behavior



into four different classes (normal, intermediate, aggressive,
and dangerous) in various external conditions (speed limits,
weather conditions, traffic signs) using data collected from
smartphones’ sensors only such as accelerometer and gyro-
scope. The data is collected in the form of time series which
are analyzed to train an Al-based classifier. Two category of
classifiers are investigated including three Gradient Boosting
Decision Trees (GBDT) machine learners and three LSTM
deep learners. Unlike previous work which used one major
dataset, namely the UAH-DriveSet which considers only three
behavior classes (normal, drowzy and aggressive) on two dif-
ferent routes, we propose to simulate the driving environment
on the Carla simulator and collect the time series data for
training and testing. Selected results compare the different
implemented methods and show an effective ability to detect
the driving behavior using limited sensor sources.

II. DRIVER BEHAVIOR CLASSIFICATION METHOD

As showcased in Fig.[I] the proposed method encompasses
four phases: i) data collection, ii) data pre-processing, iii)
parameter tuning, and iv) machine learning model design.

In this study, we propose to extract information about the
driver’s risky behavior from the smartphone sensors only as
they are equipped with reliable and low-cost sensors that are
available with most Android and IOS operating systems such
as Global Navigation Satellite System (GNSS), accelerome-
ters, and gyroscopes. To achieve a more complete and accurate
movement tracking of the vehicle, sensor fusion is therefore
required. Collected signals can be detected at unequal inter-
vals so resampling them is an essential step, which will be
investigated in the pre-processing phase of the framework.

Once data is processed, we obtain time series of data points
resampled at the same frequency. Before feeding them to the
classification model, we perform a parameter tuning to find the
best combination of hyperparameters for the machine learner
that results in the most accurate classification performance.
Finally, we implement a machine learning algorithm for the
classification task. In this paper, we propose a comparative
study between different machine learners that are the most
suitable for the driving behavior classification.

For a better understanding of the driver behavior, we dis-
tinguish between four types or classes of the driver behavior:
e Normal: the driver is respecting the speed limit given
weather conditions and that he/she is safe for other drivers.

e Intermediate: the driver is showing few aggressive actions
on the road but he/she is not putting other drivers in danger.
e Aggressive: the driver is over-speeding, over-steering, weav-
ing in and out of traffic.

e Dangerous: the driver is performing many dangerous actions,
e.g., dangerous steering, dangerous over-speeding, with a high
risk of causing a crash.

This study does not assume that a driver behavior will
remain the same over the whole trip. Indeed, we aim to detect
different actions performed by the drivers during the same trip
and classify them accordingly, e.g., every one minute.

TABLE I: Impact of .
p TABLE II: Degree of severity of
weather on the speed .
. the speeding
limit
Speed Degree of
Weather | Speed reduc-
i Behavior aggressiveness
type tion factor
Under speed limit Normal
Sunn){ 0% Overspeed [10,33]% Intermediate
Soft rain 15% Overspeed [33,66]% Aggressive
Foggy 30% Overspeed 66%+ Dangerous
Stormy 40%

TABLE III: Degree of severity of the steering

Allowed number of wav- | Absolute value of the | Steering be-
ing in and out per | steering impulse havior
minute

Under 5 Less than 0.15 Intermediate
Between 5 and 10 Between 0.16 and 0.45 Aggressive
Over 10 More than 0.45 Dangerous

III. DRIVER BEHAVIOR CLASSIFICATION PHASES
A. Data collection

In this phase, we define the features considered in the driver
behavior classification. Then, we identify the rules of modeling
the driver behavior classes and how they will be labeled.

1) Feature description: Data collection in driver behavior
analysis can be performed either in real world environment
or in a virtual environment. In the first case, although the
collected data is more close to the reality, it requires more
time and financial effort to gather a dataset. In the second
case, driver behavior can be simulated on powerful software
that allows a faster collection of data, while providing a full
control on the investigated scenarios, e.g., multiple type of
roads, traffic situation, and weather conditions. In this study,
we perform the data collection using the Carla simulation that
we will be discussed further in the next section.

