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LTN: Long-Term Network for
Long-Term Motion Prediction

YingQiao Wang

Abstract—Making accurate motion prediction of surrounding
agents such as pedestrians and vehicles is a critical task when
robots are trying to perform autonomous navigation tasks.
Recent research on multi-modal trajectory prediction, including
regression and classification approaches, perform very well at
short-term prediction. However, when it comes to long-term pre-
diction, most Long Short-Term Memory (LSTM) based models
tend to diverge far away from the ground truth. Therefore,
in this work, we present a two-stage framework for long-term
trajectory prediction, which is named as Long-Term Network
(LTN). Our Long-Term Network integrates both the regression
and classification approaches. We first generate a set of proposed
trajectories with our proposed distribution using a Conditional
Variational Autoencoder (CVAE), and then classify them with
binary labels, and output the trajectories with the highest score.
We demonstrate our Long-Term Network’s performance with
experiments on two real-world pedestrian datasets: ETH/UCY,
Stanford Drone Dataset (SDD), and one challenging real-world
driving forecasting dataset: nuScenes. The results show that our
method outperforms multiple state-of-the-art approaches in long-
term trajectory prediction in terms of accuracy.

Index Terms—Trajectory prediction, long short-term memory
(LSTM), robots, autonomous vehicles

I. INTRODUCTION

ACCURATELY predicting the motions of surrounding
agents such as pedestrians and vehicles are significant

when mobile robots or autonomous vehicles are trying to per-
form navigation tasks. In traffic systems, the future behavior
of each traffic participant is determined by multiple aspects,
such as the movement of other traffic agents, the physical
constraints, and the traffic rules [1]–[3]. Humans have the
ability to navigate through a complex traffic scenario because
they have the ability to reason about all the other people’s
actions, and how the physical constraints in the traffic systems
affect their movements. Therefore, for a robot navigating
through a complex traffic system, we need to consider about
all the movement of the other surrounding traffic agents and
the physical constraints in the traffic system.

With the discovery of the vanilla LSTM model, the re-
searchers started to use Long Short-Term Memory networks to
produce a regression of the future trajectories of traffic agents.
The LSTM is a model that processes the data sequentially,
so it is suitable for predicting the trajectories which is also
considered as sequential data. Starting from the Social LSTM
[4] model, the researchers started to model the people’s social
interaction. When predicting the future trajectories of traffic
agents, they will store the knowledge about people, e.g. speed,
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direction, motion pattern, and people’s social interaction in the
hidden state [5]–[8].

Then, the map information is integrated by extracting the
features of map using a Convolutional Neural Network (CNN)
combined with the current LSTM model, which largely im-
proves the prediction accuracy. The recent works start to com-
pete with each other by using different structures on modeling
social interaction, and introduces a LSTM based encoder-
decoder structure. The model encodes the past trajectory of
the traffic agent using the LSTM along with the nearby traffic
agents, produces a regression for the future trajectory, and
decodes this trajectory using the LSTM. The Trajectron++
[2], WWTG [7] (Where Will They Go),and Social-BiGAT
[9], which are recent state-of-the-art models, outperform most
of the popular LSTM model on future trajectory prediction
in terms of accuracy. The model uses the traditional LSTM
encoder-decoder structure, but it encodes the past trajectory
and future trajectory into a latent space using the Conditional
Variational Autoencoder (CVAE) [10], [11]. For prediction, it
draws a latent variable from the latent space, decodes it as a
regression using GRU [12] and past trajectory information.
However, there is still space for improvement in terms of
accuracy in long-term prediction, especially 3 to 4 seconds
after the current observation.

In this work, we propose a two-stage framework called
Long-Term Network (LTN) to improve the long-term trajec-
tory prediction in terms of accuracy. In the first stage, the
LTN uses a traditional LSTM-GRU encoder-decoder structure
along with the CVAE [10] to produce a set of possible
future trajectory proposals. In the second stage, LTN performs
classification and refinement on the trajectories proposals, and
outputs the proposal with the highest score as the final trajec-
tory prediction result. The trajectory proposals are generated
based on the surrounding traffic agents identified by the LTN,
and the prior extracted map information, so that the model
can identify the traversable spaces of our robot and identify
the possible effects of surrounding traffic agents to make better
proposals.

