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Abstract—Wireless transmission relying on lens antenna arrays
is becoming more and more attractive for millimeter wave
(mmWave) multiple-input multiple-output (MIMO) systems using
a limited number of radio frequency (RF) chains due to the
lens’ energy-focusing capability. In this paper, we consider the
joint design of the beam selection and precoding matrices in
order to maximize the sum-rate of a downlink single-sided lens
MU-MIMO mmWave system under transmit power constraints.
We first formulate the optimization problem into a tractable
form using the popular weighted minimum mean squared error
(WMMSE) approach. To solve this problem, we then propose an
efficient joint beam selection and precoding design algorithm
based on the innovative penalty dual decomposition (PDD)
method. To reduce the design complexity, we also propose a sim-
plified algorithm by combining the interference-aware beam se-
lection (IA-BS) scheme with the WMMSE approach. Simulation
results demonstrate that our proposed algorithms can converge
in a few iterations and achieve near-optimal performance when
compared to the fully digital precoding scheme, thus enabling
them to outperform the competing methods.

Index Terms—mmWave, MU-MIMO, lens antenna array, beam
selection.

I. INTRODUCTION

Recently, due to the rapid consumer adoption of mobile
devices such as tablets and smartphones, the tele-traffic has
experienced a tremendous growth, resulting in a dramatic
spectrum shortage at the centimeter-wave wireless frequencies
[1]. As a remedy, communications over millimeter wave
(mmWave) frequencies is expected to find its way into next
generation cellular networks, allowing the latter to support
unprecedented data rates in the 30-300GHz band [2], [3].
In [4], it has been demonstrated that a mmWave mobile
broadband system could achieve gigabit per second data rates
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at distances up to one kilometer in an urban environment,
which indicates that mmWave communications can be used in
future cellular networks for small-cell coverage. According to
the fundamental Friss transmission theorem, mmWave signals
suffer much higher free-space path loss than centimeter-wave
for a given propagation distance and antenna gain. Fortunately,
the significantly reduced wavelength makes it possible to
realize massive MIMO systems [5]-[7] that use a large number
of antennas within a small physical size, and yet achieve
high array gain for directional communications by exploiting
precoding techniques [8].

However, in the case of massive MIMO, the conventional
fully digital precoding techniques lead to unaffordable costs
in terms of RF chains and power consumption. To address
this limitation, there have been extensive studies devoted
to various cost-aware mmWave communication techniques,
such as antenna selection [9]-[11], load-controlled parasitic
antenna arrays (LC-PAAs) [12], [13] and hybrid analog/digital
processing [14]-[17]. Antenna selection techniques still need
additional power in order to compensate for the attenuation of
RF switches [9] and also lead to reduced average signal-to-
noise ratios (SNR) [11]. LC-PAAs exploit the mutual coupling
among the antennas to reduce the number of required RF
modules for given spatial degrees of freedom. However, this
technique is hampered by the complex design of the parasitic
antennas.

Hybrid analog/digital precoding has been proposed as an
effective technique, allowing a trade-off between cost and
performance by judiciously adjusting the number of required
RF chains. In this structure, the signal processing is performed
in two stages: digital precoding at the baseband with re-
duced output dimensionality, followed by analog beamforming
through a phase shifter network in the RF-band, where the
two processing modules are connected via a reduced number
of RF chains to allow a trade-off. Nevertheless, a major
limitation of hybrid analog/digital processing is the need for
a large number of phase shifters, which leads to a significant
increase in the power budget. Furthermore, the hybrid structure
suffers from the constant-amplitude constraints on the analog
beamformer weights. These limitations make the design of
hybrid processing subsystems more complicated than that of
their conventional fully digital counterparts.