As mentioned earlier, we maintain the gyroscope and the
accelerometer to identify the risky behavior [|12]]. Hence, those
motion sensors are considered to measure acceleration and
rotational forces along three axes. The magnitude of the
acceleration is also an important feature that will be exploited
with lateral and longitudinal accelerations to detect aggressive
driving behavior [13]]. The GNSS supplies the longitude and
latitude of the vehicle. Steering angle and throttle are also
considered in our model since they can reflect a certain
degree of aggressiveness [14]. Moreover, every trajectory is
enriched with weather information (e.g., rain, fog, humidity)
and road data (e.g., traffic light location and speed limits)
which are provided by environmental sensors and an offline
map available in the smartphone.

All features, described in Fig. 1, will be gathered in one
output as time-series data collected from the vehicle trip.

2) Selected Rules about Modeling the Driver Behavior:
Over speeding is considered as one of the major factors
contributing to severe car crashes on highways and motorways.
Thus, speed limits set by local authorities represent the most
popular countermeasure. We summarize, in Table [l} the impact
of the weather on the speed after considering the reduction of
visibility and pavement friction due to bad weather conditions.
On the other hand, based on California speeding tickets fees
that vary from the range of 35$ to penalize an overspeed



between 1.5 km/h and 25 km/h to 200$ for an overspeed
of 160 km/h or more, we have constructed, in Table the
degree of aggressiveness of the driving based on the speed
behavior. Due to the fact that cutting off other motorists in
traffic is dangerous and reckless behavior, in Table we
present some examples of aggressive steering based on our
approach, assuming, for simplification, that the driver sessions
are recorded on highways only and that there is no turning,
and the steering angle is between 1 and -1 (maximum right
and left steering).

B. Data Pre-processing

We propose to pre-process the collected data before initiat-
ing the driver behavior analysis.

1) Preparation step: Data captured from different sensors
are measured at irregular intervals due to latency or other
external factors. Hence, resampling the time series data is
essential as it involves changing the frequency of our time
series observations so that it can be at the same frequency.
In our case, resampling will occur every 250 milliseconds
so all captured signals from sensors will be available every
250 milliseconds which is sufficient since not major events
from driving sessions can happen during that period, e.g.,
sudden acceleration, sudden deceleration, over-steering can be
detected.

2) Augmentation phase and normalization: In this driving
behavior study, we resort to the sliding window principle as a
feature engineering tool to achieve more accurate results in the
classification. Actually, sliding windows based algorithms are
widely used for time-series segmentation, in order to reveal the
underlying properties of the signals. Previous studies using the
sliding window principle in driver behavior classification [6],
[7], [9] have shown that it provides more accurate results.
The sliding window principle means dividing the original time
series into multiple equal length subsequences to give more
insights about the data and increase the number of samples.

We choose to employ a 1-minute sliding window with 50%
overlap. Each sliding window is then labeled according to
the four potential driver behavior classes. Then, all sliding
windows are assembled into a single dataset. Since our data
contains multiple measurements from different sensors, we
proceed with its normalization and shift and rescale the
collected features to the same range.

C. Parameter Tuning

Parameter tuning allows to customize the classification mod-
els so that they generate the most precise outputs. For the same
machine learning model, different parameters are required
to control the convergence speed and avoid overfitting. For
instance, in gradient boosting decision trees algorithms, some
parameters should be tuned to get the best combinations that
give better results in the driver behavior classification such as
the number of trees, the learning rate, and the tree depth. For
deep learning algorithms, we choose to optimize the number
of epochs and batch size.