The contributions of this paper are summarized as follows:
1) We propose a newly modified GRU unit called Mogrifier
GRU, based on the idea of the Mogrifier LSTM [13]. By our
refinement on the hidden state, we improve the performance of
the model in terms of long-term prediction accuracy by 10%
just by replacing the regular GRU with our Mogrifier GRU.
2) We propose a two-stage approach, in which we combine
the regression and classification methods and largely improve
the performance on the long term trajectory prediction. 3) Our
model achieve the state-of-the-art results on the widely used
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pedestrian trajectory prediction datasets (ETH/UCY) [14] [15],
Stanford Drone Dataset (SDD) [16] and one real-world driving
forecasting dataset (nuScenes) [17].

II. RELATED WORK

A. Multi-Modal Trajectory Prediction

Many earlier works in human trajectory forecasting can be
roughly divided into two categories: the classic methods and
the deep learning approaches. The classic methods include the
kinematic equation, or the statistical models like polynomial
fitting and Gaussian mixture models. In most recent works,
Recurrent Neural Network (RNN) and its variants such as
Long Short-Term Memory (LSTM) or Gated Recurrent Unit
(GRU) [12], and Convolutional Neural Network become the
basis of most of recent models. Researchers utilize CNN to
extract map features, and RNN or its variants, LSTM and
GRU, to capture the social interaction between the traffic
agents, and then regress the future trajectory [9], [18]–[21].

B. Deep Generative Models

Besides the classic methods and the CNN-RNN com-
bined approaches, the generative approaches have emerged
as another state-of-the-art approach in trajectory prediction
problems. This approach shifts some researchers’ focus on
regressing a single future trajectory to producing a distribution
of the future trajectory. With a full distribution of the future
trajectory, the results can produce more possible trajectory
proposals. To produce such distributions, most works use
recurrent backbone architecture with a latent variable model,
such as the Generative Adversarial Network (GAN) [22],
and the Conditional Variational Autoencoder (CVAE) [10].
Currently, Trajectron++ [2], Social-BiGAT [9], WWTG [7] are
two CVAE and GAN based models that outperform most state-
of-the-art trajectory prediction models. Trajectron++ [2] and
Social-BiGAT [9] are able to account for the social interactions
between traffic agents and physical constraints in the scene.

C. Regression and Classification

Current models that produce full distributions mostly uti-
lize the Gaussian Mixture Model, which outputs the local
maximum of the distribution as the final trajectory prediction
result. But empirically, by the qualitative analysis in most
of the work, the output is not actually the closest trajectory
produced by the full distribution to the ground truth. So
the new approaches combining regression and classification
appear, which generates a set of hypothesis trajectory pro-
posals, and outputs the proposal with the highest score as
the final trajectory prediction result. Trajectory Proposal Net
(TPNet) [19] is another state-of-the-art that uses this regression
and classification method for trajectory prediction, where the
model does polynomial fitting between the starting point and
the proposed end point of the traffic agent, while considering
the social-interaction and traffic rules. At the end, the model
performs classification on these proposed trajectories and
outputs the proposal with the top scores.

III. PROBLEM FORMULATION

In this work, we select our robot as the center point in
the scene, where we will determine its surrounding traffic
agents and predict their future trajectories. During the time
interval [0, Tobs] ∪ [Tobs + 1, Tfuture], we denote the number
of traffic agents surrounding the robot at time t ∈ [0, Tobs] ∪
[Tobs + 1, Tfuture] as S. We denote the surrounding agents as
{A1....AS}, and for each agent, we categorize it as pedestrians
or vehicles. For simplicity, the vehicle category also includes
agents like bicycles, motorcycles, and cars. The model takes
a series of past positions in the time interval [0, Tobs] of each
agent P obsAi

= {P 0
Ai
, ..., PTobsAi

}, and also a series of past po-
sitions of the robot P obsr = {P 0

r , ..., P
Tobs
r }, where i ∈ [0, S].

