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Blockchain-based Privacy Preservation Scheme for Misbehavior
Detection in Lightweight IoMT Devices

Sandi Rahmadika∗ , Philip Virgil Astillo† , Gaurav Choudhary , Daniel Gerbi Duguma , Student Member,
IEEE , Vishal Sharma , Senior Member, IEEE , and Ilsun You , Senior Member, IEEE

Abstract— The Internet of Medical Things (IoMT) has risen to
prominence as a possible backbone in the health sector, with the
ability to improve quality of life by broadening user experience
while enabling crucial solutions such as near real-time remote di-
agnostics. However, privacy and security problems remain largely
unresolved in the safety area. Various rule-based methods have
been considered to recognize aberrant behaviors in IoMT and have
demonstrated high accuracy of misbehavior detection appropriate
for lightweight IoT devices. However, most of these solutions have
privacy concerns, especially when giving context during misbe-
havior analysis. Moreover, falsified or modified context generates
a high percentage of false positives and, in some cases, causes
a by-pass in misbehavior detection. Relying on the recent pow-
erful consolidation of Blockchain and federated learning (FL), we
propose an efficient privacy-preserving framework for secure mis-
behavior detection in lightweight IoMT devices, particularly in the
artificial pancreas system (APS). The proposed approach employs
privacy-preserving bidirectional long-short term memory (BiLSTM)
and augments the security through the integration of Blockchain
technology based on Ethereum smart contract environment. Fur-
thermore, the effectiveness of the proposed model is bench-
marked empirically in terms of sustainable privacy preservation,
commensurate incentive scheme with an untraceability feature, ex-
haustiveness, and the compact results of a variant neural network
approach. As a result, the proposed model has a 99.93% recall rate,
showing that it can detect virtually all possible malicious events in
the targeted use case. Furthermore, given an initial ether value of
100, the solution’s average gas consumption and Ether spent are
84,456.5 and 0.03157625, respectively.

Index Terms— Blockchain, federated learning, Internet
of Medical Things (IoMT), misbehavior detection, privacy
preservation, smart contract

I. INTRODUCTION

Along with the exponential growth of Internet of Things (IoT) in
the medical industry, new security problems are continually emerging,
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while existing security threats become more apparent. Additionally,
privacy issues that may arise from the various data collected from IoT
devices can negatively impact users. Particularly, these collected data
may be used to determine the users’ location, ID, role, and other
important information, posing a valid concern about data privacy
and security. Data access is a crucial aspect of realizing a secure
system by controlling who and what associations have access to such
information, especially because IoT devices store different sensitive
information in their memory or their controlling gadgets. IoT security
turns into an essential subject since it manages sensitive information
that streams over the Internet or network, and IoT security governs
protection, privacy, and trust during execution [1]–[3]. In any case,
the greatest challenge is a trade-off between the performance of IoT
devices and security solutions. Privacy concerns apply in a variety of
contexts, including when exchanging personal information, privacy in
communications, and privacy in sensitive data records. Irrespective of
multiple privacy domains, the confidentiality of personal information
[4], behavior, and communication are the most significant dimensions
in the IoT context. Thus, privacy should be protected by enabling
IoT device management rather than relying on consumers’ side.
Unnecessary access control should be avoided, and all data should be
verified as there are circumstances where a single vulnerability can
be exploited owing to assumptions made at component interfaces in
misbehavior detection approaches [5]–[7].

Misbehavior detection in IoMT devices is a challenging task given
their severely constrained computing, communication, power, and
other resources. To make matters worse, data transfer between IoMT
devices and monitoring agents is inconsistent and vulnerable to
insider assaults. As a result, IoMT devices must be more secure
and sensitive in terms of misbehavior detection, because altered
data increases false-positive rates and decreases the effectiveness of
misbehavior detection approaches [19], [20]. Despite the existence of
numerous communication protocols that address the issues related to
trust and security of context during message exchanges [21], there is
still a deficiency concerning privacy preservation mechanisms [22],
[23]. Blockchain-based privacy protection is an alternative solution
that has recently gained popularity in the domain of IoT context
sharing. [24], [25].

Blockchain is inherently tamper-proof and does not require the
presence of a middleman during transactions, making it a feasible
solution to various problems in the IoT ecosystem. Blockchain is
used extensively in healthcare applications to provide the security,
transparency, and immutability of data records via autonomous con-
tracts [26]. Transparency properties and tamper-proof records can be
achieved by straightforwardly adopting Blockchain platforms such
as Ethereum (smart contract) and Hyperledger Fabric (chain code).
However, for the application of private data that is confidential, trans-
parency needs to be considered further. This is the most important
aspect of incorporating Blockchain into our research. As a result,
we use the Ethereum smart contract to control how data is kept
and accessed safely, in conjunction with our security measures built
inside the contracts. In addition, we also exert the merits of the smart
contract feature as an incentive mechanism for the data provider. Our

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3187037

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 28,2022 at 10:29:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7848-6579
https://orcid.org/0000-0001-9611-1036
https://orcid.org/0000-0003-3378-2945
https://orcid.org/0000-0002-7121-4204
https://orcid.org/0000-0001-7470-6506
https://orcid.org/0000-0002-0604-3445


2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE I
THE EXISTING STATE-OF-THE-SOLUTIONS OF BLOCKCHAIN-BASED PRIVACY PRESERVATION AND IOT MISBEHAVIOR DETECTION.{R1: BLOCK

CHAIN BASED PRIVACY FOR DECISIONS, R2: RULE BASED DETECTION, R3: DEEP LEARNING, R4: SECURE DATA SHARING CONSIDERATIONS,
R5: SECURE MISBEHAVIOR DETECTION,* REPRESENTS ONLY THEORETICAL DISCUSSIONS}

Authors Category Scheme Mechanism R1 R2 R3 R4 R5
Astillo et al. [8] Behavior-based-IDS Trust Management Smoothened-trust-based scheme No Yes Yes Yes No

Sedjelmaci et al. [9] UAV-IDS Hierarchical Detection
Scheme

Combines rules-based detection
and anomaly detection techniques No Yes No No No

Sedjelmaci et al. [10] UAV-IDS Ejection framework against
lethal attacks

Use Bayesian game Model
for detection No Yes No No No

Choudhary et al. [11] IoT- IDS Lightweight misbehavior
detection in Medical IoT

Formally verified Behavior
Rule based IDS No Yes Yes* Yes* No

Khan et al. [12] Behavior-based-IDS
Secure ICSs based on the
behavior of their
computational resources

Detect FDI attacks No Yes No No No

Sharma et al. [13] Behavior-based-IDS Fuzzy based HCAPN Detect zero day attacks No Yes No No No

Jokar et al. [14] Specification-based IDS IDS for Home Area Networks

Used feature space for
IDS targeting the IEEE 802.15.4
standard covering the PHY and
MAC layers of the ZigBee technology

No Yes No No No

Salem et al. [15] IoT-IDS
Anomaly Detection in Wireless
Body Area Networks for
Reliable Healthcare Monitoring

The approach is based on Haar wavelet,
Non-Seasonal Holt-Winters (NSHW) No No Yes No No

Dwivedi et al. [16] Data sharing privacy in
healthcare IoT Privacy-Preserving Healthcare Modified block chain models Yes No No Yes No

Saeed et al. [17] IoT-IDS
Intelligent Intrusion
Detection in Low-Power
IoTs

Intelligent security architecture
using random neural networks (RNNs) No Yes Yes No No

Zhu and Yu [18] Sensor data privacy Privacy-Preserving in
Deep Learning

Privacy of the data used for
learning a model or as input
to an existing model

Yes No Yes Yes Yes*

Loukil et al. [19] Data Privacy in IoT Privacy-preserving IoT
device management framework

Judging the misbehavior of
the smart device and determines
the corresponding penalty

Yes No No Yes Yes

proposed scheme disguises the values of the transaction, and it cannot
be linked to the corresponding entity. Specifically, the useful data is
hidden from the observers.

