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Abstract—We study the continuous vector-valued Witsen-
hausen counterexample through the lens of empirical coordi-
nation coding. We characterize the region of achievable pairs of
costs in three scenarios: (i) causal encoding and causal decoding,
(ii) causal encoding and causal decoding with channel feedback,
and (iii) causal encoding and noncausal decoding with channel
feedback. In these vector-valued versions of the problem, the
optimal coding schemes must rely on a time-sharing strategy,
since the region of achievable pairs of costs might not be convex
in the scalar version of the problem. We examine the role of the
channel feedback when the encoder is causal and the decoder is
either causal or non-causal, and we show that feedback improves
the performance, only when the decoder is non-causal.

I. INTRODUCTION

In 1968, Witsenhausen introduced his famous counterex-

ample demonstrating the suboptimality of affine strategies in

the Linear Quadratic Gaussian (LQG) settings featuring non-

classical information patterns [1]. Since then, it has become a

cornerstone in the field of distributed decision-making [2]–[5]

and information-theoretic control [6]–[13].

Due to the vector-valued formulation of the problem [14],

many information-theoretic approaches have been adopted for

analyzing this open problem [15]–[18]. The concept of empir-

ical coordination, introduced in [19]–[21], plays an important

role in establishing cooperative behavior among all agents

in the network, providing single-letter solutions for problems

such as characterizing the optimal cost, capacity region, and

utility functions [22]–[24].

Feedback, as an intrinsic component of communication

systems, offers the potential to enhance performance by en-

abling decision makers (DMs) to refine their actions based on

previous outcomes. In many multi-terminal setups, feedback

has proven beneficial for increasing the capacity region and

assisting communication of the multiple-access channel [25,

26] as well as broadcast channel [27, 28]. Additionally, when

considering the empirical coordination coding problem in a

point-to-point scenario, [29, 30] showed that channel feedback

could enable the DMs to directly coordinate their outputs with

the system state, by simplifying the information constraint and

by reducing the number of auxiliary random variables, and
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Figure 1. Vector-valued Witsenhausen counterexample with causal encoder
and causal decoder.

therefore, enlarge the set of distributions. However, whether

feedback facilitates coordination in the vector-valued Witsen-

hausen settings with causal controllers [31, 32] still remains

an open question. Recently, it has been claimed in [33], that

when constraint to Gaussian case, feedback does not contribute

to performance improvements when the first DM is causal

and the second DM is noncausal. In this article, we complete

this study and we provide the necessary proof to the claimed

information constraint.

In this paper, we aim to deepen the understanding of the

problem by incorporating channel feedback for a comparative

study, focusing on three novel setups: (i) causal encoding and

causal decoding, (ii) causal encoding and causal decoding

with channel feedback, and (iii) causal encoding and non-

causal decoding with channel feedback. Our analysis shows

that time-sharing is crucial in the first setup, in order to

randomize between operating points and convexify the region

of achievable pairs of costs. The minimum Gaussian cost

identified in [33] can also be achieved by time-sharing between

two affine policies. Time-sharing corresponds to randomized

decision-making process for the original one-shot Witsen-

hausen counterexample which enables operating points to be

achieved by randomization. The characterization of the region

of achievable pairs of costs for the second model is derived

using the genie-aided argument by focusing on its outer-bound.

Comparing the results of the second and third models, we

conclude that feedback can enlarge the region of achievable

pairs of costs when the decoder is non-causal but not when it

is causal.

http://arxiv.org/abs/2408.03037v1


II. SYSTEM MODEL

The vector-valued Witsenhausen counterexample setup con-

sists of source states and channel noises that are drawn

independently according to the i.i.d. Gaussian distributions

Xn
0 ∼ N (0, QI) and Zn

1 ∼ N (0, NI), for some block length

n > 0, and Q,N > 0. We denote by X1 the memoryless

interim state and Y1 and output of the memoryless additive

channel, generated by

X1 = X0 + U1 with X0 ∼ N (0, Q), (1)

Y1 = X1 + Z1 = X0 + U1 + Z1 with Z1 ∼ N (0, N). (2)

We denote by PX0
= N (0, Q) the generative Gaussian

probability distribution of the state, and by PX1,Y1|X0,U1
the

channel probability distribution according to (1) and (2).

We now present the three models and their corresponding

results. The proofs of these results are given in Appendix.

A. Causal encoding and Causal decoding

Let’s first consider the model with two causal DMs, as

illustrated in Fig. 1.