To simplify the design of hybrid precoding, a number of
studies have proposed the concept of beamspace MIMO based
on discrete lens arrays (DLA) [18]. A typical DLA includes
two main components: an electromagnetic (EM) lens and a
matching antenna array whose elements are located in the



focal region of the lens. The fundamental principle of EM
lenses is to provide variable phase shifts for the EM rays at
different points on the lens aperture so as to achieve an angle-
dependent energy focusing property. In effect, this approach
can transform the traditional MIMO spatial channels into
beamspace channels with angle-dependent energy-focusing
capabilities [19]. In practice, only a small number of beams
are needed due to the sparse nature of beamspace channels.
Since each beam corresponds to a single RF chain, this
effectively reduces the cost of RF chains in mmWave massive
MIMO systems. Furthermore, the phase shifters needed in the
hybrid structure are replaced by a switching network, which
decreases the cost and complexity of the RF hardware as well
as improving the power budget. In [20], beamspace MIMO
is studied under multi-path propagation conditions, while its
extensions to multiuser scenarios are considered in [21], [22].
Within this context, a critical problem of mmWave lens array
systems is the design of effective beam selection and digital
precoding schemes.

Recent studies [19], [21], [23], [24] of the beam selection
problem for DLAs concentrate on choosing the beams with
maximum magnitude (termed as “MM-BS” in the sequel) so
as to obtain as much power from each user as possible. Subse-
quently, [25] considers the potential multiuser interference and
proposes an interference-aware beam selection (termed as “IA-
BS”) strategy, which outperforms the MM-BS schemes. How-
ever, all the aforementioned schemes are based on fixed digital
precoding methods — such as zero forcing (ZF), minimum
mean square error (MMSE) and maximum ratio combining
(MRC), etc. — which might suffer from significant performance
degradation, since the beam selection and precoding modules
are designed separately.

Hence in this work, we consider the joint design of beam
selection and precoding matrices with the aim of maximizing
the sum-rate of a downlink single-sided lens mmWave MU-
MIMO system using a limited number of RF chains. To
this end, we first formulate the optimization problem into a
mathematically tractable form by using the WMMSE approach
of [26]. Then, to solve the resulting problem, we propose an
efficient joint beam selection and precoding design algorithm
based on the innovative PDD method [27]. Simulation results
demonstrate that our proposed algorithm approaches the op-
timal performance of the fully digital precoding scheme and
thus outperforms the competing methods.

Furthermore, since the IA-BS scheme of [25] achieves a
good performance at a low complexity, we also design a
simplified scheme where the beams are selected by considering
the potential multiuser interference based on [25]. Subsequent-
ly, we optimize the precoding matrix for the selected beams
by using the WMMSE approach for maximizing the system
sum-rate. This simplified algorithm achieves a performance
between that of the aforementioned MM-BS/IA-BS schemes
using a fixed precoding matrix and the proposed PDD-based
joint design algorithm, while its complexity is much less than
the latter.

The specific contributions of this paper are summarized as
follows.

(1) For a downlink single-sided lens mmWave MU-MIMO

system, we propose an efficient joint beam selection and
precoding design algorithm for maximizing the system
sum-rate based on the PDD optimization method. To this
end, we first introduce a number of auxiliary variables
and equality constraints to handle the coupling pow-
er constraints and beam selection constraints. We then
reformulate the optimization problem as an augmented
Lagrangian (AL) problem by penalizing and dualizing
the equality constraints. The AL problem is solved by
partitioning the variables into independent blocks, thereby
leading to various subproblems which are approached
via the block coordinate descent (BCD) method [28].
The PDD-based algorithm exhibits an embedded double
loop structure, where the inner loop serves to address the
AL subproblems, while the outer loop aims to update
the dual variables or penalty parameter based on the
constraint violation. This algorithm ensures convergence
to a stationarity point of the original problem.

(2) We design a simplified algorithm which optimizes the
precoding matrix based on beams selected by an TA-
BS scheme, along with the aid of the WMMSE method.
Subsequently, we analyze the computational complexities
of the proposed algorithms and other existing schemes,
showing in particular that our proposed simplified algo-
rithm can achieve a practical trade-off between complex-
ity and performance.

(3) We provide exhaustive simulation results of the proposed
algorithms for demonstrating their advantages over the
competing methods.