For each agent’s future trajectory in interval [Tobs+1, Tfuture],
we denote it as P futureAi

= {PTobs+1
Ai

...P
Tfuture
Ai

}, and for
the robot’s future trajectory, we expresses it as P futurer =

{PTobs+1
r ...P

Tfuture
r }, where i ∈ [1, S]. We also incorporate

the map information in the same way as Trajectron++, and
encode the map information as M = M t

S , where the S is the
agent, and t ∈ [0, Tobs] ∪ [Tobs + 1, Tfuture].

IV. METHOD

A. Long-Term Network

To further improve the performance of current model in
long-term trajectory prediction, we propose a two-stage frame-
work called Long-Term Network (LPN). The framework is
visualized in Figure 1.

B. Determining the Surrounding Traffic Agents

To determine the surrounding traffic agents, we first deter-
mine the number of agents in the scene, and denote it as S.
We include the agents Ai (i ∈ [1, S]) that are close to the
robot in `2 distance. Formally, the agent is selected if at time
t ∈ [0, Tobs]∪[Tobs+1, Tfuture], ‖P tAi − P

t
r‖2 ≤ d, where d is

a hyperparameter indicating the maximum perception distance.
Since we are going to predict each agent Ai’s future trajec-

tories, we perform the similar process to select the surrounding
traffic agents of our selected agents Ai. The agents around Ai
is again determined by the `2 distance. Formally, the agent
around Ai is selected if at time t ∈ [0, Tobs]∪[Tobs+1, Tfuture]
and x ∈ [0, S] 6=i, ‖P tAi − P

t
Ax
‖2 ≤ d, where d again is the

same hyperparameter that expresses the maximum perception
distance.

C. Modeling the Agent History and The Social Interactions

To model the agent history, we primarily utilize the Mo-
grifier LSTM [13], which is a variant of the vinilla LSTM
model. The Mogrifier LSTM has better performance in long-
term performance than the vinilla version, as the experiment
in the paper demonstrates. The Mogrifier LSTM utilizes the
same LSTM module, but between each unit, the Mogrifier
LSTM updates the input and previous hidden state with several
rounds of mutual gating, which is called a mogrifying step.
The Mogrifier LSTM can also be implemented based on Bi-
directional LSTM. Since there are no public code for the
Mogrifier LSTM, we implement the bi-directional Mogrifier
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Fig. 1: Our visualization to the LTN model. The left is a small graph visualization how our model determines the surrounding
agents of agent Ai at a real-life complex traffic intersection. The right is the model structure with each module indicated out.

LSTM with traditional bi-directional LSTM and add Mogrifier
into the model. The number of mogrifying steps is 6, and the
number of layers is 2. To model the agent history, we input
the agent Ai’s history trajectory P obsAi

= {P 0
Ai
...PTobsAi

} into a
Mogrifier LSTM network with 32 hidden dimensions to obtain
the encoded agent history tensor.

To model the social interactions, we input the agent Ai’s
surrounding traffic agents trajectories P obsAx

= {P 0
Ax
...PTobsAx

},
which x ∈ [0, S] 6=i, into a Mogrified LSTM with 8 hidden
dimensions. Then, we utilize an attention module, which
encodes these social interactions as additive attentions. We
utilize additive attention, where the encoded tensors of all
surrounding traffic agents Ax are aggregated to obtain one
attention tensors, and then concatenate with the corresponding
agent history tensors to obtain one complete history tensor Vi.

D. Map Encoding and Future Encoding

To obtain the encoded map information, we utilize Con-
volutional Neural Network (CNN) to encode the local map
information, which is the similar to Trajectron++ [2].

We model the target agent and its surrounding traffic agents’
future trajectories into the encoded tensors during the training
phase, in order to provide information to formulate the future
trajectory distribution used in the training phase. We input the
agent Ai’s future trajectory P futureAi

= {PTobs+1
Ai

...P
Tfuture
Ai

}
into a Mogrifier LSTM network with 32 hidden dimensions
to obtain the encoded agent future tensor, and we input the
agent Ai’s surrounding traffic agents trajectories P futureAx

=

{PTobs+1
Ax

...P
Tfuture
Ax

}, which x ∈ [0, S] 6=i into the Mogrifier

LSTM with 8 hidden dimensions. Then, the additive attention
is used to aggregate both tensors to obtain one attention tensor,
and then we will concatenate our attention tensor into the
corresponding agent’s future tensor to obtain one complete
future tensor Vf .

