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Abstract—The rapid development of electric vehicle (EV) technologies
promises cleaner air and more efficient transportation systems, espe-
cially for polluted and congested urban areas. To capitalize on this po-
tential, the Indonesian government has appointed PLN, its largest state-
owned electricity provider, to accelerate the preparation of Indonesia’s
EV infrastructure. With a mission of providing reliable, accessible, and
cost-effective EV charging station infrastructure throughout the country,
the company is prototyping a location-optimized model to simulate how
well its infrastructure design reaches customers, fulfills demands, and
generates revenue. In this work, we study how PLN could maximize
profit by optimally placing EV charging stations in urban areas by adopt-
ing a maximal covering location model. In our experiments, we use data
from Surabaya, Indonesia, and consider the two main transportation
modes for the locals to charge: electric motorcycles and electric cars.
Numerical experiments with 11 candidate EV charging station locations
and the projected number of electric vehicles in the early penetration
phase across 98 sub-districts throughout the city show that only four
charging stations are needed to cover the whole city, given the charging
technology that PLN has acquired. However, consumers’ time-to-travel
is exceptionally high (about 35 minutes), which could lead to poor
consumer service and hindrance toward EV technologies. Sensitivity
analysis reveals that building more charging stations could reduce the
time but comes with higher costs due to extra facility installations. Adding
layers of redundancy to buffer against outages or other disruptions
also incurs higher costs but could be an appealing option to design
a more reliable and thriving EV infrastructure. The model can provide
insights to decision-makers to devise the most reliable and cost-effective
infrastructure designs to support the deployment of electric vehicles
and much more advanced intelligent transportation systems in the near
future.

1 INTRODUCTION

The ever-increasing use of fossil fuels in Indonesia, the
largest economy in Southeast Asia, is one of the main
contributing factors to the poor air quality problems numer-
ous cities face. Energy consumption for the transportation
sector is estimated to double in the coming years, which
is alarmingly high despite government efforts to promote
green energy and energy conservation [1]. The recent in-
crease in gasoline prices globally exacerbates the problem
[2], requiring the government to provide more than 110
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trillion Rupiahs in energy subsidy in the coming years [3],
putting severe economic and environmental challenges to
government and the public.

The rapid advances in electric vehicles (EVs) and their
advantages over fossil-fueled vehicles promise potential
solutions to alleviate the challenges due to fossil fuels
and achieve more energy-efficient and environmentally-
friendly transportation systems [4]. With its fast-growing
trend globally, rising tenfold from less than half-million
units in 2014 to about 4.79 million units in 2019 [5], EV
has become an appealing technology to adopt at scale.
The Indonesian government aims to build reliable facilities
and nurture ecosystems for EVs to thrive in the country
[6]. To carry out the mission, the government appoints PT
PLN Persero (or PLN, in short) to optimally determine
the number and location of EV charging facilities in the
country. The main expectation is that the charging stations
are placed optimally throughout urban areas to maximize
demand fulfillment and public accessibility to attract early
adopters and smoothen the transition to 100% electrified
urban transportation systems.

Traditionally, facilities and infrastructure planning in
Indonesia mainly consider the crowd and intensity level of
business and economic activities in an area. This results in
facilities concentrating only on business centers or blocks
of government buildings, lowering the level of service for
these facilities. The public often bears the burden of having
to travel long distances to utilize these facilities, which is
counterproductive to reducing energy consumption in the
first place.

In this work, we develop a mixed-integer programming
(MIP) model to optimize the location of EV charging stations
in urban areas. We collect data from the city of Surabaya
and consider 11 alternative locations to install EV charging
facilities. The 11 alternative locations are pre-chosen because
these represent the sites where PLN can serve customers
directly and already have a physical infrastructure deemed
feasible to build EV charging facilities (see Fig. 1 to see
how these points distribute across the city). We consider
two private transportation modes prevalent in Surabaya:
electric cars and electric motorcycles, each with a different
charging capacity. In our experiment, we use the projection
of each mode as demands in each of the 98 sub-districts
in Surabaya and succeed in obtaining the optimal location
of the EV charging stations with maximized demand ful-
fillment for various distance-to-travel constraints. Decision-
makers can use the insights to develop a consumer-friendly
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infrastructure design with maximal revenue to support EV
ecosystems on a larger scale.