The rest of this paper is organized as follows. Section
IT describes the downlink single-sided lens mmWave MU-
MIMO system model and formulates the constrained sum-
rate maximization problem. The proposed PDD-based joint
beam selection and precoding design algorithm is developed
in Section III, while the simplified algorithm is presented
in Section IV. In Section V, we analyze the results of our
experiments, while Section VII concludes the paper. The
proof of Theorem 1 is relegated to Appendix A. Relevant
background on the PDD method is given in Appendix B.

The notations used in this paper are summarized in Table 1.

TABLE I: List of notations.

a/A Vector a/Matrix A

aij (4, 7)-th element of A

AT Transpose of A

AH Conjugate transpose of A
A1 Inverse of A

At Pseudo-inverse of A

Tr(A) Trace of A

[|A]]2 Frobenius norm of A
[X]mm m-th diagonal element of X
Card(A) Cardinality of set A

Iy K x K identity matrix

E{} Expectation operation
A\B Subset of elements from set A that are not in B
CN(m,o?)  Complex circular Gaussian

distribution with mean m and covariance o2

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a wireless mmWave subnet-
work where a base station (BS) serves K simultaneous users.



The BS is equipped with a single-sidled DLA MU-MIMO
transmitter system, comprising M, antennas and Nrp RF
chains, while the end users are equipped with single antenna
receiver. To guarantee spatial multiplexing gain for the K users
with this configuration, the number of RF chains should satisfy
Ngrp > K. Without loss of generality, we choose Npp = K
in this paper.

A. System Model

As shown in Fig. 1, the BS transmits K data streams
carrying independent messages, each intended for a specific
user. The baseband data vector precoded at the BS can be
expressed as

K

©=Ps=) pis, (1)

k=1

where s = [s1,82,...,5K]T, si is the complex data symbol
intended for user k£ with zero mean and normalized power of
E{|sx|?} = 1, with P = [py,pa,...,pr] € CNrF*K jg the
precoding matrix and py is the digital precoding vector for
user k. Under the narrow-band (flat fading) assumption, the
K x 1 received signal vector y of all the K users can be
expressed as

y=H"FPs+mn, (2)

in which H € CMs-*K j5 the beamspace channel matrix,
F ¢ CM:*Nrr js the beam selection matrix whose entries
fi; are either 0 or 1, and n ~ CN(0,0%Ik) is a K x 1
additive zero-mean circular complex Gaussian noise vector
with covariance matrix E{nn'’} = o2I, where o* denotes
the noise variance. The beamspace channel model is developed
below.

B. Beamspace Channel Model
The beamspace channel matrix H is obtained from the
physical spatial MIMO channel by Fourier transformation:

H:[h17h27"’7hK]:[Ugl7UgQJ"'7UgK]7 (3)

where U € CM:*Ms js a discrete Fourier transformation
(DFT) matrix corresponding to a carefully designed DLA [21]
at the BS and g, € CM:*! is the spatial domain channel
vector between the BS and user k. The DFT matrix U consists
of the array steering vectors of M, orthogonal directions
(beams) spread over the entire angular domain, i.e.:

U= [a((pl)7a(902)""’a(@]bfs)]H’ “4)
in which ¢, = Mi(m — %) with m = 1,2,..., M,
are the normalized spatial directions [25], a(p,) =

\/;T[e J2memi), 7 are the corresponding M x 1 array steer-

ing vectors, where Z = {j —(M;—1)/2|j =0,1,...,M,—1}
is an index set of array elements. With this choice of steer-
ing vectors, the columns of matrix U are orthonormal, i.e.
UHU = I. The normalized spatial direction ¢,), is related to
the physical direction (angle) of propagation 6,,, through the
relation ¢,, = %sin 0, where X is the signal wavelength
at the operating mmWave frequency, and d is the antenna
spacing, typically chosen as d = \/2.