D. Machine Learning Models

In this study, we investigate six classification models to
identify the driver behavior and distinguish between the four

potential driving behavior classes. The first category is the
GBDT, which combines multiple weak learners, typically a
decision tree, to form a stronger model that outperforms the
base model. When a boosting decision tree is added, it learns
from the error of previous individual tree. All the trees are
connected in series and each tree tries to minimize the error
of the previous tree. Therefore, GBDT uses an incremental
learning process as it learns from the mistake of each indi-
vidual weak learner. Due to this sequential connection, boost
algorithms are generally slow to learn, but show great perfor-
mance on the classification task. Yet, different algorithms for
gradient boosting on decision trees, e.g., CatBoost, XGBoost,
and LightGBM, have proven their efficiency in the multi-
classification task in terms of accuracy and training time [15].

Similar to GBDT, we propose to classify the driver behavior
with three different architectures of LSTM. The first model is
constructed based on a custom design of LSTM architecture
consisting of one LSTM cell layer called Stacked-LSTM and
organized as a many-to-one structure since our dataset contains
multiple different trips with fixed duration. The second model
is a combination of a Convolutional Neural Network (CNN)
and LSTM, defined as CNN-LSTM. It can be seen as two
sub-models: the CNN model (on the front) is used feature
extraction and then followed by the LSTM layers to interpret
features across time steps. In the case of this study, the input
will be subsequences equal in length instead of one sequence.
Each will be considered for the CNN layer as a block. CNN
will use those blocks to detect common patterns for each
feature. This technique enables the identification and analysis
of the patterns of each of the subsequence and hence, learn in
a more efficient way the temporal features to achieve better
classification results using LSTM.

The third model is a combination of a Fully Convolutional
Network (FCN) and an LSTM. It is denoted as FCN-LSTM
and utilizes temporal convolutions layers as feature extractors.
The LSTM-FCN model achieves the state-of-the-art in many
sequence classification problems and has received a lot of
attention from the time series classification community. The
ability of these models to compute features on their own
presents a significant advantage, since they eliminate the need
for extensive domain expertise and manual feature extraction.
Furthermore, both of these models are easily scalable to huge
amounts of time series data generated daily by automated
procedures. The FCN block consists of three convolution layer
followed by a batch normalization, and an activation function.
Following the final convolution block, a global average pooling
is used to reduce the number of parameters in the model before
classification. For the LSTM block, it consists of one layer of
LSTM which is followed by a dropout to prevent overfitting.
The outputs of the global pooling layer and the LSTM block
are concatenated and fed into a softmax classification layer
which will predict the corresponding class.

Thus, we propose a comparative study between gradient
boosting algorithms (Catboost, XGBoost, LightGBM) and
different architectures of LSTM (LSTM, CNN-LSTM, FCN-
LSTM) with the aim of achieving effective classification
performance, specifically the macro F1-score, which considers
false alarms and imbalanced class distribution.



Fig. 2: Smartphone sensors collected using the Carla simulator.
IV. RESULTS AND DISCUSSIONS

A. CARLA Simulator and Dataset Generation

After modeling multiple driving behaviors and generating
different scenarios of trips, we collect more than 500 minutes
using the Carla simulator as shown in Fig. |Z| [16]-[18].
The driving sessions are recorded on four different towns
with two types of road (motorway and secondary) with four
different weather conditions (sunny, soft rain, cloudy & foggy,
and stormy) and four styles of driving (normal, intermediate,
aggressive, and dangerous) that occur along the trips such that
a reasonable balanced dataset between the different classes is
generated.

B. Selected Results

In this section, we compare the performances of the Cat-
Boost, the XGBoost, and the LightGBM to evaluate their
efficiency in driver behavior classification. In our evaluation,

we consider the following metrics:
N

Average Accuracy = 1 Z Ih TN , (D)
N pars TP, +TN;+ FP;, + FN;

Macro Precision = éPrecisioni = % zi_v; %, 2)

Macro Recall = g;Recalli = % é %, 3)

M oo = 1 3 o Bt

where N is the number of classes which is equal to four in
our case, TP;, FP;, TN;, and F'N; are the true positives,
false positives, true negatives, and false negatives per class. We
use macro-averaging technique when calculating the accuracy,
recall, precision and Fl-score to cope with the problem of
imbalanced data.

