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Abstract—Integrated sensing and communication (ISAC) is in-
creasingly recognized as a pivotal technology for next-generation
cellular networks, offering mutual benefits in both sensing
and communication capabilities. This advancement necessitates
a re-examination of the fundamental limits within networks
where these two functions coexist via shared spectrum and
infrastructures. However, traditional stochastic geometry-based
performance analyses are confined to either communication or
sensing networks separately. This paper bridges this gap by
introducing a generalized stochastic geometry framework in
ISAC networks. Based on this framework, we define and calculate
the coverage and ergodic rate of sensing and communication per-
formance under resource constraints. Then, we shed light on the
fundamental limits of ISAC networks by presenting theoretical
results for the coverage rate of the unified performance, taking
into account the coupling effects of dual functions in coexistence
networks. Further, we obtain the analytical formulations for
evaluating the ergodic sensing rate constrained by the maxi-
mum communication rate, and the ergodic communication rate
constrained by the maximum sensing rate. Extensive numerical
results validate the accuracy of all theoretical derivations, and
also indicate that denser networks significantly enhance ISAC
coverage. Specifically, increasing the base station density from
1 km−2 to 10 km−2 can boost the ISAC coverage rate from
1.4% to 39.8%. Further, results also reveal that with the increase
of the constrained sensing rate, the ergodic communication rate
improves significantly, but the reverse is not obvious.

Keywords: Integrated sensing and communication (ISAC),
multi-cell networks, coverage and ergodic rate analysis, stochastic
geometry.

I. INTRODUCTION

Integrated sensing and communication (ISAC) has been

recognized as one of the key usage scenarios for sixth-

generation networks, offering efficient wireless communica-

tions and sensing functions within the same system and thus

enhancing spectrum efficiency [1], [2]. Armed with ultra-

reliable and precise dual-function services, ISAC systems can

support many emerging applications such as virtual/augmented

reality, smart home and factory automation [3].
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Recently, a rich body of research has grown up around the

theme of this new technology [4]–[10]. Among them, many

efforts have been dedicated to improving the ISAC perfor-

mance, and most of them focus on waveform designs and

signal processing. However, these optimization frameworks

lack a mathematical understanding of ISAC systems to explore

the fundamental performance bounds and provide analytical

insights. Up to now, there are only a few investigations [11]–

[14] that have delved into basic performance analysis on ISAC

systems. Specifically, authors in [11] proposed a systematic

classification method for both traditional radio sensing and

communication, and summarized the major performance met-

rics and bounds used in sensing, communication and ISAC, re-

spectively. The work in [12] investigated the trade-off between

Cramér–Rao lower bound (CRLB) and communication rate

on a subspace of the unified ISAC waveforms. Its main con-

tribution was the derivation of the maximum communication

rate under the minimum CRLB constraints, and the minimum

CRLB under the maximum communication rate constraint.

The work in [13] primarily explored the communication and

sensing mutual information and then designed waveforms to

strike a trade-off. However, these studies are constrained to

specific scenarios and focused on a single cell or few cells,

without considering all possible locations of base stations

(BSs) and users or inter-cell interference to provide general

performance bounds at a network level.

To tackle this issue, stochastic geometry can provide a

powerful tool for deriving general performance analyses and

guidelines for multi-cell networks across various possible

topologies. Motivated by these considerations, it is of great

value to carry out the stochastic geometry-based analyses on

the ISAC networks to develop tractable formulations for key

performance metrics.

A. Related Work

Leveraging the tractability of stochastic geometry, several

notable results have been obtained in separate communication

[15]–[19] and sensing [20]–[23] networks. Specifically for the

communication networks, authors in [15] proposed a general

framework with a distance-dependent line-of-sight probability

function to evaluate the coverage and rate performance in

millimeter-wave cellular networks. In [16], authors charac-

terized signal-to-interference-plus-noise ratio (SINR) and a

unified approach to conduct analytical expressions for symbol

error probability (SER), outage probability, and transmission

rate analysis. Moreover, the work in [17] proved that the cover-

age probability and average rate can be compactly formulated

http://arxiv.org/abs/2403.08343v2
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as a twofold integral for arbitrary per-link power gain with the

aid of the Gil-Palaez inversion formula.

As for the performance analysis for the positioning net-

works, it is generally necessary to determine the number of

BSs participating in the positioning process. In particular, re-

ceiving stronger pilot signals from serving BSs is increasingly

beneficial for the positioning process. In view of this con-

sideration, authors in [20] defined and computed the metric,

L-localizability, to study the probability of the number of BSs

whose signals arrive with sufficient quality to successfully

participate in the positioning procedure. Besides, the work in

[21] studied the conditions of lacking an adequate number

of detectable positioning signals from localized devices and

then derived accurate analytical expressions for the proba-

bilities of meeting this condition in the noncollaborative and

collaborative cases, respectively. On the other hand, the metric,

CRLB [24]–[26] was typically studied to characterize the

accuracy of the positioning networks. Specifically, the works

in [22] and [23] first derived the distribution of L-localizability

probability and then provided heuristic approximations of the

CRLB expressions based on the time-of-arrival and received

signal strength (RSS), respectively.

Most recently, the usage of stochastic geometry has been

extended to ISAC scenarios [27]–[30]. The work in [27]

defined the sensing signal-to-noise ratio and capacity as well

as computed upper and lower bounds of the coverage and

capacity expressions for communication and radar sensing,

respectively. In [28], the detection performance was derived

with multiple access for separate communication and radar

sensing in a heterogeneous cellular network. Moreover, the

work in [29] modelled radar exploration and communication

service tasks using stochastic geometry and defined the sum-

mation as the network throughput. It also provided insights

into the optimal resource allocation, such as the duty cy-

cle, radar bandwidth, and transmit power, to maximize the

defined network throughput. The work in [30] characterized

the performance of radar range detection and communication

coverage probability. Furthermore, authors in [31] derived

tractable expressions of area spectral efficiency to capture

communication and sensing performance, and formulated the

optimization problem to maximize the network performance.

The overall results provide an initial worthwhile exploration

of stochastic geometry-based analysis for ISAC networks.

However, all these studies [27]–[31] are restricted to the

scenarios where the ISAC dual functions are respectively

applied to the communication users and sensing targets, and

obtained separate communication and sensing performance

formulations. Thus, the study on the performance analysis of

ISAC networks through stochastic geometry is still limited,

and the derivations of theoretical formulations for unified

ISAC performance are lacking. To cope with it, another

scenario well worthy of stochastic geometry analysis is for

ISAC operating on the same users [32], [33], which can

achieve the mutual benefits of dual functions effectively. As

such, the sensing results can facilitate beam management

or tracking for the communication process, and in turn, the

channel estimation in the communication process can further

enhance the sensing performance. However, the theoretical

analysis of these ISAC networks through stochastic geometry

is still missing and challenging. This paper bridges this gap

by deriving the fundamental limits of unified ISAC networks,

which solves the difficulties that the performance of ISAC

dual functions is coupled with each other, owing to their

coexistence with the same BS deployments and experiencing

the same channel fading.