Problem Statement and Our contribution.The current strategies for
misbehavior detection include continuous monitoring and Machine
Learning (ML)-based solutions. Onboard ML-based approaches are
inefficient for lightweight devices. In such instances, specification-
based misbehavior detection is preferable since existing misbehavior
detection strategies rely solely on recognizing bad behavior. However,
because IoT device communication is unreliable, context sharing can
be altered, resulting in substantial false-positive rates. When used
at resource-constrained IoT sites, traditional security and privacy
protections will be prohibitively costly in terms of computing over-
head. Motivated by the aforementioned disadvantages, we present our
contributions as follows:

(i) We study and present various state-of-the-art Misbehavior De-
tection Systems (MDS) for IoT in general and IoMT in particular
with a focus on security and privacy.

(ii) We construct untraceable transaction protocols by expanding an
application layer protocol called CryptoNote.

(iii) We propose a lightweight, privacy-preserved, and secure MDS
leveraging Blockchain and FL for IoMT.

(iv) We implement the proposed system using Raspberry-based APS
Controller and an Ethereum Blockchain.

(v) We carryout various performance measurements such as accu-
racy of estimation model, gas usage per block, and percentage
of transaction in a block.

The road map of this paper is organized as follows. Section
II explores the existing state-of-the-solutions of Blockchain-based
privacy preservation and IoT misbehavior detection. In Section III, we
extensively provide the explanation of our proposed schemes along
with the core components. Performance results of FL, misbehavior
detection, and Blockchain system are presented in Section IV. Finally,
we conclude the paper in Section V.

II. RELATED WORK

The healthcare industry has benefited from various developments
such as IoTs, sensors, and organized contraptions, in addition to
portable and electronic applications. However, the security, privacy,
and assurance of gadgets continue to be an open concern. Patients’
privacy and safety may be threatened owing to a lack of a systematic
and accurate line of defense against a wide range of security threats-
from sensitive data breaches via malware/viruses to more serious
life-threatening injuries. The shortcomings in existing medical Cyber-
Physical Systems (MCPS) security make it unbearable for the medical
services sector and healthcare providers to verify and ensuring
gadgets.

There are several important research works related to misbehavior
detection in medical IoT that address diverse issues such as security,
privacy, dependability, and attack detection techniques. Meng et
al. [27], for instance, focused on trust-based interruption identification
using social profiling and used Euclidean distance between two
behavioral profiles. Celdrán et al. [28] emphasized the current MCPS
security problems and presented Virtual Medical Device (VMD). In
the paper, the mobile edge and fog computing models are employed
to maintain an automated and reasonable framework used by Network
Function Virtualization (NFV) and Software-Defined Network (SDN)
procedures to enable a consistent association of MCPS security.
Nithya et al. [29] concentrated on a variety of challenges, including
security, dependability, connectivity, and privacy. Lee and Sokolsky
[30] presented the current technology advancements in medical CPS,
as well as numerous research trends and challenges in the area.
Mitchell and Chen [31] provide an intrusion detection approach for
MCPS based on behavior-rule formulation. Schneble and Thamila-
rasu [32] propose an attack detection technique leveraging an FL-
based Intrusion Detection System (IDS) to thwart against multitude
of security breaches. In general, the current researches mainly en-
compasses security controls, security design issues, countermeasure,
and government legislations.
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TABLE II
TAXONOMY OF CONCERNS IN BLOCKCHAIN SMART CONTRACT THROUGH ETHEREUM VIRTUAL MACHINE (EVM).

No. Technical Concerns Description Objects

1 Functions to the unknown Several function does not exist *****
2 Run out of gas The fallback of the signal is calculated *****
3 Exception disorder Inconsistency in exception handling Smart contract - source code
4 Cast smart contract type Type-check failure in transactions Solidity (*.sol)
5 Re-entrancy in input issues Functions are re-input ere termination *****
6 Values disclosure Sensitive values are exposed by the entities *****
7 Perpetual bugs Reconstruct a contract after execution *****
8 Ether depletion Ether is sent to the orphan addresses Ethereum Virtual Machine
9 Stack overflow Stack overflow values surpass 1024 bytes (EVM) bytecode
10 Incalculable state and event The contract’s state is adjusted before invoking *****
11 Complexity of the bug Malicious entities influence seed Blockchain standards
12 Timestamp sequence Malicious entities modify the timestamp *****

Blockchain-based privacy preservation in IoT devices has emerged
as a prominent solution, as shown in Figure 1. The figure illustrates
the essence of using Blockchain technology in various use cases. With
this regard, researchers like Loukil et al. [19] proposed a privacy-
preserving IoT device management framework by highlighting data
privacy. The proposed solution Judges the misbehavior of intelligent
devices and determines the corresponding penalty. Zhu and Yu [18]
designed a privacy-preserving scheme leveraging Deep Learning on
sensor data. In the scheme, the privacy of the data is used for learning
a model or as input to an existing model. Dwivedi et al. [16] proposed
a system of adjusted Blockchain models to fit for IoT devices. The
authors constructed several supplementary cryptographic primitives’
protocols to tackle the drawbacks in IoT applications running on a
top Blockchain-based network. A similar objective was introduced
by Kuo et al. [33] that combines multiple techniques such as level-
wise model learning, Blockchain, and a new consensus algorithm for
the model ensemble to preserve privacy modeling on the distributed
ledger. Furthermore, various other researches (such as [34]–[36])
make use of FL to enhance privacy in different application areas.
The existing state-of-the-art Blockchain-based privacy preservation
and IoT misbehavior detection are shown in Table I.

Fig. 1. Blockchain objectives for many different use cases. The
advantages of transparency are utilized in the healthcare system in
general (non-sensitive data).

III. CORE SYSTEM COMPONENTS AND MODELS

A. Architectural Framework and The essence of Decentralized
Approach

In this research, Blockchain-based privacy preservation techniques
are merged with lightweight IoT devices to secure malicious behavior
detection over the wireless network. Our system is designed for
the insulin pump case with the respective controller to continuously
monitor patient glucose levels within a specific time. It is well
known as a compact medical system called continuous glucose
monitors (CGM). The communication is conducted through a dis-
tributed information technology and edge computing manner. In
other words, the user’s data is managed at the periphery of the
network (closer to the originating source). We leverage a variant of
recurrent neural network (RNN), namely bidirectional long-short term
memory (BiLSTM). On the other hand, Blockchain technology can
provide an immutable data record with several cryptography protocols
embedded into smart contracts. The Ethereum platform also supports
the decentralized revenue mechanism for the data owners. The overall
overview of our suggested method is depicted in Figure III-A. In the
diagram, each APS controller collects critical information from the
CGM and Insulin Pump, such as blood glucose level and remaining
insulin quantity. Normally, the controller would be a smartphone that
communicates with the Blockchain layer and the aggregator through
a cellular network or WiFi network. The controller is made up of
several components, such as the lightweight deep-learning framework
(LDLF), MDS, data storage, controller algorithms, and so on. Instead
of sending it immediately to the verifiable aggregator model provider,
the private information held in the controller is utilized for training the
first global model received. When the relevant weight parameters with
the greatest accuracy value are identified, the controllers send them
to the Blockchain-enabled aggregator. After the Blockchain validates
the aggregated weight parameters, they are averaged and sent back
to each of the participating APSs. Further details of the entire
process are described in the subsequent subsections. Meanwhile, it
is important to note that the proposed framework can be adapted to
all subdomain of IoMT, but each subdomain may have a specific
structure of the deep learning model that is more suitable for the
environment.