The contribution of this work can be summarized as
follows. First, we present a study case on EV facilities design
for an urban area from a developing country’s perspective,
a potentially colossal EV market shortly. More concretely,
we consider reliability issues such as uncertain outages or
blackouts in cities in developing countries and add layers
of redundancy to buffer against them. In the experiment,
we contrast the solutions obtained by not requiring extra
coverage from other facilities (Fig. 2) with one that requires
such redundancy (Fig. 5 and Fig. 6). Second, we propose
a quantitative model based on the maximal covering loca-
tion model to obtain the optimal facility locations for EV
charging stations in urban areas. Finally, we analyze the
sensitivity of the optimal locations for an EV charging sta-
tion concerning customer distance-to-travel and highlight
the tradeoff between cost or revenue objective and level of
service. These contributions add to the literature optimiza-
tion model and insights to design effective EV infrastructure
for urban areas and thriving EV ecosystems on a larger scale.

The rest of this paper is organized as follows. In Section
2, we present the problem formulation and provide a short
overview of related work. We explain our framework and
model in Section 3 and describe our experiment in Section
4. Finally, we discuss our findings in Section 5 and conclude
in Section 6.

2 RELATED WORK

This study deals with facility locations for EV fast-charging
infrastructure for urban areas from a developing country
perspective. Below we highlight a few selected related
works that inspire our formulation.

Much work on the EV facility location problem considers
the new facilities to be integrated into a smart-grid design
[7]–[9] or other renewable energy sources, such as solar cell
[10]. While this view provides an integrated solution to the
renewable energy issues to amplify the positive impact of
EVs on the environment, this setting is too ideal for urban
areas in developing countries.

Case studies on developed and developing countries
can be found in EV facility design literature. Research in
[11], set in Lisbon, addresses a similar problem to ours but
focuses on slow-charging technology, motivated by the fact
that vehicles around the city are often parked overnight.
The model proposed in [12] considers both fast- and slow-
charging technologies and uses data from Toronto, focus-
ing on robustly covering all demands, avoiding leaving
some demands to be fulfilled only partially. A study case
in Ankara uses a GIS-based model and adopts a fuzzy
approach [13]. A city-scale simulation is developed in [14]
using data from Singapore, focusing on the tradeoff between
cost minimization and customer accessibility maximization
objective.

Research related to optimizing the location of EV charg-
ing station that considers characteristics of urban areas
and incorporate the uncertainty and outage of electricity, a
common phenomenon in developing countries, is still lim-
ited. The earlier study develops a min-max facility location
problem to optimize the number of public gas stations in the

West Surabaya area that considers the population and traffic
densities and number of public facilities (such as hospitals
and schools) [15]. A mixed-integer linear model is utilized to
minimize the installation cost of building charging stations,
considering the number of vehicles in the area [16]. An
agent-based simulation model is developed in [17] that
considers the number of EVs visiting to charge every hour
at each installed charging station, allowing more dynamic
analysis but requiring extensive effort to build and validate
the model.

Furthermore, work in [18] uses p-median facility location
model for two different objective functions. The model aims
to maximize the profit of charging stations under fixed cost
while maximizing consumer travel satisfaction, represented
by a goal of minimizing the maximum distance between
users and charging stations. Another work in [19] uses
Multi-Source Weber Problem to minimize the total distance
from users to their nearest charging stations. Work in [20]
uses a set covering formulation and discrete location theory
to minimize the total cost, considering variable driving be-
havior (traffic flow), driving range, charging facility instal-
lation cost, and road network. Finally, [21] uses a quantum
particle swarm optimization algorithm to minimize the cost
of using electric vehicles, considering two cost components
comprising user costs (including the cost of charging electric
vehicles and costs due to travel and waiting for charg-
ing) and the charging station costs (including infrastructure
construction costs, (land acquisition costs, equipment, and
electrical component cost, and charging station management
costs). A good EV charging station facility location review is
available in [22].