B. Contributions

In this paper, we propose a generalized stochastic geometry

framework to model ISAC networks. Based on this framework,

we define and calculate the coverage and ergodic rate of joint

and conditional ISAC performance, taking into account the

coupling effects in coexistence networks. The main contribu-

tions of this paper are summarized as follows.

• Generalized stochastic geometry framework for ISAC

networks: We propose a generalized stochastic geometry

framework for exploring the coverage and ergodic rate

of ISAC networks. This framework establishes a unified

paradigm to model ISAC networks, capturing the spatial

randomness inherent in multi-cell networks.

• Coverage and ergodic rate analysis for ISAC networks:

Based on the proposed framework, we obtain theoretical

results for the coverage and ergodic rate analysis for

sensing and communication performance under resource

constraints. Then, we present theoretical results for the

coverage rate of unified ISAC performance, taking into

account the coupling effects in coexistence networks.

These mathematical formulations offer a comprehensive

view of how the network deployment influences the

ergodic rate of unified ISAC dual functions. Further,

we provide the analytical formulations for evaluating

the ergodic sensing rate constrained by the maximum

SER, and the ergodic communication rate constrained by

the maximum CRLB. These results yield an insightful

understanding of the capabilities and limitations of one

function while ensuring the worst-case performance of

the other function in the coexistence networks.

• Network deployment insights into ISAC coverage and

ergodic rate performance: Numerical results validate the

accuracy of derived formulations and confirm that denser

networks markedly enhance ISAC coverage rate. For

instance, increasing the BS density from 1 km−2 to

10 km−2 boosts the ISAC coverage rate from 1.4% to

39.8%. Further, results also reveal that with the increase

of the constrained sensing rate, the communication rate

improves significantly, but the reverse is not obvious.

II. SYSTEM MODEL

In this section, we introduce the generalized stochastic

geometry model and characterize performance metrics for

evaluating ISAC dual-function performance. Then, we define

and calculate the joint and conditional ISAC coverage and

ergodic rate.
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A. Network Model

We consider the ISAC networks where BSs perform the

positioning and communication functions on users during

downlink transmissions. The locations of BSs are modelled

using a homogeneous Poisson point process (PPP)1 Φ ∈ R2

with density λ [18]. Similarly, Φu represents the homogeneous

PPP of users with density λu. The system model is illustrated

in Fig. 1. We have summarized all the notations and listed

them in Tab. I for quick reference. Generally in the ISAC

process, the typical user has multiple access to the positioning

pilots from the nearest L BSs for self-positioning2, while

receiving the communication data from the nearest BS. Hence,

the values of R1 and RL can characterize the interference

boundaries of the ISAC process.

Figure 1: An implementation of an ISAC network, where

the triangles represent BSs, and the red and green triangles

represent the nearest BS and the L-th nearest BS (L = 4
in this figure), respectively. The point represents the typical

user, and the locations of the remaining users are omitted for

brevity.

Lemma 1. Following the above network model, the probabil-

ity density function (PDF) corresponding to RL can be written

as

fRl
(rl) = e−λπr2l

2(λπr2l )
l

rl(l − 1)!
. (1)

Lemma 1 can be proved by using the property of PPP

distribution. By assigning L the values 1 and L, the PDFs

for R1 and RL can be obtained, respectively. Moreover,

conditioning on a given RL, the conditional PDF of R1 can

be expressed as

fR1|RL
(r1|RL) =

2Lr1(R2
L − r21)

L−1

R2L
L

. (2)

1The most widely used model for the spatial locations of nodes is consid-
ered as (homogeneous) PPP due to its tractability and analytical flexibility
[19]. The main advantage of this approach is that the BS positions are all
independent which allows substantial analytical tools to be borrowed from
stochastic geometry [16].

2It is assumed that the L BSs which provide the highest average SINRs
make up the set of participating BSs. After averaging the received signal over
a period of the positioning process [20], the nearest L BSs are generally
selected as in Definition 2

Symbols Definition/explanation

Rl Distance from the l-th nearest BS to the typical user

PT Transmit power of the BS

β Path-loss exponent (generally β > 2)

αl
Small-scale fading term of the l-th link, following

exponential distribution with parameter 1

Dl
Directivity gain induced by the directional beam of

the l-th BS

nl Shadowing effect (nl ∼ N (0, ξ2))

γ SINR threshold for the positioning process

LP
Maximum number of BSs that can participate in

the positioning process

ǫ1 and ǫ2
Coverage thresholds for the positioning and

communication process, respectively

Γ(w, z0, z1)
Generalized incomplete Gamma function as∫ z1

z0
tw−1e−tdt

Table I: Notation and symbols used in the paper

Proof: One can first calculate the cumulative distribution

function (CDF) of RL, which is equivalent to having at least

L BSs within b(O, rL), where b(O, rL) denotes a circle with

center at point O and radius rL, i.e.

FRL
(rr) = P(N(rL) ≥ L) =

∞∑

j=L

e−λπr2L
(λπr2L)

j

j!
, (3)

where N(rL) is the total number of points within b(O, rL).
Taking derivation of the resulting CDF with respect to rL
yields Eq. (1). Next, it can be proved from [34] that the points

within b(o,RL) obey uniform binomial point process (BPP)

under the condition RL, i.e. P(N(r1) = 1|N(RL) = L) =(
L
1

)

(
r21
R2

L

)(1 − r21
R2

L

)L−1, where

(
N
n

)

= N !
n!(N−n)! . Taking

derivation of the above CDF with respect to r1 yields Eq. (2).

�

Using Lemma 1, we can obtain the PDFs and conditional

PDFs of the locations of the L-th nearest BS and the nearest

BS, which are very crucial for deriving the positioning and

communication performance subsequently.

B. Performance metrics

This section is dedicated to the derivations of performance

metrics in ISAC networks. Hence, we derive and calculate the

CRLB and transmission rate to measure the ISAC network

performance based on the received signals of the typical user.

Denote the location of the typical user with single antenna

and the l-th nearest BS with M antennas by pU = [xU , yU ]
and pl = [xl, yl], respectively, and the distance can be written

as rl = ‖pU − pl‖. The received signal of the typical user

from the l-th BS can be written as

ysl =

√

PT r
−β
l hlxl + zl (4)

where hl ∈ C1×M contains small-scale fading coefficients

wherein the elements follow CN (0, 1), xl is the transmitted

vector with ‖xl‖2 = 1, and zl is additive white Gaussian noise.