One of the Blockchain merits that need to be considered in
this research is the transparency properties that are inherent in
the decentralized approach. Every entity that is incorporated in a
Blockchain network can access information or transaction records.
This transparency trait is beneficial in some cases. Still, it is not
desirable for some scenarios, for instance, any systems that manage
sensitive data [37]. Some examples of sensitive data are private
information revealing racial or ethnic origin, religious or philosoph-
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ical beliefs, sexual orientation, health-related data, etc. Therefore,
Blockchain-based applications require several additional dynamic
protocols. By doing so, the system can obscure the information stored
in the database. Transparency properties are inherent to Blockchain-
based applications. However, the users can manage whether certain
features are open or hidden from the public. In our cases, the log
of transactions is available to every member. However, the actual
identity or data remains secret since we construct several protocols
embedded into the system. We detail the decentralized privacy-
preserving protocols in Section III-C.

Apart from the transparency concern inherent in the Blockchain
system, several other matters are listed in Table II that describe
the taxonomy of concerns in the Ethereum smart contract through
Ethereum Virtual Machine (EVM) [38]. The sequence of instructions
developed into Ethereum smart contracts may have security concerns
caused by internal errors such as program defects. A tool called
OYENTE [39] exposes four varieties of potential security bugs in the
smart contract in 2016 (8833 out of 19366 Ethereum smart contacts
are vulnerable). Those security bugs are as follows: transaction-
ordering dependence, timestamp sequence, mishandled exceptions,
reentrancy in input issues. Nevertheless, the smart contract improves
in many aspects, including security, making it more sophisticated
compared to various versions.

B. Federated Learning (FL)-based Misbehavior Detection

The massive proliferation of the Internet of Things (IoT) has
opened more opportunities for an adversary to compromise, espe-
cially by exploiting newly discovered vulnerabilities, of a target sys-
tem. This situation is critical, particularly in the healthcare industry
where the integration of IoT for remote medical services is increasing
[40].

Among the variety of promising solutions, the network MDS
showed high efficiency and effectiveness in detecting malicious
actions of devices as the consequence of both internal and external
attacks [8], [11], [41]. This scheme requires careful analysis of a
large number of operational data, or the solution provider must
possess extensive domain knowledge to differentiate benign network
events from malicious ones. Accordingly, this is done by comparing
the runtime data with a model, which represents the operational
behavior of the target system. In this case, proper construction of
the model is vital in achieving high detection accuracy. In turn,
considering the diversity of data in the healthcare industry supported
by the internet-connected wearable sensors and devices, the machine
learning technique offers the best means to build the most appropriate
model for network behavior classification.

Machine learning deals with building models from a large amount
of collected data with minimal to no human intervention. In the
healthcare industry, most of this data contains sensitive personal
health information of the patients. FL, an unconventional learn-
ing paradigm, is desirable and appropriately augments privacy-
preservation of the patients since training data stays within the digital
space of the owner and global model is built out of sub-models, which
are trained locally by participating devices. This paper proposes a
deep neural network-based MDS trained under an FL paradigm as
applied to the APS.

In this case, APS controllers participate in the model-building pro-
cess at a predefined iteration or communication round with the server,
which serves as the aggregator. At every round, the participating
devices receive the global model (GM) from the server and train it
using their locally stored data. Subsequently, all devices submit their
trained sub-models back to the server for aggregation using equation
1, in which the updated parameters of the global model, carried out

to the next round, is the weighted average. The weight is defined by
the cardinality of respective local dataset stored in device i over the
cardinality of the union of local datasets (∪Di). Afterwards, the next
round starts wherein the server distributes the aggregated model back
to the devices.

GM ←
P∑
i=1

|Di|
| ∪Di|

×Wi (1)

where Wi : (weights, bias) of device i

Di: local dataset stored at device i

P: number of participating devices

To illustrate the concept of FL and show its advantages in
misbehaviour detection, we used state-based modelling where states
are connected to each other via weights. Each local device can
generate state machines that will get updated via weights only, say,
w. Based on the concept of FL, only weights get transferred, and
the number of states cannot be predicted by an adversary trying to
dodge the detection or prevent misbehaviour from getting caught.
With k number of states, an adversary would have to check k(k+1)

2
transitions in a given span of time, which by the property of
determinism cannot be completed effectively. Thus, maintaining the
system’s privacy and contents anonymous.

If Si is the set of states for ith device such that Si =
{S1,i, S2,i, ..., Sk,i} having n number of states and Wi be the
set of weights for the ith device, such that (Sm,i, Sk,i) are the
transitions connecting the two states, m and n, with weight Wmk,i,
then the task is to effectively offload the weights and share them
across devices through aggregation before the adversary can identify
the sequence of transitions to avoid misbehaviour detection. An
interesting observation is that if the state machines have near to
complete connected graph, the attack prediction for an adversary
will increase, which can be prevented by considering a secondary
constraint, i.e., keeping the number of states too high than the number
of transitions to delay the adversaries from avoiding the detection.
Thus, if τ is the time for updating the weights, and the prediction
rate of states is ϑ, then the number of states that can be predicted
within τ should be << |Si| for the ith device. This situation for
state-based FL allows understanding the performance of the system
by exploiting the model through an appropriate game theory where
the situation between the adversaries and the honest device can be
evaluated subject to the properties of FL.

To model this, let L(|N | ≥ |M|) be the function representing
convergence cost as the divisibility of the weights across different
state machines based on the properties of FL for k states of honest
device and m states of adversarial device. Here, L(|N | ≥ |M|)
must be followed such that updates of the states and weights should
be done before the adversary can predict the weights and transitions
across the states leading to the high possibility of attacks. To
understand such a situation, we rely on the Stackelberg game [42]
formation between the devices and the adversaries, specifically when
the adversaries can collate to attack the system. This game formation
expresses two advantages – the first is that it helps to understand
when the weights must be updated, and the second is that it allows
understanding actions points for the adversaries ensuring the utility of
FL for securing the operations of misbehaviour detection. Following
it, L(|N | ≥ |M|) is defined as the difference between the honest
players and the collated adversaries operating against the honest
players, such that H is the operational function for honest devices
and A is the action function for the adversary, defined as:
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Fig. 2. System overview of our proposed scheme. Decentralized ledgers manage the outputs from insulin controller (CTR) within devices by
integrating the lightweight deep learning framework (LDLF) and MDS. The outputs are stored securely, and the rewards are distributed equitably.