Definition II.1. For n ∈ N, a “control design” with causal

encoder and causal decoder is a tuple of stochastic functions

c = ({f
(t)

U1,t|Xt
0

}nt=1, {g
(t)

U2,t|Y t
1

}nt=1) defined by

f
(t)

U1,t|Xt
0

: X t
0 −→ U1,t, g

(t)

U2,t|Y t
1

: Yt
1 −→ U2,t, (3)

which induces a distribution over sequences of symbols:

n
∏

t=1

PX0,t

n
∏

t=1

f
(t)

U1,t|Xt
0

n
∏

t=1

PX1,t,Y1,t|X0,t,U1,t

n
∏

t=1

g
(t)

U2,t|Y t
1

. (4)

We denote by Ced(n) the set of control designs with causal

encoder and causal decoder.

Definition II.2. We define the two long-run cost functions

cP (u
n
1 ) = 1

n

∑n

t=1(u1,t)
2 and cS(x

n
1 , u

n
2 ) = 1

n

∑n

t=1(x1,t −
u2,t)

2. The pair of costs (P, S) ∈ R
2 is said to be achievable

if for all ε > 0, there exists n̄ ∈ N such that for all n ≥ n̄,

there exists a control design c ∈ Ced(n) such that

E

[

∣

∣P − cP (U
n
1 )

∣

∣ +
∣

∣S − cS(X
n
1 , U

n
2 )

∣

∣

]

≤ ε. (5)

We denote by Red the set of achievable pairs of costs for

control designs in Ced.

Next, we characterize the costs region Red.

Theorem II.3. The pair of Witsenhausen costs (P, S) is

achievable if and only if there exists a joint distribution over

the random variables (X0, T, U1, X1, Y1, U2) that decomposes

according to

PX0
PTPU1|X0,TPX1,Y1|X0,U1

PU2|T,Y1
, (6)

such that

P = E

[

U2
1

]

, S = E

[

(X1 − U2)
2
]

, (7)

where PX0
and PX1,Y1|X0,U1

are the given Gaussian distri-

butions, and T is the time-sharing auxiliary random variable

with cardinality bound |T | ≤ 2.

Remark II.4. The probability distribution (6) satisfies










X0 is independent of T,

(X1, Y1)−
− (X0, U1)−
− T,

U2 −
− (T, Y1)−
− (X0, U1, X1).

(8)

The first property comes from the fact that the time-sharing

random variable is independent of the source. The second

Markov chain is due to the memoryless property of the chan-

nel. The last Markov chain comes from the causal decoding

and the symbol-wise reconstruction.

Remark II.5. The cost region

Red = {(P, S) : P = E[U2
1 ], S = E[(X1 − U2)

2],

for P of the form of (6)} (9)

characterized in Theorem II.3 is convex. This is because time-

sharing synthesizes DMs to agree on the operating points.

Therefore, we can construct a control scheme that achieves any

point on the cord between two pairs of Witsenhausen costs.

Let’s look at the follwing example delving into the effect

of convexification using time-sharing:

Example. We consider a binary source X0 with P(X0 =
0) = P(X0 = 1) = 1

2 , binary symmetric stochastic encoder

∼ Bern(α) and decoder ∼ Bern(β) and a perfect channel with

the set of two symbols X0 = U1 = U2 = {0, 1}, as represented

in Fig. 2.

X0

0

1

U1

0

1

U2

0

1

1− α

1− α

1− β

1− β

1
2

1
2

α β

Figure 2. Binary information source and binary symmetric stochastic encoder
and decoder.

The joint distribution of this system is presented in Fig. 3.

The goal of the two DMs is to design their strategies through

pairs (α, β) to achieve a desired empirical distribution.

1
2 (1− α)(1 − β) 1

2 (1− α)β

1
2αβ

1
2α(1 − β)

U1 = 0

U1 = 1

U2 = 0 U2 = 1

X0 = 0

1
2α(1− β) 1

2αβ

1
2 (1− α)β 1

2 (1− α)(1 − β)

U1 = 0

U1 = 1

U2 = 0 U2 = 1

X0 = 1

Figure 3. The joint distribution induced by a binary system depicted in Fig.
2

In this example, we initially don’t apply the time-sharing

technique. Fig. 4 shows an empirical distribution (third row)

that is generated by directly combining the distributions given



by (α = 0, β = 0) (first row) and (α = 1, β = 1)
(second row). However, one can easily show that this combined

empirical distribution can not be achieved by any single choice

of pair (α, β) ∈ [0, 1]2, thus it is achievable only through time-

sharing.
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2 0
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Figure 4. First row: joint distribution given by (α = 0, β = 0), second row:
joint distribution given by (α = 1, β = 1), third row: a convex combination
of the above two cases, but is not achievable by any single pair of (α, β).