Following the derivation procedure of the CRLB via the RSS
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method, we first write the logarithm of signal strength from

the l-th BS based on Eqs. (4) as

sl = P dB
0 − 10β log(rl) + nl (dB), (5)

where P dB
0 = 10 log(PT ) is the transmit power of the BS in

dB. Note that the small-scale fading has averaged out over

multiple timeslots. The conditional PDF of RSS f(sl|pU ) is

written as

1√
2πξ

exp

(

− (sl − P dB
0 + 10β log(rl))

2

2ξ2

)

. (6)

Then the likelihood function of the received vector

s = [s1, s2, ..., sL]T can be written as f(s|pU ) =
∏L

l=1 f(sl|pU ). Thus, the estimated pU can be ob-

tained by the maximum likelihood method, i.e., p̂U =
argmaxpU

f(s|pU ). The lower bound of the mean square

error can be measured by the CRLB, denoted by CRLB =

Tr(J−1
pU

), where JpU
=

(
∂s

∂pU

)

Js

(
∂s

∂pU

)T

and Js =

E

{(
∂ ln f(s|pU )

∂s

)(
∂ ln f(s|pU )

∂s

)T
}

. Using algebraic manipu-

lation, we can obtain

CRLB =

(
ln 10

10β

)2

ξ2
2
∑L

l=1 r
−2
l

∑L
l=1

∑L
m=1 r

−2
l r−2

m sin2(θl − θm)
,

(7)

where cos θl =
xU−xl

rl
and sin θl =

yU−yl

rl
.

Proposition 1. Through the adjustment of the orientation or

internodal angles of BSs, we can obtain the lower bound of

the CRLB as

C =

(
ln 10

10β

)2

ξ2
4

∑L
l=1 r

−2
l

, (8)

where the lower bound is achieved if it satisfies

L∑

l=1

r−2
l ≥ 2 max

k∈{1,...,L}
r−2
k . (9)

Proof: Please see Appendix C. �

Proposition 1 provides a more tractable form of the position-

ing performance. It can be noticed in the simulation section

that C accurately characterizes the minimum CRLB attainable

for the positioning process. Hence, under the condition of L
BSs participating in the positioning process, the positioning

coverage is defined as the probability that C is not larger than

the threshold value ǫ1.

Definition 1. The L-conditional positioning coverage proba-

bility is defined as

Pp(ǫ1 | L) = P

{(
ln 10

10β

)2

ξ2
4

∑L
l=1 r

−2
l

≤ ǫ1

}

. (10)

Then, it is necessary to define the L-localizability probabil-

ity in order to obtain the marginal positioning coverage rate. In

general, the received signal can be successfully detected when

its SINR exceeds a predetermined threshold value. Thus, the

L-localizability can be defined as the probability that the SINR

of the L-nearest BS3 is greater than the threshold γ.

Definition 2. The L-localizability probability is defined to

have at least L BSs participating in the positioning process,

written as

PL(L | γ) = P

{

PT r
−β
L

∑∞
i=L+1 PT r

−β
i +N0

≥ γ

}

. (11)

where N0 is the average power of received noise. Note here

that the received SINR excludes the small-scale fading and di-

rectional beam gain, because it can be assumed that these parts

have been averaged out over a period of positioning process

and already contained inside γ [20]. Then, the probability mass

function (PMF) of exact L BSs involved in the positioning

process can be written as

fL(L | γ) = PL(L | γ)− PL(L+ 1 | γ). (12)

Combining Definition 1 and Definition 2, the marginal po-

sitioning coverage rate can be henceforth deduced as follows.

Definition 3. The coverage rate in the positioning process is

defined as

Pp(ǫ1) =Pp(ǫ1|LP )PL(LP |γ) +
LP−1∑

l=3

Pp(ǫ1|l)fL(l|γ)

+ u(ǫ1 −NL)(1 − PL(3 | γ)).
(13)

where LP is the maximum number of BSs that can participate

in the positioning process, the case l < 3 corresponds to the

unlocalizable scenario, and NL denotes a sufficiently large

value. Specifically, it is impractical for an infinite amount of

BSs participating in the positioning process under resource

constraints, since the target user needs to have multiple access

to the desired pilot signals. Hence, the value of LP is finite

and determined by the resources allocated for the positioning

process. Besides, we proceed to consider the scenario where

the typical user cannot be positioned if fewer than 3 BSs

participated in positioning by the RSS-based method, in which

case the corresponding C should take a sufficiently large

value NL. In order to ensure the validity of the positioning

coverage probability, a step function u(·) is introduced, i.e.,

u(ǫ1 −NL) = 0 for ǫ1 < NL, otherwise 1.

On the other hand, in the communication process, the

received signal of the typical user can be expressed as

yc =

∞∑

l=1

√

PT r
−β
l hlwlul + n (14)

where wl is the beamforming vector of the l-th BS, ul is

the transmitted symbol of the l-th BS with |ul|2 = 1 and n
is the additive noise following CN (0, σ2

n). The typical user

is usually associated with the BS that has the smallest path

loss. That is, the nearest BS provides the desired signals and

3It is straightforward to infer that
PT r

−β
k

∑

∞

i=L+1
PT r

−β
i

+N0

≥

PT r
−β
l

∑

∞

i=L+1 PT r
−β
i

+N0

for ∀ k ≤ l ≤ L. Therefore, only the SINR of

the L-nearest BS is evaluated with respect to γ.
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the remaining signals are considered as interference. Then, the

communication SINR can be written as

Υ =
PT r

−β
1 |h1w1|2

∑∞
l=2 PT r

−β
l |hlwl|2 + σ2

n

(15)

According to the sectored model to approximate directional

beam patterns [15], we have

Dl =

{
M1, with probability c1
M2, with probability c2

(16)

where M1 and M2 are main-lobe gain and side-lobe gain,

respectively. c1 = φ
2π and c2 = 1− c1 are the probabilities of

the main lobe and side lobe, respectively, where φ is the main-

lobe width. Then, the communication SINR can be rewritten

as

Υ =
PT r

−β
1 |α1|2D1

∑∞
l=2 PT r

−β
l |αl|2Dl + σ2

n

, (17)

and the transmission rate can be written as R = log2(1 +Υ).

Definition 4. The coverage rate in the communication process

is defined as

Pc(ǫ2) = P{Υ ≥ ǫ2}, (18)

Moreover, the coverage rate of ISAC dual functions within

the same network needs further definition and calculation.

Definition 5. The coverage rate of the ISAC process is defined

as

Pp&c(ǫ1, ǫ2) = P{C ≤ ǫ1, Υ ≥ ǫ2}, (19)

This metric can characterize the probability that the po-

sitioning and communication bounds are simultaneously no

more than ǫ1 and ǫ2, respectively at any point in ISAC net-

works considering the coupling effects of these two functions.

Meanwhile, the conditional coverage rate of the ISAC

process is also desirable, e.g., to find the positioning coverage

rate conditioned on communication performance constraints,

written as

Pp|c(ǫ1| ǫ2) = P{C ≤ ǫ1 | Υ ≥ ǫ2}, (20)

which is quite useful, especially when one intends to incor-

porate positioning capabilities into the underlying commu-

nication networks. Specifically, this formulation can directly

indicate the achievable positioning coverage rate in the ISAC

networks where the accuracy bound of the communication

process has been already known. In the other case, we obtain

likewise

Pc|p(ǫ2| ǫ1) = P{Υ ≥ ǫ2 | C ≤ ǫ1}. (21)

which describes the coverage of the communication when

guaranteeing the positioning performance in ISAC networks.