L(|N | ≥ |M|)
k≥m

=

|N |∑
i=1

Hi −
|M|∑
j=1

Aj , (2)

where |N | denotes the number of honest devices and |M| denotes
the adversarial devices, such that H is the operational function for
honest devices and A is the action function for the adversary, defined
as:

Hi = PHi
[w] ·

( ∆WHi
φ|Si|

ki(ki+1)

2

)
, (3)

and
Aj = PAj

[w] ·∆WAj
, (4)

where PHi
[w] and PAj

[w] define the probability of weights being
updated accurately and traced by the adversary accurately, respec-
tively using Poisson distribution, such that PHi[w] =

ΛUτ+1−τ e−Λ

U
τ+1−τ !

,

where Uτ+1−τ is the number of times the weights are updated for
transitions between τ + 1 and τ , Λ is the rate of changes occurring
in states to the total number of states for ith device. φ|Si| is the total
transitions for the actual |Si| states of ith device. Similarly, for the

adversary, PAi
[w] = Λ

P(τ+1)−τ e−Λ

P
(τ+1)−τ !

, where P(τ+1)−τ is the num-

ber of times the weights are accurately identified by the adversary.
Here, ∆WHi

= ||Wi,τ+1−Wi,τ || and ||Wj,τ+1−Wj,τ || denote the
weight difference for the honest devices and the adversaries between
two intervals denoted by τ+1 and τ . Based on the Stackelberg game,
the requirement is converted into an optimization problem, where the
objective is:

P1 : L(x),
max,∀i ̸=j

(5)

C1 :∆WHi
̸= 0 and ∆WAj

≥ 0, i ̸= j, ∀i,∀j
C2 :Λ ≥ 0, U(τ+1)−τ > 0, ϑ ≥ 0

C3 :φ|Si| <<
ki(ki + 1)

2

(6)

There exists a trade-off between the FL operations, anonymity and
the connectivity of the graph, which can improve the traceability of
misbehaviour – if the number of transitions for the given number of
states, φ|Si|, is too close to ki(ki+1)

2 number of transitions (total),
then the adversaries will require to match weights for lesser number
of combinations, thus, making it easier to predict. Now, the system
can operate using FL for the devices in its control; hence the problem
deduces to:

P2 : max

(
PHi

[w]

(
∆WHi

φ|Si|
ki(ki+1)

2

))
(7)

Following the constraints in C1 to C3. The weights follow a
standard normal distribution if the model is operated for a longer
duration as the converging rate will become constant, resulting in
a zero mean and a unit standard deviation (µ = 0 and σ = 1),

which can be used to represent as P (∆WH) = e
−∆WHi

2

2√
2π

. Now,
it can be used to understand the bounds for the behaviour of the
problem, P2. If such is the case, then P2 will be operating with
two controlling variables PHi

and P (∆WHi
), both of which will

depend on the number of times the weights are adjusted in the setup.
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If Uτ+1−τ becomes too large, P(τ+1)−τ will decrease considerably,
however, it will also affect the convergence rate of the model and can
cause latency, which is not an ideal situation for a setup operating
with IoMT. Hence, the model can further divide itself to reduce
the burden on performance while keeping intact the data privacy.
If U(τ+1)−τ = Λ, then the function will be bounded by values
≥ 1, which is the non-complex minimum calculable when both the
rates are equal. Alternatively, the function will attain its minimum
when U(τ+1)−τ = Λ. This helps to understand the impact of using
FL and how it can be used for identifying misbehavior by finding
values of weights leading to a minimum of the function and giving a
minimum chance to an adversary for avoiding this detection. This has
been illustrated using Fig. 3. It can be observed that the convergence
rate will be affected if too frequent updates are performed to the
weights, which will give more chances to an adversary to avoid the
misbehaviour detection as it can predict the states and avoid getting
caught by the detection mechanism.
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Fig. 3. Convergence cost using an FL scenario enabled with Stackel-
berg game formation for honest devices.

Following the understanding of the utility of FL, it is supported by
two layers of Bidirectional Long-Short Term Memory (BiLSTM) to
help with the misbehaviour detection and ensure the privacy of the
user relying on the properties of FL. The details are as follows:

1) Bidirectional Long-Short Term Memory (BiLSTM): LSTM is
a variant of recurrent neural network (RNN). Because of its success,
LSTM was specifically claimed as a solution for the technical issues
of the classical RNN structure. In addition, LSTM practically remem-
bers information for a long term, apart from learning the patterns
of a given data. In consequence, its design feature makes LSTM
appropriate for building models for those data that are collected in
time order. Moreover, unlike classical RNN, LSTM can operate with
flexible time steps of time-series data and resolves the vanishing
gradient problem [43].

Like classical RNN top-level design, LSTM still follows the
chain-like structure of repeating modules, called LSTM cells. The
information flowing in the chain are controlled by four network
passes, namely forget gate (ft), input gate (it), cell state candidate
(Ĉt), and output gate (ot). Each passes results from an element-
wise sigmoid function (σ) and are combined through point-wise
multiplication operation, as shown in Fig. 4. The inference (ht) of
the model is obtained by the following composite function:

ft = σ(Wf × [ht−1, xt] + bf )

it = σ(Wi × [ht−1, xt] + bi)

Ĉt = tanh (WC × [ht−1, xt] + b
Ĉt

)

Ct = ft × Ct−1 + it × Ĉt

ot = σ(Wo × [ht−1, xt] + bo)

ht = ot × tanh (Ct)

where W∗ and b∗ are weight matrix and

bias of the gate layers.

(8)

x

tanh

+x

σσ

x

tanh

σ

x

tanh

+x

σσ

x

tanh

σ

ht-1 ht

Xt-1 Xt

Ct

Ct-1

ht
ht-1

ft it
it

Fig. 4. Illustration of sequential processing in LSTM

The processing flow of a typical LSTM-based prediction model
is limited to forward direction, making use of only the previous
events [44]. To overcome this limitation, LSTM is extended to a
bidirectional flow structure with the goal of enhancing the model
performance in sequence-related problems. The output of the model
is obtained wherein the future context is included in the analysis.
Figure 5 portrays the logistic flow of BiLSTM. Accordingly, BiLSTM
is composed of two hidden layers, respectively processing input
sequence data in forward and reverse timestep directions.

Fig. 5. Illustration of Bidirectional LSTM

2) Misbehavior Detection System (MDS) Architecture
Overview: The proposed MDS contains two-tier of the FL-based
model, as presented in Fig. 6. The first tier implements a BiLSTM-
based estimator, which periodically forecasts the blood glucose level
(BGL) of a patient based on the previous n timesteps. The estimated
value is utilized in computing insulin dosage and insulin amount
in the pump vial. Furthermore, the estimate and its derivatives
are operationally combined with other attributes, generating input
features for behavior prediction. The second level also implements
the BiLSTM structure in classifying the system as well-behaved
or malicious. In the the latter case, the logical agent notifies the
authorized person to quickly address the anomaly. Note that this
paper leverages the input features introduced in [45]. For detail,
expressions 9 and 10 defines the input features of the CGM estimator
and classifier, respectively. We refer the reader to [45] for clarity.
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Estimated CGMt ← [Gt−n, ...., Gt−2, Gt−1]

where G ∈ {glucose reading, carbs intake, insulin intake}
(9)

Behavior ← [Bt−n, ...., Bt−2, Bt−1]

where B ∈ {glucose estimation error,

message 1 arrival error,

insulin dosage estimation error,

message 2 arrival error

in-vial estimation error,

message 3 arrival error}

(10)

To this end. the application of this deep learning solution generally
demands model-carrier with high computation capability and memory
due to increasing complexity. Hence, the conversion of trained models
to lightweight version is desirable to the case study, i.e., memory
requirement of the model is reduced and the latency of arriving to
a decision is significantly low, but still achieving considerably high
accuracy. Accordingly, this work applies the simplest model com-
pression method called post-training quantization technique, wherein
the 32-bit floating-point precision of the based model parameters are
transformed into an 8-bit precision. In turn, the inference latency
and memory consumption is ideally reduced by 16 and 4 times,
respectively [46], [47].