B. Causal-causal with Channel Feedback

Now suppose the causal encoder has a delayed access to

the sequence of channel output Y t−1
1 at each stage t to help

its decision, see Fig. 5.

Definition II.6. For n ∈ N, a “control design” with causal en-

coder and causal decoder with channel feedback is a tuple of

stochastic functions c = ({f
(f,t)

U1,t|Xt
0
,Y t−1

1

}nt=1, {g
(t)

U2,t|Y t
1

}nt=1)

defined by

f
(f,t)

U1,t|Xt
0
,Y

t−1

1

: X t
0 × Yt−1

1 −→ U1,t, g
(t)

U2,t|Y t
1

: Yt
1 −→ U2,t,

(10)

which induces a distribution over sequences of symbols:

n
∏

t=1

PX0,t

n
∏

t=1

f
(f,t)

U1,t|Xt
0
,Y

t−1

1

n
∏

t=1

PX1,t,Y1,t|X0,t,U1,t

n
∏

t=1

g
(t)

U2,t|Y t
1

,

(11)

where Y 0
1 = ∅. We denote by Ced,f(n) the set of control

designs with causal encoder and causal decoder with channel

feedback.

We define the achievable pairs of cost (P, S) similarly as in

Definition II.2 and we denote by Red,f the region of achievable

pairs of costs.

Theorem II.7. Red,f = Red.

The proof of Theorem II.7 is stated in Appendix B, where

a genie-aided method is used to prove the converse result.

+ +
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Figure 5. Witsenhausen counterexample for causal-encoding and causal-

decoding with channel feedback Y
t−1
1 to the encoder. The dotted line

describes the source feed-forward X
t−1
0 to the decoder, that is used for the

genie-aided argument in the converse proof of Theorem II.7 in Appendix B.

+ +

X0,t

Z1,t

Xt
0 U1,t X1,t Y n

1

Y t−1
1

Un
2

Xn
1

C1 C2

Figure 6. Witsenhausen counterexample for causal-encoding and noncausal-

decoding with channel feedback Y
t−1
1 to the encoder.

Adding channel feedback does not help for enlarging the

region of achievable pairs of costs when both DMs are causal.

This result is a consequence of the two causalities such that the

two DMs only deal with new information: Even though at time

t ∈ [1 : n] the encoder has the opportunity to provide more

insights for its previous decisions based on the past channel

output Y t−1
1 , the causal decoder has already responded to its

past actions and therefore does not allow further modifications

for this time.

C. Causal-noncausal with Channel Feedback

In this section, we consider the model of causal-encoding

and noncausal-decoding with channel feedback as illustrated in

Fig. 6. The main result in this chapter provides the information

constraint that completes the proof of Corollary III.6 in [33].

Definition II.8. For n ∈ N, a “control design” with causal

encoder and noncausal decoder with channel feedback is a

tuple of stochastic functions c = ({f
(f,t)

U1,t|Xt
0
,Y

t−1

1

}nt=1, gUn
2
|Y n

1
)

defined by

f
(f,t)

U1,t|Xt
0
,Y

t−1

1

: X t
0 × Yt−1

1 −→ U1,t, gUn
2
|Y n

1

: Yn
1 −→ Un

2 ,

(12)

which induces a distribution over sequences of symbols:

n
∏

t=1

PX0,t

n
∏

t=1

f
(f,t)

U1,t|Xt
0
,Y

t−1

1

n
∏

t=1

PX1,t,Y1,t|X0,t,U1,t
gUn

2
|Y n

1
,

(13)

where Y 0
1 = ∅. We denote by Ce,f(n) the set of control designs

with causal encoder and noncausal decoder with channel

feedback.

Again, we denote by Re,f the region of achievable pairs of

rates for control designs in Ce,f(n).



Theorem II.9. The pair of Witsenhausen costs is achievable

(P, S) if and only if there exists a joint distribution over the

random variables (X0,W1, U1, X1, Y1, U2) that decomposes

according to

PX0
PW1

PU1|X0,W1
PX1,Y1|X0,U1

PU2|X0,W1,Y1
, (14)

such that

I(W1;Y1)− I(U2;X0|W1, Y1) ≥ 0, (15)

P = E

[

U2
1

]

, S = E

[

(X1 − U2)
2
]

, (16)

where PX0
and PX1,Y1|X0,U1

are given Gaussian distributions,

and W1 is an auxiliary random variables.