In this study, we adopt a location set covering prob-
lem, which aims at identifying the minimum number and
location of facilities to meet customers’ demands best [23].
This model is suitable for problems aiming to determine
the number and assignment of facilities to meet demand
points. One fundamental model property is the pre-set cov-
erage radius parameter (often expressed as distance or time
threshold), which determines the feasibility of assigning a
specific demand node to facilities. This particular threshold
value is used to evaluate how large the population or
demands can be covered and reached by each facility. It
is often helpful to pre-set the facility level of service (the
farther the customers are, the more likely the service to be
lower since the customers have to wait or travel longer to
be serviced by the facility).

3 FORMULATION AND PROPOSED MODEL

We consider a set of demand points I and supply stations
J , representing sub-district regions and charging station
candidate locations in an urban area. We also consider
K vehicle types, incorporating types of vehicle modalities
that urban cities accommodate (here, we include electric
motorcycles and cars). The average time to travel from
demand i ∈ I to charging station j ∈ J is denoted by dij .
A threshold parameter dmax is used to limit this time in the
following analysis to see the robustness of the solution w.r.t.



Fig. 1. The candidate locations of charging station facilities (yellow
marker) and demand points (blue marker) in the city of Surabaya,
Indonesia

consumer time-to-travel for charging. The decision variables
associated with these points are binary variables

xj =

{
1, if station j is selected
0, otherwise

(1)

and

yij =

{
1, if EVs from i are served by station j

0, otherwise,
(2)

indicating whether a charging station candidate location j is
selected or not and whether demand point i is to be fulfilled
by charging station j, respectively. In addition, we also use
integer decision variables vkij and uj , denoting the number
of electric vehicles of type k from point i charged at station
j and the number of units of charging connectors installed
at charging station j, respectively.

Each opened station j incurs a daily cost hj and can
only accommodate qj charging connectors due to limited
space. Each charging connector incurs g daily cost and has a
limited daily charging throughput of cj kWh. For a vehicle
type k, it takes ek kWh energy and tk time to charge using
fast-charging technology that PLN adopts fully. To convert
the energy used to monetary value, we use the Indonesian
electricity price denoted by r Rupiah/kWh (Rupiah or Rp.
is Indonesian currency).

With this setting, the objective is to maximize the daily
profit

maximize
∑
i∈I

∑
j∈J

∑
k∈K

rekv
k
ij︸ ︷︷ ︸

revenue

−

g
∑
j∈J

uj +
∑
j∈J

hjxj︸ ︷︷ ︸
cost

 ,

(3)
which takes into account daily revenue and operational
and investment costs that have been broken down to daily
nominal costs (assuming five years depreciation schedule).

This objective is maximized subject to the following set of
constraints: ∑

k∈k

vkij ≤ yijM, ∀i ∈ I, j ∈ J, (4)

dijyij ≤ dmax, ∀i ∈ I, j ∈ J, (5)∑
j∈J

vkij = wk
i , ∀i ∈ I, k ∈ K, (6)∑

i∈I

∑
k∈K

tkv
k
ij ≤ cjuj , ∀j ∈ J, (7)

uj ≤ xjqj , ∀j ∈ J, (8)∑
i∈I

yij ≤ xjM, ∀j ∈ J, (9)∑
j∈J

yij ≥ 1, ∀i ∈ I, (10)∑
j∈J

xj ≤ N, (11)

x1 = 1. (12)

In the above formulation, constraint (4) ensures that
charging stations can only charge vehicles if assigned. Con-
straint (5) ensures the maximum time-to-charge for con-
sumers does not exceed the set threshold dmax. Constraint
(6) ensures all charging demands are fulfilled, where wk

i

denotes the number of vehicles of type k to charge at
demand point i. Constraint (7) ensures that the required
charging capacity to fulfill each station’s assigned demand
does not exceed the installed capacity. Constraint (8) restricts
the number of charging connectors installed in each station.
Constraint (9) ensures that demands are assigned only to
opened stations. Constraint (10) guarantees that at least
one stations cover each demand. Constraint (11) limits the
maximum number of stations to open. Finally, constraint
(12) enforces that Station 1 (which is the main EV charging
station in Surabaya operated by PLN) open (as demanded
by PLN).

In addition, we also have a few variable type constraints

xj ∈ {0, 1}, ∀j ∈ J, (13)
yij ∈ {0, 1}, ∀i ∈ I, j ∈ J, (14)

vkij ∈ {0, 1, 2, · · · }, ∀i ∈ I, j ∈ J, k ∈ K, (15)

uj ∈ {0, 1, 2, · · · }, ∀j ∈ J. (16)

This formulation uses linear objective function and lin-
earized constraints, which yields a mixed-integer program-
ming (MIP) model, allowing us to solve it efficiently using
standard MIP solvers.