BiLSTM-based 
CGM estimator

N time-step 
glucose attribute

BiLSTM-based Behavior Classifier

N time-step 
behavior 
attributes

Behavior 
Classification

Glucose 
estimate

•
Current 
behavior 
attributes

Composite 
attributes

Notification Agent 

Fig. 6. Two tier design of collaboratively-trained BiLSTM-based MDS.

C. Decentralized Privacy Preserving

Our incentive scheme is designed by diversifying the CryptoNote
protocol [48], where this protocol is a pioneer in delivering user’s
privacy in a decentralized incentive mechanism. This technique is
implemented in one of the Blockchain cryptocurrencies known as
Monero (XMR). It is an open-source, private, decentralized cryp-
tocurrency that keeps transactions confidential and secure.

1) Secure Distributed Ledger Management: We construct
a secure distributed ledger management protocol empowered by
Ethereum smart contract by referring to the CryptoNote layer
protocol to solve specific issues identified in Bitcoin transactions.
The designed protocols leverage a group of ring signatures. It is a
multi-signer digital signature scheme where a group of ring signature
schemes possesses N signers forming a ring. Whenever the signers
in the group receive a transaction to be endorsed, they can produce
a ring signature with a corresponding private key. Once the ring is
successfully created, every group member can use the signature on

behalf of the group to keep their identity secret. A ring signature can
be defined as a type of digital signature algorithm that any member
of the group can calculate. Whilst, the ring confidential transactions
perform a list of prior transactions to obscure the original value of
current transactions. The user USx enables to choose the number of
signatures RGsx from the ring RNGtot to be used in a transaction
Txn. The selected signature is part of the ring that has been
generated in advance, where RGsx ∈ RGtot ⩾ 1.

(i) Healthcare provider GV Rn → hash(PubGVR, SecGVR) →
PubGVR → PGVR = trapGVR(qGVR)

(ii) New Entity n Newn → hash(PubNewn , SecNewn) →
PubNewn → PNewn = trapNewn(qNewn)

The primary key values for each lightweight IoT device within
MEC are obtained from the trapdoor permutation function as a set
of one-way function fnkr : Mkr → Nkr(kr ∈ KR), where for all
KR,Mkr, Nkr is a subset of binary strings value {0, 1}∗, fulfilling
a certain number of requirements, such as there exists a sampling of
probabilistic polynomial time Create(1n) = (kr, xkr) with kr ∈
KR ∩ {0, 1}n; where xkr ∈ {0, 1}∗ meets |xkr| < pol(n) with
pol is defined as some polynomial values. Thus, every xkr is known
as trapdoor corresponding to kr value. Suppose any kr ∈ KR with
pol algorithm for every x ∈ Mkr , let z = α(kr, fnkr(X), xkr).
Accordingly, the function possess fnkr(z) = fnkr(x). Each entity
holds a pair of parent keys (Pubn, Secn) generated beforehand. The
encryption Pn = trapn(qn) generates the public key; trapn is a
trapdoor permutation function, while trapn(qn) specifies fi(qi) =
q2modni over {0, 1}b. Eventually, the signature keys of entities can
be defined as follows:

RNGsgn → GV Rn ⊕ PETn ⊕ INCn,⊕, ...,⊕Newn;

{trapGVR(qGVR)⊕ trapPETn(qPETn)⊕
...,⊕trapNewn(qNewn)};{RNGtot∑

i=1

trapi(qi) = trapGVR(qGVR)

⊕trapPET1
(qPET1

)⊕ trapNewn(qNewn)

}
;

(11)

The observers have no knowledge about the sender’s information
due to the transaction is being signed on behalf of the group. The
sender is free to choose the number of signatures as stated in the
formula (11). Members can use the signature within the ring for
any lightweight IoT transactions without requiring approval from
each group member. Each addition of a new entity can be executed
regularly as long as the public key is known (Update RNGsgn).
Likewise, excluding members from the ring can be managed unde-
viatingly by the manager (Exclude RNGsgn).

The constructed protocols are based on the elliptic curve cryptog-
raphy established with regard to multiplicative cyclic groups. The
secret key SecENTn defines Qα ∈ [1, l − 1]; with l represents
the prime order of a base point in the elliptic curve cryptography.
Meanwhile, the public key PubENTn is understood as a point of
Pubα = Secα ·G (with G is a generator for Pubα). There exists a
pair of tracking keys track keys(Qα,Pubβ) obtained from Secret
and Publiceckeys(Pubβ = Secβ ·G with condition Secα ̸= Secβ)
[49]. Finally, the description of protocols, which is also a part of ring
confidential transactions, can be interpreted as follows:
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RNGsgn :=

{{
(AD1

1, CRSP
1
1 ), ...., (AD

n
1 , CRSP

n
1 ),(∑

j

ADj
1 +

n∑
j=1

CRSP j
1 −

∑
i

CRSPi,out

)}
.{

(AD1
p+1, CRST

1
p+1), ..., (AD

m
p+1, CRST

m
p+1),(∑

j

ADj
p+1 +

n∑
j=1

CRSP j
p+1 −

∑
i

CRSPi,out

)}}
.

(12)

(i) Let {(AD1
π, CRSP

1
π ), (AD

2
π, CRSP

2
π ), ..., (AD

n
π , CRSP

n
π )}

be a set of addresses/commitments including identical secret
keys Secj , j = 1, ..., n.

(ii) Search p+1 sets {(AD1
i , CRSP

1
i ), ..., (AD

n
i , CRSP

n
i )}, i =

, ..., p+ 1 (never being used beforehand).
(iii) Select on a collection of output addresses Pi, CRSPi,out →∑n

j=1 CRSP
j
π −

∑
i CRSPi,out supposed to be zero.

(iv) Let formula in (12) be the generalized ring that the sender
expects to sign.

RNGsgn∑
i=1

trapINCn(qINCn)⊕ trapPETn+1
(qPETn+1

)

⊕trapGVR(qGVR) ∈ RNGtot ⩾ 1);

(WherePET1(RNGsgn)must > 1)

Combining function can be defined as follow :

CFk,v(PubGVR, PubPET1
, PubPETn , PubINCn),

Ek(PINCn , Ek(Pn − 1⊕ Ek(PPET1
⊕ v))) ∼= v

(13)

To disguise the sender’s transaction, the senders conceive
the ring group by selecting a certain number of signatures to
be included within the smart contracts. For instance, patient 1
PET1 selects 5 public keys out of the ring including himself
(PGVR, PPET1

, PPET2
, PPET3

, PINCn ); 50 PubENTn in total
available. In this sense, the group of ring can be defined as follows:
PET1(RNGsgn) → trapGVR(qGVR) ⊕ trapPET1

(qPET1
) ⊕

trapPET2
(qPET2

)⊕, ...,⊕trapINCn(qINCn); signed with
PET1’s private key. The final construction of the ring generated
by PET1 is formed in (13). The sender’s contract is executed
with a combining function CFk,v ; where k is defined as a key for
Ek. Finally, by adopting these protocols, the sender’s privacy is
preserved since the actual signers are disguised.