E. CVAE Latent Variable Framework

To address the multi-modality to produce the full distri-
bution of the agent Ai’s future trajectory, we utilize the
modified Conditional Variational Autoencoder (CVAE) [10]
latent variable framework employed in [23] and [24]. The
framework utilizes our encoded complete history tensor Vi and
produces the full distribution p(Vf |Vi) on the future trajectory
of agent Ai by defining a discrete categorical latent variable
z ∈ Z which we then can express p(Vf |Vi) as:

p(Vf |Vi) =
∑
z∈Z

pψ(Vf |Vi, z,M)pθ(z|Vi,M) (1)

where |Z| = 25 and ψ, θ are neural network weights that
parameterize their respective distributions, and z is a discrete
latent variable that also aids in interpretability.

During training, we have Vf in the dataset and use
a bi-directional Mogrifier LSTM with 32 hidden dimen-
sions to produce a ground truth future trajectory distribution
qφ(z|Vf , Vi,M), and φ is neural network weight again.

F. Mogrifier GRU

To obtain the final trajectory distribution, we need to decode
the final trajectory distribution with the latent variable z, and



JOURNAL OF LATEX CLASS FILES, VOL., NO., OCTOBER 2020 4

the complete history tensor Vi, using the GRU [12] units. We
present a more powerful variant of GRU unit, where we adopt
the similar idea in Mogrifier LSTM [13] to process the input
and hidden state before each GRU unit. Suppose we have input
xinput and previous hidden state hprev , for a normal GRU, the
current hidden state hcur is calculated by:

hcur = GRU(xinput, hprev), (2)

and the hcur is calculated by:

rcur =σ(Wirxinput + bir +Whrhprev + bhr)

zcur =σ(Wizxinput + biz +Whzhprev + bhz)

ncur = tanh(Winxinput + bin + rcur ∗ (Whnhprev + bhn)

hcur =(1− zcur) ∗ ncur + zcur ∗ hprev,
(3)

where rcur, zcur, ncur are the reset, update, and new gates. σ
is the sigmoid function, and ∗ is the Hadamard product, and
all the W, b are the learnable weights matrices.

Our Mogrifier GRU works by performing mogrifying steps
before the usual GRU computation step. Suppose we perform
mogrifying steps i times, we have MogGRU(xinput, hprev) =
GRU(xiinput, h

i
prev). For each a ∈ [1, i]:

xainput = 1.5 tanh(Qaha−1prev)� xa−2input, (4)

haprev = 1.5 tanh(Raxa−1input)� h
a−2
prev, (5)

where for odd a ∈ [1, i], the equation (1) is performed, and for
even a ∈ [1, i], the equation (2) is performed. The parameters
in the equations are recommended as: i ∈ [5, 6] and i has to
be a integer. In our model, we choose i = 6, and i = 0 will
recover the traditional GRU unit. The parameter Q,R in the
mogrifying steps are the same as the Q,R in the parameters in
the Mogrifier LSTM, which are randomly initialized matrices.
We will have the experiment result of Mogrifier GRU in the
experiment section to show it’s performance comparing with
the traditional GRU.

G. Trajectory Proposal and Classification Module

During training, when we get the full distribution of the
future trajectory of agent Ai, we then produce the final
trajectory proposal by sampling N numbers of the trajectories
from the latent variable distribution, where the latent variable
is determined by:

z = arg max
z∈Z

pθ(z|Vi,M). (6)

Then, in the classification module. We consider the methods
used in TPNet [19]. We assign each proposal with a binary
class label, which is used to indicate whether it is a good
trajectory or not. We use the average distance between all the
sampled trajectory proposals and the ground truth proposal as
the criterion for measuring the proposal’s quality, which can
be expressed as:

D =
1

N

N∑
n=1

‖pn
Agti
− pnApropi

‖2, (7)

which is the average `2 distance between the n-th sampled
proposal vector pn

Apropi
and the ground truth trajectory pn

Agti
.