4 NUMERICAL EXPERIMENTS

We run the model presented in Section 3 using data collected
from Surabaya and interviews with PLN and EV stake-
holders in the city. We combined vehicle registration data
with the projection of the number of electric motorcycles
(k = 1) and electric cars (k = 2) for the early penetration
phase in Surabaya, distributed on each of its 98 sub-districts
as our demand points uk

i ’s. We accumulate the number of
EVs on a sub-district level and use sub-district coordinates
on Google Maps as our demand points to remove person-
ally identifiable information and maintain confidentiality.



Furthermore, we prepopulate 11 candidate locations of EV
charging stations and enforce Station 1 to open, based on
PLN inputs, reflecting the current conditions in the field.

We also obtain the following information. The estimated
daily cost to open a charging station hj = Rp. 403,288
∀j ∈ J , and the estimated daily cost to install a charging
connector g = Rp. 110,244. PLN fast-charging technology
takes 20 minutes to fully charge an electric motorcycle
and about 90 minutes for an electric car. At the time of
writing, the current electricity rate for business uses is r =
Rp. 2,644.78/kWh. We use information from Google Maps
to estimate the average travel time dij from demand i to
station j. Finally, we set N = 11 for the maximum number
of charging stations, qj = 10,∀j ∈ J for the maximum
charging connectors, and M = 1000 as a practical value
for our big-M constraints.

In the experiment, we test multiple values for the time-
to-travel threshold dmax = {25, 30, 35, 40, 45} minutes to
assess the sensitivity of the optimal solutions to customer
level of service. In this regard, dmax parameter (i.e., the
maximum distance a customer has to travel to reach an EV
charging facility) represents the level of service toward cus-
tomers. In contrast, lower values mean higher service levels
(customers can easily find an EV charging station). In com-
parison, larger values mean lower service levels (customers
must travel further to reach a charging station). Fig. 2 shows
that a higher service level (lower dmax values) requires
higher costs, which highlights the tradeoff between service
level and total costs. The optimal solution for the baseline
problem (without adding a layer of redundancy) is found
using OpenSolver [24] with optimal cost, profit, and revenue
reported in Fig. 2. We found that the number of optimal
charging stations differ for different dmax threshold values
(either 4 stations or 5 stations for dmax ∈ {25, 30, 35, 40, 45}
minutes). Fig. 3 and Fig. 4 show the selected stations as red
markers overlaid in Surabaya map for 5-station solution and
5-station solution, respectively.

Finally, we study how to increase the overall systems’
reliability by adding redundancy layers to buffer against
outages and improve customer service levels, incorporating
some reliability uncertainties common in developing coun-
tries. To account for this, we modify the RHS of constraint
(10). Instead of requiring each demand to be covered only by
one station, we require 2 or 3 stations to cover each demand.
The new revenue, cost, and profit for such a more reliable
system is summarized in Fig. 5 and Fig. 6.

5 DISCUSSIONS

We first note that we tried to simulate a better level of ser-
vice situations (dmax < 25 minutes) in the experiment, but
our model could not find a feasible solution. This is mainly
due to high time-to-travel (dij) values due to extensive traf-
fic in Surabaya. Hence, regardless of how the infrastructure
is designed, the travel time could not be lowered (unless
other forms of traffic intervention are incorporated, such as
smart city integration, etc.). Therefore, we only discuss the
case for dmax ≥ 25 minutes.