In this paper, we employ the well-known Saleh-Valenzuela
channel model for the mmWave system considered [19], [21],
[24], [25]:

gi (0) (0) )+ Zﬁ(l) (l) (5)

where the terms 6,£O)a( ,(go)) and f3, @ a( ¢ )) represent the line-
of-sight (LoS) and the [-th non-line- of-51ght (NLoS) channel
vectors between the BS and user k, respectively. Furthermore,
I3 ]io) and 3 ,il) represent the complex gains of the LoS and NLoS
channels, whilst ¢,(€O) and ngk) denote the corresponding spatial
directions. For convenience, we consider a 2D formulation,
i.e., only the azimuth angel of departure (AoD) is considered’,
but the extension to a 3D scenario is straightforward and
does not affect the nature of the problem. We assume that
the beamspace channel matrix H is perfectly estimated by
the BS through the application of efficient channel estimation
schemes [23].

The number of dominant scatters in a mmWave channel is
quite limited [2]. Thus, the number of NLoS components L
in (5) is typically much less than M, which implies that the
channel matrix H has a sparse structure.

C. Problem Formulation

Let us concentrate on the joint design of the digital pre-
coding matrix P and the beam selection matrix F' in order
to maximize the downlink system sum-rate. The signal-to-
interference-plus-noise ratio (SINR) of user k can be expressed
as:

|hi Fp|?

Ve .
iz I Fpil* + 02
Assuming that the user data symbols sy are independent with
identical distribution CA/(0,1), and that the noise vector n
and the data vector s are independent, the achievable rate of

user k can be written as Ry, = log(1++%). Then our sum-rate
maximization problem can be mathematically formulated as

T = (6)

maXZRk (72)
s.t. Tr(PH FTFP)< P, (7b)
Mg NrFr

me 1, Z fi <1, (7¢)
fij € {07 1}7V(11J) € Sa (7d)

where P, is the transmit power upper bound of the BS and S £
{4, )i = 1,2,...,Ms,j = 1,2,...,Ngrp}. Note that the
identity U U = I,;. was employed to simplify the constraint
(7b). The constraints Z£1 fij=1,j=1,2,..., Nrr ensure
that each RF chain feeds a single beam, while the constraints
ZNRF fij <1,i=1,2,..., M, guarantee that each beam is
selected for at most one RF chain. These constraints ensure
that Nrpr beams are selected to properly serve all K users.

IFor simplicity, we assume that the elevation AoDs are all zeros, which is
practically valid if the height difference between the BS and users is much
smaller than their separation distance.
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Fig. 1: A downlink mmWave MU-MIMO system with single-sided lens antenna array.

Note that problem (7) is nonconvex and very challenging
to solve due to the beam selection constraints over a discrete
space. In the next section, we propose an efficient joint beam
selection and precoding design algorithm for solving problem

(D.

III. THE PROPOSED PDD BASED ALGORITHM

We first use the WMMSE approach to transform problem
(7) into a mathematically tractable form. We then propose an
efficient joint beam selection and precoding design algorithm
to solve the resulting equivalent problem based on the PDD
method.

A. Reformulation of Problem (7)

Based on (2), the received signal of user k can be expressed
as yp = hIFPs+ny, = Zszl hH Fp;s; +n. Based on the
observation of yy, the estimated source signal by the same user
is 8 = uyyg, where uy denotes the corresponding receiver.
Under the independence assumption of s and nj, the mean
square error (MSE) of user k can be written as

er = E{|8k — si*} = E{|luryr — si|*}
K
= E{| Z ukthFpl-si + upng — sk|2},
i=1
= E{|juzhfl Fpy|* —urh Fpys; —|si|?,
- )
+ s (urhi! Fpr)* +ugng|? +Z lurhf Fp|*},
i#k
= |uphf Fpi|? — 2Re(uphi! Fpy),
K
+ 14 o?|ug|* + Z luphf Fp;|?,
i#k
The following theorem establishes the equivalence between the
sum-rate maximization problem (7) and a weighted sum-MSE
minimization problem, formulated as (9).