Furthermore, we can accordingly obtain the ergodic rate for

positioning, communication, and unified performance.

Definition 6. The ergodic rates for the communication, posi-

tioning, communication constrained by the maximum C, and

sensing constrained by the maximum Υ, can be defined and

calculated respectively by

E(C) =
∫ ∞

0

(1− Pp(ǫ1))dǫ1, (22)

E(R) =
1

ln 2

∫ ∞

0

Pc(ǫ2)

1 + ǫ2
dǫ2, (23)

E(C | Υ ≥ ǫ2) =

∫ ∞

0

(1− Pp|c(ǫ1|ǫ2))dǫ1, (24)

and

E(R | C ≤ ǫ1) =
1

ln 2

∫ ∞

0

Pc|p(ǫ2|ǫ1)
1 + ǫ2

dǫ2. (25)

Proof: Please see Appendix-D. �

III. COVERAGE PROBABILITY AND RATE ANALYSIS IN

ISAC NETWORKS

This section contains the main technical contributions of

this article. In particular, we provide mathematical expressions

for the coverage and ergodic rate of positioning, communica-

tion and unified performance defined above in the stochastic

geometry-based ISAC networks.

A. Coverage Rate Analysis of the Positioning Performance

In the following lemma, we derive the coverage rate of po-

sitioning performance on the condition of L BSs participating

in the positioning process.

Lemma 2. The coverage rate of L-conditional positioning

performance is

Pp(ǫ1|L) ≈ 1 +
N∑

n=1

(
N
n

)

(−1)n
∫ ∞

0

exp
[
−πλr2L

+πλr2Le
−anµr

−2
L −πλµ ln

(

1−e−anµr
−2
L

) ]
fRL

(rL)drL,

(26)

where a = N(N !)−
1
N , µ =

(
10β
ln 10

)2
ǫ1
4ξ2 and fRL

(rL) is given

in Lemma 1.

Proof: Please see Appendix-E. �

Lemma 2 essentially provides analytical expressions of the

conditional coverage rate under resource constraints. Further, it

is necessary to find the probability distribution of the number

of BSs participating in the positioning process, L, which is

associated with the received SINR and predefined threshold.

Lemma 3. The L-localizability probability is

PL(L|γ) =
N∑

n=1

(
N
n

)

(−1)n+1

∫ ∞

0

eanγr
β

L
N0P

−1
T

exp

{

πλr2L

[

1−e−anγ+(anγ)
2
β Γ(− 2

β
, 0, anγ)

]}

fRL
(rL)drL,

(27)

where Γ(w, z0, z1) is the generalized incomplete Gamma

function as
∫ z1

z0
tw−1e−tdt. Accordingly, the PMF of L BSs

participating in the positioning process is

fL(L|γ)=
N∑

n=1

(
N
n

)

(−1)n+1

∫ ∞

0

eanγr
β
L
N0P

−1
T exp

[
πλr2L

(
1− e−anγ + (anγ)

2
β Γ(− 2

β
, 0, anγ)

)]
− eanγr

β

L+1N0P
−1
T

exp
[
πλr2L+1

(
1− e−anγ + (anγ)

2
β Γ(− 2

β
, 0, anγ)

)]
, (28)
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where L is restricted to integer values, i.e., L ∈ Z.

Proof: Please see Appendix-F. �

Now based on Lemmas 2 and 3, we are ready to present

the theoretical results on the coverage rate of positioning

performance.

Theorem 1. The coverage rate of the positioning performance

can be computed as

Pp(ǫ1) =Pp(ǫ1|LP )PL(LP |γ) +
LP−1∑

l=3

Pp(ǫ1|l)

fL(l|γ) + u(ǫ1 −NL)(1 − PL(3 | γ)), (29)

where Pp(ǫ1|L), PL(L|γ) and fL(L|γ) are given by Eqs. (26),

(27) and (28), respectively. This corresponds to three scenar-

ios: when L ≥ LP , there are total LP BSs participating in

the positioning; when 3 ≤ L < LP , the number of involved

BSs is determined by the L-localizability SINR threshold γ;

when L < 3, the typical user is unlocalizable based on RSS

methods.

B. Coverage Rate Analysis of the Communication Process

We now provide theoretical results of the coverage rate

of communication performance considering directional beam

patterns.

Theorem 2. The coverage rate of the communication perfor-

mance can be computed as

Pc(ǫ2) =

∫ ∞

0

e
− ǫ2σ2

n

PT r
−β
1 M1 LIagg

(

ǫ2

PT r
−β
1 M1

)

fR1(r1)dr1,

(30)
where the Laplace functional of the aggregate interference

power is computed as

LIagg
(s) = exp

{

πλrβ+2
1

(

1−
2∑

t=1

ct
1 + sPTMt

)

− πλ
sPT r

2
1

2

[ 2∑

t=1

ctMt

sPtMt + rβ1
+

2r−β
1

β − 2

2F1(1, 1−
2

β
; 2− 2

β
;−sPTMT r

−β
1 )

]}

,

(31)

and 2F1(a, b; c; z) is the Gauss’ hypergeometric function.

Proof: Please see Appendix-G. �

Theorem 2 contains the directional beam-dependent parame-

ters, illustrating the importance of designing the beam gain and

width of the main-lobe and side-lobe to improve the coverage

rate of communication performance.

C. Joint Analysis in the ISAC Process

The coverage analysis of ISAC performance requires taking

into account the coupling effects4 in the dual-function coexis-

tence networks, as given in the following theorem.

4In the proposed ISAC networks, the parameters shared by the dual
functions mainly include the BS density, which determines the distances from
BSs to the typical user, resource allocation ratio, the transmit power, additive
noise power and path loss coefficient.

Theorem 3. The coverage rate of ISAC performance is

Pp&c(ǫ1, ǫ2) = PL(LP |γ)Pp&c(ǫ1, ǫ2|Lp)

+

LP−1∑

l=3

fL(l|γ)Pp&c(ǫ1, ǫ2 |l) + (1− PL(3 | γ))u(ǫ1 −NL),

(32)

where the L-conditional ISAC coverage rate is computed

in Eq. (33) and the L-localizability functions PL(L|γ) and

fL(L|γ) are given by Eqs. (27) and (28), respectively.

Proof: Please see Appendix-H. �

Besides, error rate analysis is also an important part in-

cluded in rate analysis, and the related derivations and simu-

lations can be found in Section. IV-E.

IV. NUMERICAL RESULTS

In this section, we validate the accuracy of our derived

analytical results. Then, we explore the impact of various

network parameters on the coverage rate of positioning, com-

munication, and unified performance.