2) Deploying Transactions with Untraceable Incentive
Schemes: For ease of understanding, we consider patient 1 PET1
to be a sender in the lightweight IoT devices system. The ET1
possesses all requirements needed to commit a transaction via smart
contract. We also note the PET1’s transaction as TX PET1.
This transaction consists of the type of function used by the
sender, such as the main diagnosis function (”Main Diagnos.”)
along with the description (λ Descript.) concatenated with the
actual data/patient’s diagnosis (ψ IPFSCID) and the details
(∆ Details‘). The (ψ IPFSCID) is the unique content identifier
(CID) associated with the data stored in a distributed file system
known as the InterPlanetary File System (IPFS). CID is short,
regardless of the size of the underlying content based on a
cryptographic hash. The type of data stored can be adjusted
accordingly, including aggregation values of FL, the information
of continuous glucose monitors (GMC), and any other behavioural
aspects.

TABLE III
SUMMARY OF NOTATIONS USED (BLOCKCHAIN TRANSACTIONS).

Notations Definition
RNGsgn The number of ring signatures; Total RGsx

RNGtot Total number of RNGsgn available
GV Rn; PETn Healthcare providers (local hospitals); Patients
Newn; INCn New entity (n numbers); Incentive manager
Pubn, Secn Public key n and secret key n
hash; trap(f) 256-bit hash; trapdoor permutation function
fnkr A set of one-way function
Update RNGsgn Updated version of constructed ring signature
Exclude RNGsgn Removing a member of RNGsgn

Current RNGsgn Current version of RNGsgn

Take New Pub Collecting a public key of potential member
G A generator in elliptic curve cryptography
track keys Tracking keys assigned in Blockchain network
(ADn

π , CRSP
n
π ) A set of addresses/commitments

CFk,v Combining functions
TX PETn A secure Blockchain & FL transactions
λ Descript. Description of stored data
ψ IPFSCID A unique content identifier of IPFS
GV R OTUk One-time used key
OPKcx1 One-time private key to claim a reward

[
”Main Diagnos.”||λ Descript.||ψ IPFSCID||∆ Details

PET1
′sPubKey → PET Pubα1, PET Pubβ1

]
{signedwithPET1(RNGsgn) ∈ RNGtot ⩾ 1||PET Secα1}
condition→ PET Secα1 ̸= PET Secβ1 ”&&”Gα ̸= Gβ;

(applied to all senders with respective ”G”)
(14)

The patient TX PET1 attaches his/her public keys
PET Pubα1, PET Pubβ1 into transaction TX PET1 (unique
feature). The first public key PET Pubα1 is created based on PET’s
private key PET Secα1 from a certain base point/generator Gα as
defines: PET Pubα1 → PET Secα1 ·Gα. This key is being used
together with the recipient’s random data rand; where R = rand·G.
Concurrently, the other PET’s public key PET Pubβ1 is generated
from another PET’s secret key PET Secβ1 corresponded to its
generator: PET Pubβ1 → PET Secβ1 · Gβ ; with condition
Gα ̸= Gβ . Hence, PET Secα1 ̸= PET Secβ1 as depicted
in formula (14), inspired by [50], [51]. The second public key
PET Pubβ1 is assigned as a tracking key within Blockchain
network. The sender TX PET1 can recognize the reward which
belongs to him by checking the tracking key attached into TX PET1
as defined in (14).

Once TX PET1 is completed, the data owner receives a reward
in the form of Ether cryptocurrency. The amount of Ether obtained
can be adjusted by the provider. In the first place, the provider
confirms the transactions claimed by the sender. If all requirements
are satisfied, then the provider unpacks the public keys attached
in TX PET1, and straightforwardly executes a random base point
rand ∈ [1, l−1] while also computes a provider’s one− time used
GV R OTUk for the sender PET1 as shown in (15).

GV R OTUk = Hash(rand PET Secα1)

· G+ PET Pubβ1

Let rand = GV R′s random data→ R = rand ·G,
(15)

OPKcx1 = Hs(Privα1 ·R) + Privβ1 (16)

The reward sent by provider GV R is only available for pa-
tient 1 PET1 because only PET1 knows the secret information
of the transaction. Before a certain amount of Ether is trans-
ferred through the Ethereum network, the GV R must confirm
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that all states in TX PET1 are correct (labelled as ”True”). Pa-
tient 1 examines every passing transaction using PET’s private
key PET Secα1, PET Secβ1. PET1 is authorized to recover
the corresponding GV R OTUk key since PET1 is the owner
of PET Secα1, PET Secβ1. Eventually, the PET1’s one time
private key is signified in (16). This key is being used to spend the
Ether transferred by GV R. In the original state of Monero (XMR)
technology, the combination of these keys is being utilized as a part
of a ring signature to obscure the sender’s information. A fresh key-
image is also attached to prevent the double-spending attack.

IV. PERFORMANCE RESULTS AND COMPARISON

A. Misbehavior Detection Experiment and Performance
In the experiment, we train and measure the performance of the

proposed MDS. The accuracy of the estimation model is quantified
by the root mean square error, while the classification model perfor-
mance is measured based on the prediction accuracy, precision, recall,
and F1-score. This section first briefly describes these performance
indicators, machine environment, and the summary of results.

The root mean square error (RMSE) calculates the total deviation
of the forecasted glucose values (Gesti ) with the actual measurements
(Gmeasi ), as expressed in equation (17). A smaller total deviation
from a number of samples indicates better accuracy. Meanwhile,
classification performance indicators are measured by collecting the
Tn, Tp, Fn, and Fp of the given test samples. These key parameters
denote true negative, true positive, false negative, and false-positive
counts, respectively. The metric accuracy measures how well the
models classify both the malignant and benign events, whereas the
other three metrics measure how well the models are in classifying
malignant events. Precision is the level of reliability with which the
trained model correctly identifies the malignant events. As shown in
expression (19), this indicator is calculated as the ratio between of
correctly identified malignant events (Tp) and all events identified as
malignant, where Fp is the number of benign events misidentified as
malignant. Meanwhile, recall indicates how good the models are at
classifying malignant events. It is the ratio between the number of
correctly identified malignant events and the total of actual malignant
events. Regarding misbehavior detection performance, the models
with relatively low recall rates are regarded as ineffective due to the
high incorrect classification of malignant events. Thereby, an effective
method requires a recall rate as high as possible since undetected
attacks can place patients in unfavorable health conditions. Finally,
the F1-score is a performance metric that incorporates precision and
recalls into a single value. A high F1-score indicates Fp and Fn are
both low. In this article, the platform serving as the aggregator of
submodels is the Windows 10 operating system with an AMD Ryzen
5 processor and memory of 20GB, while end devices collaboratively
building the estimation and classification model are Raspberry-Pis.
The system is implemented using Python language. The detailed
machine specification and software tools utilized are listed in Table
IV.