Then, a threshold γ is used, and for the proposed trajectories
that have D lower than γ, we assign positive labels. For the
proposed trajectories that have D larger than γ, we assign
negative labels.

H. Objective Function

In our model, there are two loss functions to be minimized,
One is the regression loss, and the other one is the classifica-
tion loss.

Regression Loss: We adopt the objective function provided
in Trajectron++ [2] and WWTG [7], Where we aim to solve:

Lreg = max
φ,θ,ψ

N∑
r=1

Ez∼qφ(z|Vir ,Vfr ,M)[log pψ(Vfr |Vir , z,M)]

− βDKL(qφ(z|Vir , Vfr ,M)||pθ(z|Vir ,M)) + αIq(Vir ; z),
(8)

where by [2], the Iq is the mutual information between Vi and
z under the distribution qφ(Vi, z). The computation of Iq is
the same as [25]. α and β are hyperparameters.

Classification Loss: For the classification loss, we consider
the methods in TPNet [19], which a binary cross-entropy loss
Lclass is employed as:

Lclass(x, y) = −w(y ∗ log(x) + (1− y) ∗ log(1− x)) (9)

The total loss is written as follows:

Ltotal = Lreg +
1

N

N∑
n

Lclass(cn, c
∗
n) (10)

where N is the number of trajectory proposals in the proposal
set, w is learnable weight, and c∗n is the corresponding
predicted label, and cn is the corresponding ground truth label.

During the training phase, the regression module minimizes
the regression loss, and the classification module minimizes
the classification loss.

V. EXPERIMENTS

A. Datasets

Our model is evaluated on four widely used public datasets:
The ETH, UCY, Stanford Drone Dataset, and nuScenes. The
ETH and UCY datasets foucs on the pedestrian trajectory
prediction, and contains complex social interactions. The
ETH/UCY dataset has five subsets, each named ETH, HOTEL,
UCY, ZARA-01, ZARA-02. There are two settings for the
length of trajectories, Tobs = Tfuture = 3.2s and Tobs = 3.2s,
Tfuture = 4.8s. The data is captured at 2.5Hz (∆t = 0.4s),
So the dataset will contains 8 frames for observations and 8/12
frames for prediction.

For the Stanford Drone Dataset, this is a trajectory dataset
that is captured by drones from top-down view. So the scenes
in the dataset are top-down-view. The scene are captured at
a university campus with vehicles, cyclists, and crowds. The
dataset contains a lot of heterogeneoous data.

For the nuScenes dataset, this is a challenging large real-
world driving forecasting dataset, where with more than 1000
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scenes in the dataset are captured in Boston and Singapore.
Each scene is 20 seconds long, and the dataset contains
High-Definition semantic maps. All the scenes in the dataset
contains a large amount of heterogeneous data, with complex
social interactions among up to 23 semantic object classes.
Also, the map provides data about the physical constraints in
each scenes.

B. Evaluation Metrics

In our experiment, we will use four metrics that are com-
monly used in all trajectory prediction models, which include
minADE20, minFDE20, ADE20 and FDE20.

• minADE20 (mADE20): the minimum mean `2 distance
between the ground truth trajectory and predicted trajec-
tory from the best of 20 samples by the LTN.

• minFDE20 (mFDE20): the minimum `2 distance between
the ground truth final position and the predicted final
position at the final Tfuture from the best of 20 samples
by the LTN.

• ADE: the mean `2 distance between the ground truth
trajectory and predicted trajectory by the LTN.

• FDE: the `2 distance between the ground truth final
position and the predicted final position at the final
Tfuture by the LTN.

C. Baselines

We compare the performance of our model with the state-
of-the-art models below:

• Vanilla LSTM: An LSTM network utilizing only the
agent Ai’s history trajectory information.

• Social LSTM [4]: An LSTM network that utilizes not
only the agent Ai’s history trajectory information, but
also uses LSTM to model the agents’ trajectory informa-
tion around agent Ai.