A. Simulation Setup

For the simulation setup, it is assumed that the BSs are

randomly distributed inside a 2-D plane by a homogeneous

PPP with λ = 8/
√
3 (km−2) [20]. Parameters for the direc-

tional beam patterns include M1 = 0 dB, M2 = −20 dB, and

φ = 30◦. Unless otherwise stated, the simulation parameters

are set as follows, β = 3.6, PT = 0 dB, σ2
n = N0 = −89

dBm, ξ = −9 dB and N = 5.

B. Coverage and Ergodic Rate Analysis in the Positioning

Process

Fig. 2 compares the analytical results of the positioning

coverage rate Pp(ǫ1) from Lemma 1 against experimental

results across three scenarios. Specifically, the curves in the

first scenario are the experimental results for the lower bound

of the CRLB derived in Proposition 1, which can be found

sufficiently close to the analytical results, validating the accu-

racy of our derived formulations. Then, the performance im-

provement between the second and third curves suggests that

adapting the BS antenna orientations or internodal angles can

effectively enhance the positioning performance, especially

for high-accuracy positioning. Moreover, it is shown that the

CRLB with optimized BS orientations closely matches that of

the first curve, which demonstrates the tightness of the derived

lower bound.

In Fig. 3, we describe the PMF of the number of BSs par-

ticipating in the positioning process, L, and show significant

diversity under different β and γ. It is shown that the L value

of the PMF peak becomes larger as β and γ increase, which

can be analyzed by Lemma 3. Note that the increase in L value

of the PMF peak does not indicate a higher probability of the

larger number of BSs participating in the positioning process.

As we can observe, the increases in β and γ also result in a

decrease in the PMF peak values.
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Pp&c(ǫ1, ǫ2|L)=
∫∫ { N∑

n=0

(
N
n

)

(−1)nexp

[

ǫ2σ
2
n

PT r
−β
1 M1

−anµr
−2
1

]

exp

[

−πλ(r2L − r
2
1)

G∑

g=1

κg̺g

(

1−
2∑

t=1

ct

1 +
ǫ2̺

−β
g Mt

r
−β
1 M1

exp(−anµ̺
−2
g )

)]

exp

{

πλr
2
L

(

1−
2∑

t=1

ct

1 + ǫ2Mt

r
−β
1 M1

)

− πλr
2
L

[2r−β
L 2F1

(
1, 1− 2

β
; 2− 2

β
;− ǫ2Mtr

−β
L

r
−β
1 M1

)

β − 2
+

2∑

t=1

ctr
−β
1 M1

ǫ2

]}}

fR1,RL
(r1, rL)dr1, rL. (33)
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Figure 2: The coverage rate of L-conditional positioning func-

tion, derived in Lemma 2, versus different accuracy thresholds

and scenarios.
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Figure 3: The PMF of L, derived in Lemma 3, versus different

path-loss exponents and L-localizability SINR thresholds.

In Fig. 4, we explore the relationship between the position-

ing coverage rate and γ under various LP values. We evaluate

the coverage trends for positioning accuracy within
√
0.5 m,

1 m, and
√
2 m. It shows that increasing LP significantly

improves the positioning performance at small LP regimes,

and reaches saturation at higher values. Therefore, it is not

necessary to choose an extremely large LP . In addition,

decreasing γ can promote the accuracy value even at large

LP . For instance, decreasing γ from −10 dB to −15 dB, the

coverage rate of sub-1 m is improved from 65% to 78%.

Fig. 5 examines the ergodic rate of the positioning process

3 4 6 8 10 12 14 16 18 20
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0.7

0.8

0.9

Figure 4: The coverage rate of positioning performance

Pp(ǫ1), derived in Theorem 1, versus different accuracy thresh-

olds and L-localizability SINR thresholds.
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Figure 5: The ergodic rate of the positioning process E(C),
derived in Theorem 1 and Definition 6, versus different path-

loss exponents and BS densities.

under various γ values. This provides an intuitive view of

fundamental limits for positioning accuracy. It can be observed

that increasing β and λ properly can improve the positioning

performance. Specifically, the ergodic positioning bound is

0.61 m at β = 4.6, λ = 1 km−2 and γ not greater than −15
dB. It also presents a clear design guideline for developing

desired positioning accuracy, i.e., within 1 m.

C. Coverage and Rate Analysis in the Communication Process

Fig. 6 evaluates the impact of directional beam settings
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Figure 6: The coverage rate of communication performance

Pc(ǫ2), derived in Theorem 2, under different directional beam

settings.
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Figure 7: The ergodic rate of the communication process

E(R), derived in Theorem 2 and Definition 6, versus different

path-loss exponents and BS densities.

on the coverage rate of communication performance. It can

be observed that increasing the main-lobe power has some

enhancement on the communication coverage, though not

significantly, as it simultaneously increases the aggregated

interference. On the other hand, widening the main lobe or

increasing the power of the side lobe leads to a reduction in

communication coverage due to a dramatic increase in inter-

ference signal strength. These results suggest that designing

a narrow main lobe and the minimum side lobe effects can

significantly improve communication coverage.

In Fig. 7, we plot the ergodic rate of the communication

process under different BS transmitted powers. The results

show that the ergodic rate is insensitive to the variations in both

λ and PT at lower path-loss exponent regimes. On the other

hand, for the scenarios with high path loss, increasing λ and

PT can noticeably improve the communication performance,

especially for small λ. This indicates that increasing λ and

PT can significantly improve communication coverage, but

such changes are marginal under high SINR conditions. These

Figure 8: The coverage rate of ISAC performance

Pp&c(ǫ1, ǫ2), derived in Theorem 3, versus different BS

densities.
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Figure 9: Trade-off between the coverage rate of sub-1 m

positioning function and average communication throughput,

versus different BS densities.

results also provide an intuitive view of the fundamental limits

of communication capacity.

D. Joint Coverage and Rate Analysis in the ISAC Process

Fig. 8 depicts the coverage rate of ISAC performance for

λ = 1 km−2 and 10 km−2 cases. The simulation results

are observed to overlap the analytical results, validating the

accuracy of Theorem 3. It also demonstrates that the ISAC

coverage improves with the increase of the BS density.

Fig. 9 illustrates the trade-off performance between the

coverage rate of the sub-1 m positioning function and the

average communication throughput varying the BS density

with different LP . It can be found that as λ increases, both the

positioning coverage rate and the communication throughput

improve accordingly. The main difference is that the increase

in λ notably enhances the average communication throughput

while having a limited effect on the positioning coverage rate

at small λ regimes, and that the increase in λ can significantly

improve the positioning coverage rate while having little effect



9

Figure 10: The coverage rate of ISAC performance

Pp&c(ǫ1, ǫ2), derived in Eq. (38), versus different BS densities.
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Figure 11: The conditional coverage rate of the positioning

function constrained by the communication rate, versus dif-

ferent thresholds and path-loss exponents.

on the average communication throughput at large λ regimes,

which demonstrates the optimal λ for the communication and

positioning performance are not equal. Besides, increasing LP

improves the coverage rate of positioning performance, but

severely degrades average communication throughput. These

trade-offs highlight the significance of selecting an optimal λ
and LP to achieve both high-accuracy positioning and high-

throughput communication.