Theorem 1: Let wy, > 0,k =1,..., K be a set of weighting

factor, then problem

K
min wrer — logw

F,Py{wkyuk}; WOk & Wi
Mg

st. Te(PYFTFP) < P.,Y  fij =1, 9)
=1

NRrp

S fi <L fy € 0,11V 5) €S

j=1

is equivalent to problem (7), in the sense that the global
optimal solution F', P for the two problems are identical.
The proof of Theorem 1 is presented in the Appendix A.

Hence, the sum-rate maximization problem (7) can be
solved via the weighted MSE minimization (9). The lat-
ter problem, which is defined over the parameter space
F, P, {wy,ui}, is easier to handle since it has a convex
objective function.

Before proceeding to the derivation of the proposed algo-
rithm, let us reformulate problem (9) into an equivalent, yet
mathematically more tractable form. To this end, we introduce
the auxiliary variables { fij} and V' subject to the constraints
of fij = fij, fi;(1—fi;) =0,0< fi; <1, FP =V
and Tr(VVH) < P, in order to deal with the nonconvex
and coupling constraints of problem (9). We also rewrite the
constraint Z;V:Rf fij < 1las fI1 < 1 with fI € CI*Nrr
being the i-th row of F' and 1 € CV&F*! denoting a vector
whose all elements are 1. Similarly, f;; can be expressed as
fI'b; with b; € CVrrx1 denoting the j-th column of Iy,,,..
Given these notations, problem (9) can be equivalently written
as

K
Z wier — log wy

min (10a)
VP {wp,uk, i fi;}

st. FP =V, fIb;(1 - fi;) =0, (10b)

M
£1o; = fi5, > floy =1, (10c)

i=1
T(VVH) <P, ff1<1, (10d)
0< fij SLV(,j) €S (10¢)
Problem (10) is defined over the parameter space



V, P {wg,ug, fi, fij}, optimizing each variable separately
while holding the others fixed leads to a subproblem that can
be easily solved (e.g., in closed-form). In the following, we
develop the proposed algorithm based on the PDD method to
solve problem (10).

B. The Proposed PDD Based Algorithm

In this subsection, we propose a PDD-based algorithm,
which is characterized by an embedded double loop structure,
where the inner loop solves the AL subproblem while the outer
loop aims to update the dual variables or the penalty parameter
based on the constraint violation. The conceptual framework
of the PDD method is exposed in Appendix B.

We first convert problem (10) into its AL form as follows:

K
mjn (wk.ek — log wk)
V7Pa{fi»fijawkauk,};
1 Ms; Nrr
+ 5, (£ (1 = fij) + pAis)?,
P =1
1 Ms Ngrr
+27 Z(.fTb fl] +p>\zj) ) (11)
i=1 j—1
1 Nrr Ms
oo ) Qb =14 puy),
2p =1 i=1

—||[FP-V 2
+ 2pll + péll2,
st. Ti(VVH) <P, f11<1,0< f;; <1,Y(i,5) € S,

where {\i;}, {Nij}, {ui}, € € CM*K denote the dual
variables associated with the equality constraints in (10b) and
(10c) while p is a penalty factor. We address the AL problem
(11) in the inner loop with the BCD method [28], where we
partition the design variables into five blocks: {uy}, {wg},
{fi;s P}, {V} and {f;}. In the following, we detail the
methods used to solve the subproblems for each one of these
blocks.

In Step 1, we optimize {uy, } parallelly by fixing the remain-
ing variables. In this case, (11) simplifies to the unconstrained

problem:
K

min

12)
tud i3

WEge .
By examining the first-order optimality condition of (12) along
with (8), we can obtain the closed-form solution of {uy} as:

ugP' = J o hy, VE, (13)

2 and v; is the

where we have Ji, 2 YK hfvwfhy + o
i-th column of matrix V.

In Step 2, we optimize {wy} simultaneously by fixing the
remaining variables. Following the approach in Step 1, we can

obtain the closed-form solution of {wy}:
w?' = (1 — v hyJ;  hilvy) 71, Yk (14)

In Step 3, we optimize { fij},P by fixing the remaining
variables. The subproblem of optimizing {f;;} parallelly can

be expressed as

N
min —(f;" b;(1
nin - (7704

1 X~ A
+ %(finj — fij + pAij)?,

s.t. 0 S fij S 1.