In Table [IV] we present the best combinations of hyperpa-
rameters as a result from the random search technique which
tests different parameters including the number of trees, the
learning rate, the tree depth, and the L2-regularization in
addition to the used loss function.

Based on the comparison between the three different gra-
dient boosting algorithms described in Table [V] and after
splitting our dataset into 70% of training and 30% of testing,
we find that LightGBM has achieved an F1-score of 88% with
testing sets. Nore that, XGBoost is the fast in training taking

TABLE IV: Results of the hyperparameter optimization

Training | CatBoost XGBoost LightGBM

param-

eters

Loss ’MultiClass’ ‘mlogloss’ "multi-logloss’

function

Best learning rate=0.73, | learning rate=0.28, | learning

param- | max depth=8, max depth=4, rate=0.04,

eters n estimators=88, n estimators=13, max depth=8,
random state=10 random state=10, n estimators=53,

random state=10

TABLE V: Comparison between the GBDT algorithms

[ Metrics [ CatBoost | XGBoost | LightGBM |
Average 80% 82% 88%
Accuracy
Macro Precision | 83% 83% 88%

Macro Recall 81% 83% 89%
Macro Fl-score | 81% 83% 88%

TABLE VI: Performance of the different LSTM architectures

Training param- | LSTM CNN-LSTM LSTM-FCN

eters

Loss function *categorical *categorical *categorical
crossentropy’ crossentropy’ crossentropy’

Optimizer Adam Adam Adam

Average 70% 76% 79%

accuracy

Macro Precision | 68% 79% 75%

Macro recall 60% 69% 74%

Macro F1-score | 58% 68% 74%

only few seconds to choose the best parameters and to classify
the behavior of the driver.

In Table [V, we test different numbers of epochs and batch
sizes before concluding that training on 150 epochs and a
batch size of 20 is the best configuration for our three models
due to the fact that we have 500 samples. The table evaluates
the performance of the different LSTM architectures on the
testing set to identify which architecture achieves the best F1-
score and thus the least false positive and false negative rates.
We conclude that the best architecture among LSTM is FCN-
LSTM which achieves an Fl-score of 74% which is higher
than LSTM that achieves 58% and CNN-LSTM 68%. Indeed,
FCN-LSTM are effective in sequence classification and hence,
more suitable for driver behavior classification.

Fig. 3] shows how the proposed solution, in this case the
LightGBM, can classify the driver behavior in practice. In this
example, we record a ten-minute trip. The classifier observes
this trip as ten sub-trips of one-minute duration using the
sliding window principle and aims to predict the corresponding
class. Fig. [3] illustrates one test example of the simulated data
with W; denotes the j™ sliding window and "P.C” refers to the
predicted class with O for normal behavior, 1 for intermediate,
2 for aggressive and 3 for dangerous. The figure illustrates the
most influential features: steering, speed (km/h), and the three
acceleration components. In this testing phase, the predicted
class of W5 is 3, which can be justified by the detected over
speeding noticeable specifically in the AccelX. This means if
one of the features is detected abnormal given the weather
condition and the road status, the whole sub-trip can be
classified as dangerous. The predicted classes of those sub-
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Fig. 3: Example of test data collected from the simulator using

the LightGBM classifier.
trips can be further analyzed to get a complete overview of

the driver behavior along its whole journey.

V. CONCLUSION

In this paper, we have investigated the driving behavior clas-
sification problem using smartphone-based sensing only.After
collection of our time series data under different road and
weather conditions, we fed our simulated data into our Al-
agent to detect different driving behavior classes and to
identify every driver profile. Results have shown the ability of
both machine and deep learning models to achieve an accuracy
greater than 88% in detecting driving profile for a one-minute
duration trip.

This framework is a low-cost solution for many fleet
management and monitoring problems and can further be
used to prevent cars from accidents. Although the collected
data from simulations mimics real-life situations in terms
of weather conditions, types of aggressive behaviors, in the
future extension of this work, we aim to focus on collecting
realistic data and provide more generalized driver behavior
classification framework that considers other road types other
than highways.
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