E. Joint and Conditional Coverage and Error Ergodic Rate

Analysis in the ISAC Process

In this subsection, we study the SER performance for the
communication process, which is derived with a coherent
maximum likelihood detector under K-quadrature amplitude
modulation (QAM) modulation as

S=4

√
K − 1√
K

Q

(√

3

K − 1
Υ

)

−4
(√

K − 1√
K

)2

Q
2

(√

3

K − 1
Υ

)

.

(34)

Note that Eq. (34) captures the error probability of a

modulated signal going through additive white Gaussian noise

1 3 5 6 10 30 50
0.6
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0.75

0.8

0.85

0.9

0.95

1

Figure 12: The conditional coverage rate of the communication

function constrained by the positioning rate, versus different

thresholds and path-loss exponents.

channels while not considering the actual coding methods.

Then, the coverage rate in the communication process and

ISAC process can be defined respectively as

Ps(ǫ3) = P{S ≤ ǫ3}, (35)

and

Pp&s(ǫ1, ǫ3) = P{C ≤ ǫ1 , S ≤ ǫ3}, (36)

Using similar approaches, we can obtain

Ps(ǫ3) =

∫ ∞

0

e
− σ2

n

PT r
−β
1

M1ς
Q−2(

1−
√

1−ǫ3
2v )

LIagg

(

Q−2(1−
√
1−ǫ3

2v )

PT r
−β
1 M1ς

)

fR1(r1)dr1,

(37)

and

Pp&s(ǫ1, ǫ3) = PL(LP |γ)Pp&s(ǫ1, ǫ3|Lp)

+

LP−1∑

l=3

fL(l|γ)Pp&s(ǫ1, ǫ3 |l) + (1− PL(3 | γ))u(ǫ1 −NL),

(38)

where v =
√
K−1√
K

, ς = 3
K−1 , Q−2(·) is the square of the

inverse Q function, the L-conditional ISAC coverage rate

is computed in Eq. (39) and the L-localizability functions

PL(L|γ) and fL(L|γ) are given by Eqs. (27) and (28),

respectively.

This result offers useful insights to clarify the design

guidelines of network parameters to achieve a satisfactory

ISAC coverage rate. In light of this result, we can get the

following two results to derive the conditional ISAC coverage

rate, indicating the coverage rate of one function in ISAC

networks when the other function has bounded limits. Under

the condition that the communication SER does not exceed

ǫ3, the coverage rate of the communication process is

Pp|s(ǫ1 | S ≤ ǫ3) =
Pp&s(ǫ1, ǫ3)

Ps(ǫ3)
, (40)

The theoretical result is a very fundamental theoretical

basis for the promotion of ISAC networks, which can directly
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Pp&s(ǫ1, ǫ3 | L)=
∫∫ { N∑

n=0

(
N
n

)

(−1)n exp




N0Q

−2
(

1−√
1−ǫ3

2v

)

PT r
−β
1 M1ς

− anµr
−2
1



exp

[

− πλ(r2L − r
2
1)

G∑

g=1

κg̺g

(

1− exp(−anµ̺
−2
g )

2∑

t=1

ct

1+
Q−2

(

1−
√

1−ǫ3
2v

)

r
−β
1 M1ς

̺
−β
g Mt

)]

exp

{

πλr
2
L

(

1−
2∑

t=1

ct

1+
Q−2

(

1−
√

1−ǫ2
2v

)

Mt

r
−β
1 M1ς

)

−πλr
2
L

[2r−β
L 2F1

(
1, 1− 2

β
; 2− 2

β
;−

Q−2
(

1−
√

1−ǫ3
2v

)

Mtr
−β
L

r
−β
1 M1ς

)

β − 2

+

2∑

t=1

ctMt

Q−2

(

1−
√

1−ǫ3
2v

)

Mt

r
−β
1 M1ς

]}}

fR1,RL
(r1, rL)dr1, rL. (39)
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Figure 13: The conditional ergodic rate of the positioning

function constrained by the communication rate, versus dif-

ferent thresholds of constrained communication rates and BS

densities.

characterize the coverage rate of the positioning function

implemented in some existing communication networks. Then,

under the condition that the positioning CRLB does not exceed

ǫ1, the coverage rate of the communication process is

Ps|p(ǫ3 | C ≤ ǫ1) =
Pp&s(ǫ1, ǫ3)

Pp(ǫ1)
. (41)

In the following, we provide numerical results to verify and

yield useful insights based on the derived theoretical results.

Fig. 10 depicts the coverage rate of ISAC performance

for λ = 1 km−2 and 10 km−2 cases. It can provide many

useful insights into the network design to ensure the ISAC

dual-function reliability. For instance, the joint probability of

sub-1 m positioning and sub-10−3 SER has increased from

1.4% to 39.8% as the BS density grows from 1 km−2 to 10
km−2, indicating a significant enhancement of ISAC coverage

in denser networks.

Fig. 11 depicts the trend of the conditional coverage rate

of the positioning function under different λ, given that the

communication SER does not exceed 10−3. It can be noticed

that the positioning coverage rate increases significantly with

the growth of λ. Specifically, the conditional coverage rates of

sub-1 m and sub-
√
0.5 m reach 98.7% and 93%, respectively

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-3

10
-2

10
-1

Figure 14: The conditional ergodic rate of the communication

function constrained by the positioning rate, versus different

BS densities.

at λ = 50 km−2, and 68% and 41%, respectively at λ = 10
km−2 and β = 4.6.

Fig. 12 presents the conditional coverage rate of the com-

munication function under different λ values, given that the

positioning CRLB does not exceed 1. It can be observed that

as λ increases, the communication performance deteriorates

instead, which is an unexpected phenomenon in conventional

communication networks. This is mainly due to the fact

that, given certain positioning rate regimes, a higher density

of BSs leads to shorter distances from the L-nearest BSs

to the typical user. Consequently, this results in a notable

increase in communication interference, thereby hindering the

communication coverage. Besides, it is found that a larger

path-loss exponent impaires the conditional coverage rate of

the communication function at low λ regimes, whereas benefits

at high λ regimes.

Fig. 13 delves into the conditional ergodic CRLB values

under different L-localizability SINR thresholds. It can be

found that the conditional ergodic rate of the communication

function only has slight improvement when the constrained

positioning rate increases. On the other hand, the effect of

λ is more noticeable. In particular, when λ grows from 5
km−2 to 10 km−2, the fundamental limit of the conditional

rate of the positioning function decreases from 1.07 m to
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0.65 m. Meanwhile, it is observed that L-localizability SINR

threshold has no effect on the conditional ergodic CRLB when

it is not larger than −15 dB, but deteriorates the positioning

performance when γ exceeds −10 dB.