= fi) + pXij)?

5)

Problem (15) features a scalar quadratic objective function of
fij»¥(i,7) € S. We can obtain the unconstrained solution by
enforcing the first-order optimality condition:

+ fZJpAZ] + f’l_] + p>\1j

foc _ 16
) 1 + ( )

Recalling that fij satisfies 0 < fij < 1,V¥(i,j) € S, we can
obtain the optimal solution of the constrained problem (15) as
follows:

Lo 1< fer
=1 foe, 0< for <, (17)
0, fr <0,

Similarly, the subproblem of optimizing P can be stated as

1 2
mlgn;pllFP—VﬂLpillz (18)
Since this is a quadratic programming problem without con-
straint, we can obtain the following closed-form solution by
enforcing the first-order optimality condition of the objective
function:

P = (FTFFT(V — p§).
As the variables P and {f;;} are uncoupled in the block, we
should update them simultaneously.

In Step 4, we optimize V' by fixing the remaining variables.

The subproblem of optimizing V' can be expressed as

(19)

m‘}n P (V) (20a)
s.t. Tr(VVH) < Py, (20b)
where
K
Py (V) £ wy(Juchf Vb [*~2Re(urhf Vby,)
k=1
K
+ 14 o2 up + ) Juehf Vbi[?), @n
ik

1
—||FP — 2,
+2p|| V +p€ll3

This is a convex quadratic optimization subproblem subject to
a quadratic constraint. By introducing the Lagrange multiplier
A for the constraint (20b), we define the Lagrangian function
associated with problem (20) as follows

LV, A) £ P(V)+A\NTe(VVH) - P,). (22)

The first-order optimality condition of (22) with respect to V'
yields:

K

(Z wkhkuZukth
k=1

1
+—I+M)'A,

Vopt —
2p

(23)



where we have A £ [ﬁ(FP—&—pEH—E,f:l wiuihibf ], and
A > 0 should be chosen so that the complementarity slackness
condition of the power budget constraint is satisfied. If the
solution V' associated with A = 0 satisfies the constraint (20b),
the optimal A\ (denoted by A°P%) is zero. Otherwise we can
obtain the solution of A through the slackness condition:

T(VVH) - P, =0, (24)
which is equivalent to
Tr((A + M) 20©) = P, (25)
where DADY is the eigen-decomposition  of
Yoy wehgupughf! + LT and ® £ D7AA"D.
(25) can also be expressed as
M
~_ [Oum
— =P, 26
m=1 ([A]m«m + >‘)2 ( )

Note that A\°?! must be positive in this case and the left-hand
side of (26) is a monotonously decreasing function of X\ for
A > 0. Hence, we can find \°?* by solving problem (26)
with one dimensional search techniques such as the bisection
method [29]. Finally, we can obtain the solution of V' by
substituting A°P¢ into (23).

In Step 5, we optimize {f;} by fixing the remaining vari-
ables. The subproblem of optimizing {f;} can be expressed
as

min Py ( f; 27a
min >(fi) (272)
st. ff1<1,i=1,2,...,M,, (27b)
where we have:
M, Ngrr
Py (fi) é2 ZZ (£7b;(1 = fij) + pAij)?
P i=1 j=1
1 Ms Nrr
+ 27/) Z fzy + p)\u) s
i=1 j=1 (28)
1 Nrr M;
O b — 1+ ppy)?,

j=1 i=1

1
—||[FP -V 2.
+2p\| + p€ll2

We find that the subproblems associated with each f; are
convex with an affine constraint. Similar to (20), each vari-
able can be optimized based on the Lagrangian multiplier
method. Therefore, the first-order optimality condition of the
Lagrangian function of (27) with respect to f; yields:

NrF

opt 3I+Z

—2f,,)b;bT + Re{PPT}) ™

Nrr
x [ - me{ci} — 01 =Y (A= fiy)  (29)
M, =1
+ (phij — fij) + (Z £ by + puy — 1))b],
ki

where 6; > 0 is the Lagrangian multiplier, C = P(p& — V)
and c¢; denotes the i-th column of C. If the solution of f;