• Social GAN [26] (S-GAN): This is a GAN with so-
cial interaction considered. Each agent is modeled by
an LSTM-GAN combined network, where the LSTM
encoder-decoder outputs are the generator of GAN, and
the generated trajectories are then evaluated against the
ground truth trajectories in the discriminator.

• Trajectron++ [2]: This is a CVAE-based trajectory pre-
diction model, where the LSTM-GRU encoder-decoder
structure is used, and the LSTM is used to model the
agent’s history and it’s corresponding social interaction,
and at the GRU decoder a full distribution of the predicted
trajectory is produced.

• Social-BiGAT [9] (S-BiGAT): This is an LSTM-GAN
with Graph Attention Network to encode agent’s social
interactions.

• TPNet [19]: This is a CNN based network that produces a
trajectory proposal set by first predict the end point from
the given map information and then predict the potential
endpoint, then do regression based on map information,
starting and the end point. At the end, a classification is
performed to output proposals with high scores.

• Sophie [27]: This is a GAN-based trajectory prediction
model that also leverages the social interactions and phys-
ical information. Similar to Social-GAN, the trajectory is
produced by generator and the discriminator will evaluate
these predictions against the ground truth trajectories.

• STGAT [28]: This is a spatial-temporal graph based
trajectory prediction model. The spatial interaction is
captured by graph attention mechanisms and the LSTM
is used for temporal interactions.

• Social-Attention [29](S-ATTN): This is an attention
based trajectory prediction model, where it captures the
relative importance, which is attention, of each person
when predicting for the future trajectories.

• Car-Net [30]: This is a prediction model that can account
the dependencies between agent’s behavior and their
spatial environment, where the model can learns where to
look in a large environment when predicting the trajectory
of an agent.

• CSP [24]: This is a prediction model that builds on
LSTM encoder-decoder framework, where LSTM is used
to model the agent’s social interaction and output multi-
modal future distribution of the agent based on the social
interaction.

• SpAGNN [31]: This is a probabilistic model that utilizes
graph neural network to capture the interactions between
the vehicles and output a distribution of the future trajec-
tory of the vehicle the model selected to predict.

Implementation Details For our experiment, we adopted
the ETH/UCY/nuScenes dataset preprocessing method pro-
vided in Trajectron++ [2]. For SDD, it is preprocessed ac-
cording to the methods provided in Evolvegraph [32]. For
our Mogrifier GRU, we chose the mogrifying step to be 6,
and the α, β in the regression objective function is α=1,
and β is dynamically changed for the best performance,
according to Trajectron++, which this methods provides most
optimal result. We optimize the network using Adam [33]
optimizer with learning rate 0.002. The γ we used is 3m.
We implemented LTN with PyTorch on a desktop with Ubuntu
20.04, equipped with one Intel I7-8700K CPU and two Nvidia
GTX 1070Ti GPUs.

D. Evaluation of Trajectory Prediction
We compared our Mogrifier GRU version LTN with several

baseline method on ETH, UCY, datasets in terms of two
metrics ADE and FDE in Table I. We reported our results
as LTNM20, where it’s the 20 trajectory proposal that has the
highest scores. In Table I, we can see that in terms of ADE, our
LTNM20 can outperform Trajectron++, which leads the rest of
the model in the data we collected. In ETH and UNIV, our
model achieved better ADE results. Also, in terms of FDE, our
LTNM20 outperforms all other methods completely, showing
that our model is very good at long term trajectory prediction.
We successfully improved our methods by nearly 10% in terms
of FDE, or long term prediction. However, we also notice that
both ETH and UCY has reached a saturation, which means
that more improvement is unlikely due to the data annotation
errors or any off-errors during data collection, which leads us
to analyze the LTN’s performance in another dataset SDD.
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TABLE I: Comparison between Mogrifier GRU version LTN (LTNM20) and the baseline methods on ETH and UCY benchmark.
We used Tfuture = 4.8 seconds setting. Each row represents a dataset and each column represents a method, with ADE and
FDE separated into two tables for better clarity. The ADE and FDE are measured in Meter. All the 20 marks means that the
prediction is chosen from the best of 20 samples.