RMSE =

√√√√ 1

n

n∑
i=1

(Gesti −Gmeasi)
2 (17)

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(18)

Precision =
Tp

Tp + Tn
(19)

Recall =
Tp

Tp + Fn
(20)

TABLE IV
MACHINE ENVIRONMENT AND LIBRARIES USED IN THE EXPERIMENT

Description Platform Configuration/Version

MEC Server Laptop
Windows 10 64-bit
AMD Ryzen 5 4600H
20 GB RAM

5 End devices Raspbian OS 64-bit
(Raspberry-Pi 3 Model Microcomputer Arm Cortex-A530 1.4GHz
B+) 1.0 GB RAM
Compiler Environment ***** Python 3.9
Extension Library ***** Numpy 1.19.5
Extension Library ***** Pandas 1.3.3
Machine Learning Library ***** Scikit-learn 1.0
Machine learning library ***** TensorFlow 2.6.0
Machine learning library ***** Keras 2.6.0

Glucose-insulin Simulator ***** UVa/Padova Simulator
(Python version)

F1 − score =
2× Precision×Recall
Precision+Recall (21)

1) Dataset Preparation: The dataset utilized for the training
and evaluation was generated from the glucose-insulin simulator of
[20]. In this experiment, 2400 of 6-tuple time-series samples was
collected from a virtual diabetes patient. The collected data contains
six features, including glucose level, the message transmission time of
glucose level to the controller, insulin dosage, message transmission
time of injection command to the insulin pump, insulin-on-vial (IoV),
and message transmission time of IoV back to the controller. In
this case, five virtual patients, each having distinct glucose-insulin
behavior, were simulated. Forty percent of the samples were utilized
in training and evaluation of the estimation model, and the remainder
was allocated for the evaluation of the classification model.

It should be noted that the data being collected from the simulator
are technically based on the regular operation, wherein the samples
are assigned as benign. Furthermore, we augment the data to include
malignant samples in the training and evaluation of the classification
model. This is done by arbitrarily changing a feature value using
equation (22). In addition, the dataset of each patient is augmented
at different degrees to differentiate training and validation data size.
Finally, the input features for the training and validation are arranged
in blocks containing n timesteps sequence. In the end, the generated
training and validation datasets have sizes summarised in Table V.

malignant feature = benign feature ±
benign feature× rand([10% 50%])

(22)

TABLE V
DATASET DETAILS USED IN THE EXPERIMENT

Purpose Total Size Remarks

Device 1 Training 3532 blocks 2668 benign and 864 malicious
Device 2 Training 3140 blocks 2387 benign and 753 malicious
Device 3 Training 2748 blocks 2080 benign and 668 malicious
Device 4 Training 2356 blocks 1771 benign and 585 malicious
Device 5 Training 1963 blocks 1498 benign and 465 malicious
Validation Set 19631 blocks 14846 benign and 4785 malicious

2) Performance Results: Finally, the performance results of the
proposed method are collated in different settings. Firstly, we inves-
tigate the performance of the forecasting model at varying numbers
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of participating devices and in the timesteps sequence of 5, 7, and 9.
Accordingly, we collate the RMSE from the collaborating devices and
compute the average value at every setting. For comparison purposes,
we also gathered RMSE from each while building model individually.
Fig. 7 displays the average RMSE value at every communication
round or epoch. It can be observed in the figure that when devices
individually build the model, the average RMSE decreases slowly. On
the other hand, as the number of model-building devices increases,
the average RMSE between collaborating devices decreases at shorter
communication rounds. It should be noted that the figure only
presents the results when the timestep sequence is set to 5, and the
same trend was observed in the other settings. To this end, the input
training sample with five timesteps sequence produces the lowest
RMSE from 5 collaborating devices as shown in Table VI.

Fig. 7. Average RMSE at every epoch/communication round in varying
collaborating devices using 5 timesteps sequence

TABLE VI
AVERAGE RMSE OF 5 COLLABORATING DEVICES AT VARYING

TIME-STEP SEQUENCE

Timestep Sequence Average RMSE

5 1.3482
7 1.9959
9 2.6099

Subsequently, we investigate the accuracy of the classification
model at varying collaborating devices while adapting the timesteps
sequence with the lowest average RMSE from the first experiment. As
shown in Fig. 8, when more devices participate in the model building,
the learning rate increases in shorter communication rounds. Finally,
Table VII the comparison of the average classification performance
of different deep learning approaches. On the one hand, the size
of the BiLSTM model has decreased by 43% after applying post-
quantization method, and the inference latency has reduced by
almost 94%. However, both indicators are relatively higher than
the other neural network structures due to the significantly more
complex structure. On the other hand, the proposed BiLSTM-based
MDS dominates the other approaches, achieving a high recall of
99.93%. This indicates that the proposed model can capture almost
all potential malicious events in the target use case.

B. Blockchain Environment Setup
As mentioned earlier, we leverage the Ethereum Blockchain

platform as a cornerstone of a decentralized application. In order
to connect with the Ethereum network, we utilize Truffle - Suite
framework for testing and deploying the instruction within the smart

Fig. 8. Average classification accuracy at every communication round
in varying collaborating devices using 5 timesteps sequence.

TABLE VII
AVERAGE PERFORMANCE COMPARISON OF DIFFERENT NEURAL

NETWORK STRUCTURES

Performance
Metrics

Algorithm
MLP [45] [45] BiLSTM

Accuracy 98.71% 99.17% 99.74%
Precision 98.79% 99.07% 99.72%

Recall 98.69% 99.24% 99.93%
F1-Score 98.73% 99.16% 99.83%

Latency (ms) 0.1930 0.7127 1.1110 (**17.2256)
Mode size (bytes) 1553 1749 25161 (**43677)
Legend: ** Performance of the Base Model

contract. The functions of smart contracts can be adjusted over
time through the migrations feature provided by the framework. The
smart contract is executed by a computation engine that acts as
a decentralized computer network known as the Ethereum virtual
machine (EVM). Every Blockchain node operates on the EVM
to maintain consensus across the network [52]. The EVM can be
understood as a mathematical function that takes any given input
to produce a deterministic output with a state transition function.
Ethereum-enabled applications using Truffle Suite execute and in-
spect the state transition function with all essential dependencies
installed. This framework is an automining mode and running on
the remote call server http://127.0.0.1:7545 (network ID: 5777) with
the currency symbol is ’Ether’. The gas price and gas limit are set
to be 20,000,000,000 Wei, and 6,721,975 respectively. Prefix values
of hexadecimal number and the unique identification of the entities
are obtained from Truffle - Suite framework.

C. Compatible Privacy Preservation

The Blockchain-based privacy preservation framework is formed
by deploying transactions (e.g., TX PETn patient’s data) into the
Ethereum network. The patients state their relevant information in the
smart contract, such as the primary diagnosis function, description,
actual data, and details. The patient also attaches a pair of public keys
to be used mutually with the recipient’s random data (in line with
Diffie-Hellman key exchange), while the other key acts as a tracking
key. The fundamental objectives of smart contract adoption in this
research are the immutable transactions record and commensurate
incentive mechanism. Tamper-proof property is achieved by design,
while the cost of incentive given to the data owner is proportional to
the data amount. We deploy our contracts to the Ethereum network
by running the migration file. Over time, the contract functions
can be changed by re-running the migrations file (responsible for
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TABLE VIII
SUMMARY OF THE CUMULATIVE GAS CONSUMPTION AND Ether SPENT BY PET1 AND GV R.