Fig. 14 provides a straightforward illustration of the condi-

tional ergodic SER performance under different thresholds of

the constrained positioning rate. It is shown that the ergodic

SER increases from 1.8×10−3 to 3.7×10−2 when λ increases

from 1 km−2 to 10 km−2 when ǫ1 = 0.5, which demonstrates

that higher BS density will reduce the conditional communica-

tion performance under the constraints of the positioning rates.

Meanwhile, the conditional ergodic rate of the positioning

function has significant improvement when the constrained

communication rate increases.

V. CONCLUSIONS

In this paper, we proposed a generalized stochastic ge-

ometry framework to analyze the coverage and ergodic rate

performance of ISAC networks. Based on this framework,

the coverage rates of sensing and communication performance

under resource constraints were defined and calculated. Then,

theoretical results for the coverage rate of unified ISAC

performance were presented with considering the coupling

effects of dual functions in coexistence networks. Further,

the analytical formulations for evaluating the ergodic sensing

rate constrained by the maximum communication rate, and

the ergodic communication rate constrained by the maximum

sensing rate were obtained. Numerical results verified the

sufficient accuracy of the derived formulations and attained

several insights into ISAC network deployment strategies.

Specifically, increasing the BS density from 1 km−2 to 10
km−2 boosted the ISAC coverage probability from 1.4% to

39.8%. Further, results also revealed that with the increase

of the constrained maximum sensing rate, the communication

rate improves significantly, but the reverse is not obvious.

APPENDIX

A. Preliminaries results 1

The inequality handling P(1 < c), where c is a positive

constant, can be addressed by introducing an auxiliary variable

g to satisfy the normalized gamma distribution with large

parameter N [35]. Then, the alternative probability P(g < c)
can be tightly upper bounded by

P(g < c) ≤
[
1− e−ac

]N
, (42)

where a = N(N !)−
1
N . It was shown in [15] that this

approximation is sufficiently accurate on N ≥ 5.

B. Preliminaries results 2

For integrals of the form
∫ τ2

τ1
e−µr−2

rdr, we make the

following derivation

∫ τ2

τ1

e−µr−2

rdr
a
=

1

2

∫ µτ
−2
1

µτ
−2
2

e−td
µ

t

b
=

µ

2

e−t

t
|µτ

−2
1

µτ
−2
2

+
µ

2

∫ µτ
−2
1

µτ−2
2

e−t

t
dt

c≈ µ

2
(
e−µτ

−2
1

µτ−2
1

− e−µτ
−2
2

µτ−2
2

) +
µ

2
log

1− e−bµτ
−2
1

1− e−bµτ
−2
2

,

(43)

where (a) is given by letting t = µr−2; (b) is from computing

integration by part; (c) follows from a close approximation

with
∫∞
x

e−t

t
≈ − ln(1− e−bx) [36].

C. Proof of Proposition 1

In order to explore the lower bound of the CRLB, we focus

on the corresponding the FIM as

JpU
=

L∑

l=1

(
10β

ln 10

)2

r−2
l ξ−2

[
cos2 θl cos θl sin θl

cos θl sin θl sin2 θl

]

.

(44)

Then the corresponding CRLB can be written as
Tr(JpU

)

Det(JpU
) .

To minimize the CRLB, it is possible to set the subdiagonal

element to zero, which maximizes Det(JpU
) while keeping

Tr(JpU
) unchanged, which leads to

L∑

l=1

(
10β

ln 10

)2

r−2
l ξ−2 cos θl sin θl = 0. (45)

Denote the main diagonal elements in Eq. (44) as d1 and

d2. Here the lower bound of the CRLB can be expressed

as CRLB ≥ d1+d2

d1d2
≥ 4

d1+d2
, where the second equality is

obtained under the condition d1 = d2, i.e.,

L∑

l=1

(
10β

ln 10

)2

r−2
l ξ−2 cos2 θl =

L∑

l=1

(
10β

ln 10

)2

r−2
l ξ−2 sin2 θl.

(46)

Combining the two lower bound conditions Eq. (45) and

Eq. (46), which are equivalent to

L∑

l=1

(
10β

ln 10

)2

r−2
l ξ−2ej2θl = 0. (47)

This can be interpreted as the L vectors of length
(

10β
ln 10

)2

r−2
l ξ−2 and angle 2θl summing to zero, i.e., these

L vectors can be connected head to tail to form an L-side

shape. This is satisfied by the condition that any sum of L−1
edges is greater than the remaining edge.

D. Proof of Definition 6

The proof details of deriving the average achievable rate can

refer to [37]. Besides, for any positive variable x with condi-

tional PDF fX(x|Y ≤ y) and conditional CDF FX(x|Y ≤
y), we have the expectation formula as E(x|Y ≤ y) =
∫∞
0 xfX(x|Y ≤ y)dx =

∫∞
0

∫ x

0 dtfX(x|Y ≤ y)dx =
∫∞
0

∫∞
t

fX(x|Y ≤ y)dxdt =
∫∞
0 (1− FX(t|Y ≤ y))dt.
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E. Proof of Lemma 2

The coverge rate of L-conditional positioning performance

can be written as

Pp(ǫ1 | L) = P

{

1 ≤ µ

L∑

l=1

r−2
l

}

, (48)

where µ =
(

10β
ln 10

)2
ǫ1
4ξ2 This inequality format can be further

approximated via Appendix-A as

1 +

N∑

n=1

(
N
n

)

(−1)nEΦ

[

e−anµ
∑

L

l=1 r
−2
l

]

. (49)

The expectation part follows from the probability generating

functional (PGFL) of the PPP, which states for transformation

formula that E
[∏

x∈Φ f(x)
]
= exp

(
−2πλ

∫

r
f(r)

)
rdr. Al-

though this formula is the Laplace functional of infinite points

in a given region, it demonstrates to be quite accurate for the

case of finite points in an uncertain region size, following

averaging over the region. Thus, it is approximated as

ERL

{

exp

[

−2πλ

∫ RL

0

(

1− e−anµr−2
)

rdr

]}

= ERL

{

exp
[

−πλR2
L+πλR2

Le
−anµR

−2
L −πλµ ln

(

1−e−anµR
−2
L

)]}

,

(50)

where the equation follows from the derivation of Appendix-B.

F. Proof of Lemma 3

The L-localizability can be transformed to

P

{

1 ≥ γrβL
∑∞

i=L+1 r
−β
i + γN0P

−1
T rβL

}

.