Metric Dataset LSTM S-LSTM S-GAN20 Trajectron++20 S-BiGAT20 TPNet20 SoPhie20 STGAT LTNM20

ADE

ETH 1.09 1.09 0.81 0.43 0.69 0.84 0.70 0.65 0.39
HOTEL 0.86 0.79 0.81 0.12 0.69 0.24 0.76 0.49 0.16
UNIV 0.61 0.67 0.72 0.22 0.4 0.42 0.54 0.55 0.20

ZARA1 0.41 0.47 0.60 0.17 0.55 0.33 0.30 0.30 0.18
ZARA2 0.52 0.56 0.34 0.12 0.30 0.26 0.38 0.36 0.15
Average 0.70 0.72 0.42 0.20 0.36 0.42 0.54 0.48 0.22

Metric Dataset LSTM S-LSTM S-GAN20 Trajectron++20 S-BiGAT20 TPNet20 SoPhie20 STGAT LTNM20

FDE

ETH 2.41 2.35 1.52 0.86 1.29 1.73 1.43 1.12 0.80
HOTEL 1.91 1.76 1.61 0.19 1.01 0.46 1.67 0.66 0.18
UNIV 1.31 1.40 1.26 0.43 1.32 0.94 1.24 1.10 0.41

ZARA1 0.88 1.00 0.63 0.32 0.62 0.75 0.63 0.69 0.29
ZARA2 1.11 1.17 0.84 0.25 0.75 0.60 0.78 0.60 0.23
Average 1.52 1.54 1.18 0.41 1.00 0.90 1.15 1.08 0.38

TABLE II: Comparison between Mogrifier GRU version LTN (LTNM20) and the baseline methods on SDD benchmark. Each
row represents a dataset and each column represents a method, with miniADE and miniFDE separated into two tables for
better clarity. All the miniADE and miniFDE are measured in Pixels and are the measurement for predictions at Tfuture = 4.8
seconds. All the 20 marks means that the prediction is chosen from the best of 20 samples.

Metric Dataset S-LSTM S-GAN S-ATTN STGAT Trajectron++ CAR-Net LTNM20

mADE20 SDD 31.4 27.0 33.3 18.8 19.3 25.72 15.2
Metric Dataset S-LSTM S-GAN S-ATTN STGAT Trajectron++ CAR-Net LTNM20

mFDE20 SDD 55.6 43.9 55.9 31.3 32.7 51.80 25.8

TABLE III: Comparison between Mogrifier GRU version LTN
(LTNM20) and the baseline methods on nuScenes benchmark.
We predicted the trajectories 4 seconds after the Tobs. Each
row represents methods, and each column represents the FDE
of each methods at that discrete time period. All the FDE are
measured in Meters.

Methods 1s 2s 3s 4s
S-LSTM 0.47 - 1.61 -

CSP 0.46 - 1.50 -
CAR-Net 0.38 - 1.35 -
SpAGGN 0.36 - 1.23 -

Trajectron++ 0.07 0.45 1.14 2.20
LTNM20 0.13 0.43 0.92 1.74

We compared our Mogrifier GRU version LTN with several
baseline method on SDD dataset in terms of minADE20 and
minFDE20 in table 2. In table 2, our methods outperformed
all the baseline methods, with over 20 percent improvement
in both minADE20 and minFDE20.

Not only our LTN demonstrated its long-term prediction
advantages in terms of accuracy in ETH, UCY, and SDD,
we also introduced a dataset with more heterogeneous data,
nuScenes.

In Table III, we compared our LTNM20 model with several
baseline methods with nuScenes dataset. We can see that
Trajectron++ outperformed all the other baseline methods
across all 4 seconds time span, but our LTNM20 outperforms
Trajectron++, especially in long terms, where over 20 percent
improvement is achieved in3seconds and4seconds. But we also
noticed that in short term, especially in1seconds,our method
did not outperform Trajectron++, but we are not especially
concerned with it because our model demonstrated persuasive

TABLE IV: Comparison between Mogrifier GRU version Tra-
jectron++ (Trajectron++M ) and Regular GRU version Trajec-
tron++ on nuScenes benchmark. We predicted the trajectories
4 seconds after the Tobs. All the FDE are measured in Meters.