Remark II.10. Distribution (14) satisfies the follows










X0 is independent of W1,

(X1, Y1)−
− (X0, U1)−
−W1,

U2 −
− (X0, Y1,W1)−
− (U1, X1).

(17)

Remark II.11. Compared to the single-letter result in [32,

Theorem II.3], the presence of channel feedback enables

the decoder to directly coordinate with the source state X0

instead of its noisy representation (W2 in the reference paper).

Therefore, feedback enlarges the set of achievable pairs. A

similar observation has been also pointed out in [29, 30, 34]

Sketch of the proof for Theorem II.9. The converse proof for

Theorem II.9 can be adapted from the converse proof of

Theorem III.2 in [29], which dealt with a state-independent

channel. We can modify the arguments from this reference to

apply to the state-dependent channel in our setting, without

affecting the outcome of the result.

Additionally, the coding scheme for the achievability proof

for Theorem II.9 also extends the approach provided in [29]

with changing the channel from state-independent to state-

dependent. The cost analysis is directly derived from the

arguments presented in [32].

APPENDIX A: PROOF OF THEOREM II.3

Converse. For a pair (P, S), assume that we have a control

design c ∈ Ced(n) of block length n ∈ N and small ε > 0
which induces a joint p.m.f. Pn of the form (4) such that

∣

∣P − E[cP (U
n
1 )]

∣

∣+
∣

∣S − E[cS(X
n
1 , U

n
2 )]

∣

∣ < ε. (18)

This is implied by condition (5).

let Q be an independent time random variable uniformly

distributed over {1, ..., n}. Define auxiliary random variables

X0 = X0,Q, U1 = U1,Q, X1 = X1,Q, Y1 = Y1,Q, U2 = U2,Q

with distribution

P((X0, U1, X1, Y1, U2) = (x0, u1, x1, y1, u2)) (19)

=
1

n

n
∑

q=1

P((X0,q, U1,q, X1,q, Y1,q, U2,q) = (x0, u1, x1, y1, u2))

∀(x0, u1, x1, y1, u2) ∈ X0 × U1 ×X1 × Y1 × U2.

Then, the expected long-run costs could be reformulated as

E[cP (U
n
1 )] = E





1

n

n
∑

q=1

U2
1,q



 = E[U2
1 ], (20)

E[cS(X
n
1 , U

n
2 )] = E





1

n

n
∑

q=1

(X1,q − U2,q)
2



 (21)

= E[(X1 − U2)
2]. (22)

Therefore, given (18), we obtain that

|P − E[U2
1 ]|+ |S − E[(X1 − U2)

2]| < ε, (23)

which is valid for all ε ≥ 0. Hence, we have (7).

Now, we define the new auxiliary random variables Wq =
Y

q−1
1 for q = 1, ..., n and T = (WQ, Q). These auxiliary

random variables satisfy the following Markov chains

• X0 ⊥⊥ T : This is because the source is i.i.d. generated,

independent of the time stage Q as well as the past

channel output sequence Y
Q−1
1 due to causal encoding.

• (X1, Y1)−
− (X0, U1)−
−T : This comes from the discrete

memoryless channel, the characterization of the output

(X1, Y1) depends only on the input (X0, U1).
• U2 −
− (T, Y1)−
− (X0, U1, X1): This is the consequence

of the causal decoding that the reconstruction is fully

characterized by sequence Y
Q
1 up to stage Q = 1, ..., n.

Therefore, the distribution of all the introduced auxiliary

random variables decomposes as (6).

Achievability. Consider a joint distribution P of the form of

(6) with E[U2
1 ] = P and E[(X1 − U2)

2] = S. Fix a small

ε > 0 and a blocklength n ∈ N.