No. Benchmark PET1 PET2 GV R1 GV R2

1 Ether amount (init.) 100 ETH 100 ETH 100 ETH 100 ETH
2 Gas usage (min) 91468 100615 61141 61752
3 Gas usage (max) 125721 138293 65754 66411
4 Gas usage (avg) 100717 110789 62846 63474
5 Ether spent (min) 5.56 x 10−3 1.82 x 10−2 6.42 x 10−3 1.94 x 10−2

6 Ether spent (max) 9.87 x 10−3 7.94 x 10−2 9.57 x 10−3 3.44 x 10−2

Fig. 9. The detail of information that the data owner has conducted.
This transaction is mined in Block 5 with 111367 gas usage.

staging the deployment tasks). The network id and block gas limit
is set to be 5777 and 6721975 (0x6691b7), respectively. When the
contract is successfully deployed to the Ethereum network, then
the contract will have an address. Eventually, the migration process
details are displayed together, such as the number of blocks, current
balance (Ether), block timestamp, account, gas used in deploying
the contract, gas price, the value sent, and total cost. Roughly, the
contract migration process consumes 225237 gas units, with a total
cost is 0.00450474 ETH.

In deploying the contracts, the genesis block is created automat-
ically with zero units of gas used, and it is recorded in the Block
0 on the chain. The genesis block is perpetually hardcoded into the
software of the applications that use the Ethereum smart contract.
The first transaction TX PET1 of patient 1 PET1 is recorded in the
Block 5 with transaction index is 0, gas used is 111367 units (6721975
gas limits), and the ID of transaction is ’log 125444eb’. Intuitively,
a timestamp for every block can be understood as a block generation
after getting confirmation from the miners in the network. When the
node receives a new block from another node in the network, the
recipient confirms that the timestamp value is correct and does not
outpace the Universal Time Coordinated (UTC) by more than 100
milliseconds. Otherwise, the block is rejected. The information of this
transaction can be seen in Fig. 9. The number of the block is begun
with the genesis block (Block 0), contract creation block, contract
deployment block, and the block of the patient’s transaction (Block
5). By the framework default, every transaction conducted by entities
is recorded into one block. For instance, when the five patients upload
their diagnosis data into the Blockchain network, the smart contract
records the data into five consecutive blocks.

To estimate the gas consumption and Ether spent, we captured
20 consecutive transactions TX PET1 deployed by two patients
TXPET1 and TXPET2 (40 transactions in total). The arbitrary val-

ues of transactions stated in the smart contract are varied. The input of
transactions is distinct by the type of diagnosis data, the description,
IPFS content identifier, the details, etc. In the Ethereum platform,
gas represents the unit that regulates the computational effort in
executing particular operations and functions on the Blockchain
network. The sequence of patient’s activities are linked with the
government healthcare provider transactions GV R1 for transaction
PET1, and GV R2 for PET2. GV R provides the reward for the data
owner in a secure manner, whereby the information of corresponding
entities is confidential. The lowest gas consumption of the PETn’s
transaction is recorded to be 91468 units (PET1). The maximum
use of gas is around 100717 units, with an average of 100717 units
for the 20 transactions that have been carried out. On the other hand,
PET2’s lowest gas used is 100615 units; the maximum usage is
138293 units with 110789 average units.

The visual output of the transaction is shown in Fig. 10. The
knowledge about Ether spent in Table VIII describe an accumulated
calculation of gas usage, gas limits, and the gas price calculated
automatically by the Truffle - Suite framework. The IPFS network
benchmark used in our framework can be seen in Table IX. Every
entity possesses a UNIX ID (ipfs-unixfs) and public key connected
through a specific gateway, i.e. http://127.0.0.1:8080. The agent and
UI versions are go-ipfs v0.11.0 and v2.13.0. The data stored can
vary in terms of type, size, etc. The number of peers available
dynamically change over time. As highlighted in Table IX, the CID
and multihash functions are derived once the data are successfully
stored. Eventually, our proposed scheme can be a plausible solution
to address the privacy and transparency issues in the Blockchain.
Nevertheless, the hard fork in the Blockchain is needed since the core
of protocols is updated. Blockchain hard-fork is not a straightforward
challenge to deal with. In other words, it can be a significant obstacle
in embracing the proposed model in the real world.

V. CONCLUSION

We have presented a Blockchain-based privacy preservation frame-
work for secure misbehavior detection employed in lightweight IoT
devices. Our proposed model becomes essential for securing sensitive
healthcare data which runs through lightweight IoT devices systems.
The privacy concerns are tackled by diversifying several cryptography
protocols that cut off the linkage between private data and the
corresponding owner. We also applied FL strategy that enhances
patient privacy by keeping training data within the owner’s digital
realm and building the global model out of sub-models that are
trained locally by participating devices. Furthermore, the entities’
information is expressly disguised by an Ethereum smart contract. We
have completed the main requirements stated in this research, such
as privacy preservation and a commensurate incentive mechanism
that legitimate entities can only recognize. However, our designed
scheme is embedded into smart contract transactions, affecting gas
usage per input of arbitrary values. Realizing our protocols on the
core of the Ethereum network, a costly hard fork is required whereby
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Fig. 10. (a) Comparison of Ethereum gas usage between patients and healthcare providers in conducting transactions. Two patients with their
respective data conducted TX PET1 and TX PET2, respectively; (b) Comparison for the last ten transactions of patients.

TABLE IX
THE INTERPLANETARY FILE SYSTEM NETWORK BENCHMARK.

Benchmark Details

Sender 1 ID 12D3KooWNqta5mdmLYYE2GWa9Z ...xxx
Public key CAESIMGL4w62ZkS3clCVUQtlCMry ...xxx
AgentVersion & UI ver. go-ipfs v0.11.0 & v2.13.0
API /ip4/127.0.0.1/tcp/5001
Data size & Peers avb. 966 KB; 125 Peers (dynamically changing)
Content identifier (CID) QmdeFRzC3VhQyecQtoWiamyyZ ...xxx
String structure Object type: ”file”, data: undefined, block-

Sizes: Array[4]
Links 4 links (Path: Links/0, Links/1 - Links/3)
Multihash function 0x1220E3617...xxx (0x12 = sha2-256; 0x20

= 256 bits)
Avg. Network traffic 76 KiB/s incoming; 32 KiB/s outgoing (3

mins pre - post transactions)

the massive number of clients must update the latest version of the
Ethereum network. In addition, the performance of the misbehavior
detection algorithms under the BiLSTM technique shows compact
findings, with recall rates exceeding 99 percent, implying that the
algorithms are successful in capturing almost all malicious events
in the target healthcare system. Conclusively, the overall events
positively recommend that our schemes satisfy the design objectives.
The dataset utilized to evaluate the proposed approach were taken
from the works in [20] and [45], in which the authors extended
a simulation tool called UVA/Padova. It is known that this tool is
already approved by Food and Drug Administration for educational
and pre-clinical trials. Nevertheless, this current work acknowledges
that validation of the proposed approach in real environment with
true patient data is vital. Hence, this concern will be included in the
future works.
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