Methods 1s 2s 3s 4s
Trajectron++ 0.07 0.45 1.14 2.20

Trajectron++M 0.08 0.43 1.02 2.03

long term prediction performance in terms of accuracy.

E. Evaluation of Mogrifier GRU

We now examine the performance of the Mogrifier GRU.
As we mentioned before, because we believe both ETH/UCY
datasets have reached a saturation, where there are no possible
improvement space for us, we conduct the rest of the experi-
ment on SDD and nuScenes datasets. As the table shows, we
set up experiment with two versions of Trajectron++, since
the authors kindly provided their code:

Version 1: Trajectron++ with regular GRU as decoder.
Version 2: Trajectron++ with Mogrifier GRU as decoder.
As Table IV shows, the Mogrifier GRU version Trajec-

tron++ outperforms the regular GRU version Trajectron++ at
3 seconds and 4 seconds. At 3 seconds and 4 seconds the
improvement reached around 10 percent just by switching the
regular GRU with our Mogrifier GRU. Our Mogrifier GRU
is intended to remind the future hidden states and input with
the information before, so our experiment showed that with
the reminder of the states of the agent in 1 seconds and 2
seconds provided to 3 seconds and 4 seconds time period, the
prediction result in 3 seconds and 4 seconds improved.
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(a)

(b) (c)

Fig. 2: The same scene with predictions from Trajectron++ [2] and LTNM20. (a) The prediction from Trajectron++ where a
most likely single output and the full distribution of future trajectory are provided. (b) The zmode distribution prediction from
LTNM20 and the most likely single output from the Trajectron++ are provided. (c) The prediction of Tfuture = 3 seconds
from LTNM20, denoted in a yellow circle, and the zmode distribution are provided.

F. Qualitative Analysis

We compared our visualized experiment results with Tra-
jectron++ [2] in the same scene provided in nuScenes [17]
dataset. In Fig. 2(a) and Fig. 2(b), we can clearly see the
advantage brought by the zmode distribution. We can compare
the shape of the distribution in both figures, where we can
see that zmode distribution of the red and blue car looks more
uniform, meaning that it can generate samples with less bias.
Therefore, the zmode distribution in Fig. 2(b) can provide more
samples near the ground truth. Also, the dense center of the
zmode distribution shifts towards the ground truth comparing
with that of the full distribution. So, the proposed samples in
zmode will have larger probability to be the closest samples to
the ground truth. Although the variance increases for the zmode
distribution, we will tackle it with our classification module,

where the samples with high variance will be filtered out by
the threshold γ.

In Fig. 2(b), we can also see that by plainly taking the
argmax of the zmode distribution, the output is not the closest
one to the ground truth. This is very clear in Fig. 2(b), where
for the red car and its end point prediction, the zmode indicates
an area at the very center of the distribution that is closest
to the ground truth trajectory, but the most likely output
does not fall into that area. By our classification module,
with good sampling from the zmode distribution, filtering, and
classification, we obtained the yellow hollow circle in Fig.
2(c) that falls into the area indicated by the zmode distribution.
The result is better compared with Trajectron++. For clarity,
we only indicate the prediction of LTNM20 at Tfuture = 3
seconds, which is the end point distribution in red for the red
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car.

VI. CONCLUSION

In this work, we present our model LTN, a two-stage
trajectory prediction model for long-term trajectory prediction.
The LTN incorporates heterogeneous data and combines re-
gression and classification methods to improve the trajectory
prediction performance for long-term prediction. Our LTN will
first generate a distribution of the future trajectories, sample
future trajectory proposals from it and perform classification
on our proposal set. Along with the data of surrounding agents
and the map information, our model could ensure that the final
trajectory prediction is ideal and better. Our LTN achieves
state-of-the-art performance in various popular datasets and
shows significant improvement in terms of long-term trajectory
prediction accuracy.
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