The encoder and decoder simply conduct symbol-by-symbol

approaches based on the given distribution P : Before the

transmission, the encoder selects a typical sequence T n ∈
Tε(PT ) and shares it to the decoder. Then, at each time

t ∈ {1, ..., n}, the encoder observes X0,t, and outputs U1,t ∼
PU1|X0,T (·|X0,t, Tt). The channel generates X1,t, Y1,t ∼
PX1,Y1|X0,U1

(·|X0,t, U1,t). Then, the decoder draws U2,t ∼
PU2|T,Y1

(·|Tt, Y1,t).
In such case, since each symbol is generated i.i.d. according

to its distribution, from the law of large numbers (LLN), we

have

cP (U
n
1 ) =

1

n

n
∑

t=1

U2
1,t

n→∞
−−−−→ P. (24)

cS(X
n
1 , U

n
2 ) =

1

n

n
∑

t=1

(X1,t − U2,t)
2 n→∞
−−−−→ S (25)

Since convergence in probability implies convergence in L 1

measure, given the existence of finite second moment, we have

E[|cP (U
n
1 )− P |] <

1

2
ε, (26)

E[|cS(X
n
1 , U

n
2 )− S|] <

1

2
ε. (27)

for sufficiently large n.



Proof of the Cardinality Bound of T . Consider the set P of

all p.m.f.s on U1 ×X1 ×U2 satisfying the form of (6) and the

following two continuous functions

f1(P , t) = E

[

U2
1 | T = t

]

, (28)

f2(P , t) = E

[

(X1 − U2)
2 | T = t

]

. (29)

From the support lemma in [35], [15, Appendix C], we can

establish the time-sharing cardinality bound |T | ≤ 2 for the

convex-hull operation.

APPENDIX B: PROOF OF THEOREM II.7

Converse. Consider a control design illustrated in Fig. 5
together with the dotted line. This induces a distribution of
the following form

n∏

t=1

PX0,t

n∏

t=1

f
(f,t)

U1,t|X
t
0
,Y

t−1

1

n∏

t=1

PX1,t,Y1,t|X0,t,U1,t

n∏

t=1

g
(f,t)

U2,t|Y
t
1
,X

t−1

0

.

(30)

This control design is clearly more powerful than that in

Definition II.6 because the causal decoder also receives a past

sequence of source information Xt−1
0 at each instant t. There-

fore, the achievable cost region induced by this superior system

of adding the source feed-forward serves as an outerbound for

the region without the source feed-forward. We denote this

new region by Red,f,f and we have

Red,f,f ⊇ Red,f ⊇ Red (31)

Now, we show that Red,f,f = Red.

Similar to the converse proof of Theorem II.3 in Ap-

pendix A, we introduce a time-sharing random variable Q ∼
Unif[1, ..., n] and define a sequence of new random variables

X0 = X0,Q, U1 = U1,Q, X1 = X1,Q, Y1 = Y1,Q, U2 = U2,Q

with their joint distribution (19). In this way, the n-stage

long-run costs for the control design of (30) also could be

reformulated to (20) and (22).

Next, let Wq = (Xq−1
0 , Y

q−1
1 ) for q = 1, ..., n and T =

(WQ, Q) be new auxiliary random variables. Then, it holds

that

• X0 ⊥⊥ T . This follows from the i.i.d. source and causal

encoding.

• (X1, Y1)−
− (X0, U1)−
−T : This comes from the discrete

memoryless channel.

• U2 −
− (T, Y1)−
− (X0, U1, X1): This is the consequence

of the causal decoding at the presence of Y
Q−1
1 , X

Q−1
0

at each time instant Q.

Given the above Markov chains, the single-letter joint dis-

tribution that characterizes a desired control scheme of adding

a source feed-forward also decomposes as (6).

Therefore, we have shown that Red,f,f = Red. Namely,

adding both the channel feedback AND the source feed-

forward information does not enlarge the achievable Witsen-

hausen cost region of Red. Since we also have (31), by the

genie-aided argument, we conclude Red,f = Red.
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to strategic communication as a hierarchical game,” Proceedings of the

IEEE, vol. 105, no. 2, pp. 205–218, 2017.

[11] C. D. Charalambous, C. Kourtellaris, and I. Tzortzis, “Hierarchical
optimality of linear controllers-encoders-decoders operating at control-
coding capacity of lqg control systems,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pp. 3682–3687, IEEE,
2017.

[12] M. Wiese, T. J. Oechtering, K. H. Johansson, P. Papadimitratos, H. Sand-
berg, and M. Skoglund, “Secure estimation and zero-error secrecy
capacity,” IEEE Transactions on Automatic Control, vol. 64, no. 3,
pp. 1047–1062, 2018.

[13] P. A. Stavrou, M. Skoglund, and T. Tanaka, “Sequential source coding
for stochastic systems subject to finite rate constraints,” IEEE Transac-

tions on Automatic Control, vol. 67, no. 8, pp. 3822–3835, 2022.