Based on Appendix-A, it can be rewritten as

N∑

n=1

(
N
n

)

(−1)n+1eanγr
β

L
N0P

−1
T EΦ

[

e−anγr
β
L

∑

∞

i=L+1 r
−β
i

]

,

(51)

where the expectation part can be obtained by

exp

[

−2πλ

∫ ∞

rL

(

1− e−anγr
β
L
r−β
)

rdr

]

= exp

{

πλr2L

[

1− e−anγ + (anγ)
2
β Γ(− 2

β
, 0, anγ)

]}

,

(52)

wherein Γ(a, z0, z1) is the generalized incomplete gamma

function as
∫ z1

z0
ta−1e−tdt.

G. Proof of Theorem 2

With the positioning process, the BS will align the beam

towards the nearest user to exploit the maximum directivity

gain, i.e., M1. Then, we proceed with the coverage of the

communication process by deriving

P

{

PT r
−β
1 |α1|2M1

Iagg + σ2
n

≥ ǫ2

}

= P

{

|α1|2 ≥ ǫ2(Iagg + σ2
n)

PT r
−β
1 M1

}

(a)
= EΦ

{

ǫ2(Iagg + σ2
n)

PT r
−β
1 M1

}

= e
− ǫ2σ2

n

PT r
−β
1

M1 LIagg

(

ǫ2

PT r
−2β
1 M1

)

,

(53)

where Iagg =
∑∞

k=2 PT r
−β
k |αk|2Dk and (a) is the CDF of

|α1|2 as an exponential distribution with parameter 1. As such,

considering the average small-scale fading |α|2 and directional

beam gain D in the PGFL of the aggregate interference power,

we have LIagg
(s)

= exp

{

−2πλ

∫ ∞

r1

[
1− Eα,D{exp(−sPT r

−β |α|2D)}
]
rdr

}

= exp

{

−2πλ

∫ ∞

r1

[

1−
2∑

t=1

ct
1 + sPT r−βMt

]

rdr

}

.

(54)

Using the method of integration by parts,

we have 1
2

(

1−∑2
t=1

ct
1+sPT r−βMt

)

r2
∣
∣
∞
r1

+

β
2

∫∞
r1

r2
∑2

t=1
sPT ctMtr

−β−1

(1+sPT r−βMt)2
. Define the first part

as f(r) = 1
2

(

1−∑2
t=1

ct
1+sPT r−βMt

)

r2, we have

h(r) ≤ f(r) ≤ g(r), where h(r) = 1
2

(

1− 1
1+sPT r−βM2

)

r2

and g(r) = 1
2

(

1− 1
1+sPT r−βM1

)

r2. It is readily to prove that

when β > 1, there exists limr→∞ h(r) = limr→∞ g(r) = 0.

By means of the Squeeze Theorem, we get the result

limr→∞ f(r) = 0. Then, the first part can be further written

as − 1
2

(

1−∑2
t=1

ct
1+sPT Mt

)

rβ+2
1 . On the other hand, the

second part can be obtained as

sPT r
2
1

2

[ 2∑

t=1

ctMt

sPtMt + rβ1
+

2r−β
1

β − 2
2F1(1, 1−

2

β
;

2− 2

β
;−sPTMT r

−β
1 )

]

.

(55)

H. Proof of Theorem 3

The coverage rate of ISAC performance in Definition 5 can

be written as Eq. (56), which breaks down into two parts, i.e.,

Λ1 and Λ2, wherein Λ1 has been derived in Appendix-G as

Λ1 = e
− ǫ2σ2

n

PT r
−β
1 M1 LIagg

(

ǫ2

PT r
−2β
1 M1

)

. (57)

Further, we split the Λ2 into three conditionally independent
parts under the conditions (R1, RL) as

EΦ

{
exp

{

ǫ2σ
2
n

PT r
−β
1 M1ς

− anµr
−2
1

}

︸ ︷︷ ︸

Λ2,1

· exp
{ L∑

l=2

ǫ2PT |αl|2Dl

PT r
−β
1 M1

r
−β

l − anµr
−2

l

}

︸ ︷︷ ︸

Λ2,2

· exp
{ ∞∑

k=L+1

ǫ2PT |αk|2Dk

PT r
−β
1 M1

r
−β

k

}

︸ ︷︷ ︸

Λ2,3

∣
∣
∣
∣
(R1, RL, L)

}

.

(58)
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P

{

|α1|2 ≥ ǫ2(Iagg + σ2
n)

PT r
−β
1 M1

, g <

(
10β

ln 10

)2
ǫ1
4ξ2

L∑

l=1

r−2
l

∣
∣
∣
∣
L
}

= EΦ

{

e

ǫ2(Iagg+σ2
n)

PT r
−β
1

M1

[

1 +

N∑

n=1

(
N
n

)

(−1)ne−anµ
∑

L

l=1 r
−2
l

] ∣
∣
∣
∣
L
}

=
EΦ

{

e

ǫ2(Iagg+σ2
n)

PT r
−β
1 M1

}

︸ ︷︷ ︸

Λ1

+

N∑

n=1

(
N
n

)

(−1)n
EΦ

{

e

ǫ2(Iagg+σ2
n)

PT r
−β
1 M1

−anµ
∑

L

l=1 r
−2
l

∣
∣
∣
∣
L
}

︸ ︷︷ ︸

Λ2

(56)

We can approximate the second part Λ2,2 by transforming
it into the expectation {R1, RL,L} on

exp

[

− 2πλ

∫ rL

r1

(

1− E|α|2,D

(

exp

(
ǫ2|α|2D
r
−β
1 M1

r
−β − anµr

−2

)))

rdr

]

=exp

[

− 2πλ

∫ rL

r1

(

1−
2∑

t=1

ct

1 + ǫ2r
−βMt

r
−β
1 M1

exp(−anµr
−2)

)

rdr.

(59)

This expression can be simplified using Gaussian Quadra-

ture rules [38] as exp

[

− πλ(r2L − r21)
∑G

g=1 κg̺g

(

1 −
∑2

t=1
ct

1+
ǫ2̺

−β
g Mt

r
−β
1

M1

exp(−anµ̺−2
g )

)]

, where ̺g and κg are the

g-th variable and weighting factor of the Laguerre polynomi-

als, respectively.
Finally, the third part Λ2,3 can be transformed by PGFL to

exp

{

− 2πλ

∫ ∞

rL

(

1− E|α|2,D

(

exp

(
ǫ2|α|2D
r
−β
1 M1

)

r
−β

)}

= exp

{

− 2πλ

∫ ∞

rL

(

1−
2∑

t=1

ct

1 + ǫ2r
−βMt

r
−β
1 M1

)

rdr

}

= exp

{

πλr
2
L

(

1−
2∑

t=1

ct

1 + ǫ2Mt

r
−β
1 M1ς

)

− πλr
2
L

[2r−β
L 2F1

(
1, 1− 2

β
; 2− 2

β
;− ǫ2Mtr

−β
L

r
−β
1 M1

)

β − 2
+

2∑

t=1

ctr
−β
1 M1

ǫ2

]}

.

(60)

The expectation for (R1, RL, L) is to multiply by the

corresponding PDF or PMF.
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