We immediately see from Fig. 2 the tradeoff between
profit maximization objective with consumer time-to-travel.
For example, with a 30-minute threshold for consumer

Fig. 2. Daily revenue, cost, and profit from the optimal solution of EV
charging stations in Surabaya for dmax = {25, 30, 35, 40, 45} minutes
for baseline model (without redundancy)

Fig. 3. Selected locations for 5 EV charging stations (red markers)

travel time, our model prescribes five charging stations (see
Fig. 3 for the locations) to fulfill all demands and a total
of 33 units of charging connectors, yielding a revenue of
Rp. 24,667,800, a total cost of Rp. 5,654,497, and thus a
profit of Rp. 19,013,303. On the other hand, with a more
relaxed time-to-travel threshold, say, 35 minutes, our model
prescribes only four charging stations (see Fig. 4 for the
locations). The total of 33 units of charging stations also,
giving the same revenue, but a lower cost of Rp. 5,251,209,
resulting in an increased profit Rp. 19,416,591 (2% higher).
We realize that the current improvement in a numerical
value is marginal, mainly due to the small projected demand
for EVs in Surabaya. In the future, we can scale up our
work to cover other larger cities or obtain more accurate
EV demand projections, which is expected to rise soon.

We also observe a highly imbalanced demand distribu-
tion from the provided data, with more EVs concentrated in
the city’s wealthier neighborhoods. This encourages sparse
solutions, resulting in optimal solutions maximizing the



Fig. 4. Selected locations for 4 EV charging stations (red markers)

Fig. 5. Daily revenue, cost, and profit from the optimal solution of EV
charging stations in Surabaya for dmax = {25, 30, 35, 40, 45} minutes
with redundancy (≥2 stations coverage)

number of charging connectors installed only in one or two
of the selected stations and leaving the rest to install only
one or two connectors. The different solutions depicted in
Fig. 4 and Fig. 3 highlight how relocating one facility will
shift a few other facilities since they are serving a highly
density-imbalanced region of the city. This highly imbal-
anced solution could provide insights for decision-makers
to make a more targeted policy to increase the penetration
rate of EVs more equally throughout the city. This well-
informed policy could potentially exponentiate the positive
impacts of EVs for the public, reducing concentrated traffic
and pollution and increasing consumer satisfaction overall.

Finally, we highlight the cost of adding layers of redun-
dancy in demand coverage to buffer for service uncertainty,
which is particularly important in developing countries
since electricity often breaks down, even before adding EVs
electricity demand. Fig. 5 and Fig. 6 confirm our hypothesis
that such redundancy forces the optimizer to output a more
reliable network design, hence often comes solutions with

Fig. 6. Daily revenue, cost, and profit from the optimal solution of EV
charging stations in Surabaya for dmax = {25, 30, 35, 40, 45} minutes
with redundancy (≥3 stations coverage)

higher costs, if such solutions even exist. In our case, there
is no such solution for dmax = 25 minutes, mainly due to the
already constraining travel times dij ’s. Thus, we only show
the results for dmax ∈ {30, 35, 40, 45} in Fig. 5 and Fig. 6.
Meanwhile, solutions for dmax > 25 are at higher costs (7%
increase on average compared to the optimal solution with-
out demand coverage redundancy). With these results, we
would advocate using the solution with dmax = 25 minutes
to achieve a better service level and absorb the 5% lower
profit in the earlier years. If higher profits are demanded,
we suggest yielding to the solution with dmax = 35 minutes
at later years. We believe that the government and PLN
intend to create a thriving EV ecosystem and consider long-
term benefits, thus incorporating demand redundancy in the
infrastructure design. We believe the extra costs will pay off
as the public adopts EV technologies more widely.

6 CONCLUSION AND FUTURE WORK

In this study, we present a case concerning EV infrastructure
designs for urban areas in developing countries, with data
collected from Surabaya, Indonesia. We adopt a maximal
covering location problem for our model and solve for
the optimal location of the EV charging station and the
number of charging connectors installed at each station.
Considering 11 alternative locations and 98 sub-districts
throughout Surabaya as demand points and projected EV
units in each district, our model obtains feasible solutions
only when consumers are willing to travel for 25 minutes,
given the current traffic conditions in the city. Sensitivity
analysis of consumers’ time-to-travel reveals that lower-cost
solutions are available but force consumers to travel longer.
Adding redundancy to the EV infrastructure designs, as
an effort to buffer against outages or disruptions, requires
higher costs. However, such extra costs might be justifiable
in the long term to create a thriving EV ecosystem so that the
public can enjoy more environmentally friendly transporta-
tion systems and cleaner air. We envision that our model
can be applied to incorporate intelligent vehicles as well,
optimizing the location of the charging and the microscopic



driving behavior that an intelligent vehicle can learn. Such
an approach will be one of the subjects of our future studies.
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