[14] P. Grover and A. Sahai, “Witsenhausen’s counterexample as assisted
interference suppression,” International Journal of Systems, Control and

Communications, vol. 2, pp. 197–237, 2010.

[15] A. El Gamal and Y. Kim, Network Information Theory. Cambridge
University Press, 2011.

[16] Y.-H. Kim, A. Sutivong, and T. M. Cover, “State amplification,” IEEE

Transactions on Information Theory, vol. 54, no. 5, pp. 1850–1859,
2008.

[17] O. Sumszyk and Y. Steinberg, “Information embedding with reversible
stegotext,” in 2009 IEEE International Symposium on Information

Theory, pp. 2728–2732, IEEE, 2009.

[18] C. Choudhuri, Y.-H. Kim, and U. Mitra, “Causal state communication,”
IEEE Transactions on Information Theory, vol. 59, no. 6, pp. 3709–
3719, 2013.

[19] P. W. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,”
IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4181–
4206, 2010.

[20] P. Cuff and C. Schieler, “Hybrid codes needed for coordination over
the point-to-point channel,” in 2011 49th Annual Allerton Conference

on Communication, Control, and Computing (Allerton), pp. 235–239,
IEEE, 2011.

[21] P. Cuff and L. Zhao, “Coordination using implicit communication,” in
2011 IEEE Information Theory Workshop, pp. 467–471, IEEE, 2011.

[22] M. Le Treust, “Joint empirical coordination of source and channel,”
IEEE Transactions on Information Theory, vol. 63, no. 8, pp. 5087–
5114, 2017.



[23] B. Larrousse, S. Lasaulce, and M. Wigger, “Coordination in state-
dependent distributed networks: The two-agent case,” in 2015 IEEE
International Symposium on Information Theory (ISIT), pp. 979–983,
IEEE, 2015.

[24] B. Larrousse, S. Lasaulce, and M. R. Bloch, “Coordination in distributed
networks via coded actions with application to power control,” IEEE
Transactions on Information Theory, vol. 64, no. 5, pp. 3633–3654,
2018.

[25] N. Gaarder and J. Wolf, “The capacity region of a multiple-access
discrete memoryless channel can increase with feedback (corresp.),”
IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 100–102,
1975.

[26] L. Ozarow, “The capacity of the white gaussian multiple access channel
with feedback,” IEEE Transactions on Information Theory, vol. 30,
no. 4, pp. 623–629, 1984.

[27] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and outer
bound for the gaussian broadcast channel with feedback (corresp.),”
IEEE Transactions on Information Theory, vol. 30, no. 4, pp. 667–671,
1984.

[28] G. Dueck, “The capacity region of the two-way channel can exceed the
inner bound,” Information and Control, vol. 40, no. 3, pp. 258–266,
1979.

[29] M. Le Treust, “Empirical coordination with channel feedback and strictly
causal or causal encoding,” in 2015 IEEE International Symposium on

Information Theory (ISIT), 2015.
[30] M. Le Treust and M. R. Bloch, “State leakage and coordination

with causal state knowledge at the encoder,” IEEE Transactions on
Information Theory, vol. 67, no. 2, pp. 805–823, 2021.

[31] M. Le Treust and T. J. Oechtering, “Power-estimation trade-off of
vector-valued Witsenhausen counterexample with causal decoder,” IEEE

Transactions on Information Theory, vol. 70, no. 3, pp. 1588–1609,
2024.

[32] M. Zhao, M. Le Treust, and T. J. Oechtering, “Coordination coding with
causal encoder for vector-valued Witsenhausen counterexample,” arXiv
preprint arXiv:2401.16926, 2024.

[33] M. Zhao, T. J. Oechtering, and M. Le Treust, “Optimal gaussian
strategies for vector-valued witsenhausen counterexample with non-
causal state estimator.” https://people.kth.se/∼oech/CDC24.pdf, 2024.

[34] S. I. Bross and A. Lapidoth, “The rate-and-state capacity with feedback,”
IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1893–
1918, 2017.

[35] I. Csiszár and J. Körner, Information theory: coding theorems for

discrete memoryless systems. Cambridge University Press, 2011.

https://people.kth.se/~oech/CDC24.pdf

	Introduction
	System Model
	Causal encoding and Causal decoding
	Causal-causal with Channel Feedback
	Causal-noncausal with Channel Feedback

	References