TABLE II: One-iteration BCD method for solving (27)

1 For i=1 to M,
1.1 Determine 6; from (31).
1.2 Update f; based on (29).
1.3 Assign f to the i-th row of F.

associated with 6; = 0 satisfies constraint (27b), the optimal
6; (denoted by 0" ') is zero. Otherwise we can obtain 6; from
the slackness condition:

fi1=1. (30)
Let us define R 2 (31 + Y0 (f3 — 2fi;)bdt +
Re{PP"}) ™" and d 2 [~Re{e;} — SN (phij(1— fij) —
(pAij = fig) = (Casss F7bs + psj — 1))b ]. Then (29) can be
rewritten as 7" £ R(d — p#;1) and we can then directly
obtain a closed-form solution of 6; by substituting f;” * into
(30):

ZNRF ZNRF dpry; — 1
SHESHIgTS

where r; denotes the (k,7)-th element of R and dj is the
k-th element of d. Finally, this subproblem can be solved by
using the algorithm in Table II, which can be viewed as a
one-iteration BCD method.

Besides, in the outer iteration of the PDD method, the dual
variables {\;;, 5\ij7 wi, €™ can be updated by the following
expressions:

. 3D

A= A’“+f(fTb (1—-fi), V) €S, (32a)

;\Z?+1:Xm+7m(ffbj_fij)7v(i,j) s, (32b)
M

it =g +7(Z<f?bj—1))7vu,j> €S, (3
=1

€m+1:£m+pim(FP -V), (32d)

where m denotes the outer iteration index. We define the
constraint violation indicator h as:
T ; T ;
|F0;(1 = fij), 1 £ b5 —

fisl }
rfba’és{ IS M (F7b = V)| |[FP =V |
(33)

The proposed joint design algorithm based on the PDD
method for problem (10) is summarized in Table III, where
we set I,, p, ¢, , and 7 empirically. The algorithm exhibits
an embedded double loop structure, where the inner loop
solves the AL subproblems while the outer loop updates the
dual variables and penalty parameter. Following [27], it can
be shown that the proposed PDD-based algorithm converges



to the set of stationary solutions®> of problem (10). Relevant
background on the PDD method is given in Appendix B.

TABLE III: The proposed PDD-based algorithm

1 Initialize dual variables {\;;, Nij, i, €30, primal vari-
ables {V/, P, fi, fij, wi, ur}, € In, p° > 0, 70, c and
7’ = 7'(}/6. Set m = 0.

2 Repeat
2.1 Repeat
2.1.1 Update {yk} by (13) with fixed
iV, P, fi, fij, wi}-
2.1.2 Update {wr} by (14) with fixed
{V, P, fi, fi, ur}
2.1.3 Update {f:;, P} by (17), (19) with fixed

{V7 fivuk?7wk}'

2.1.4 Update {V} by (23) with fixed
{fi, P, fij, uk, wi}.
2.1.5 Update {fi} by (29) with fixed

{V, P, fij, uk, wi}.
2.2 Until the termination criterion is met.
2.3 Calculate the constraint violation h by (33).
2.4 if h < n™ then update dual variables by (32),
2.5 else set p™ Tt = cp™ end if.

2.6 Set Tyn+1=0.67m, " =712 and m=m+1.
3 Until h < e.

IV. THE SIMPLIFIED ALGORITHM

The PDD-based algorithm proposed in the previous sec-
tion requires a joint optimization of the beam selection and
precoding matrices. In this section, we present a simplified
suboptimal algorithm which designs the beam selection and
precoding matrices separately to achieve lower complexity. We
first select the beams by using an IA-BS scheme [25] which
takes into account the potential multiuser interference. Then,
we obtain a optimal precoding matrix with the aid of WMMSE
method to maximize the system sum-rate.

A. Beam Selection Algorithm

The beam selection algorithm first classifies all users into
two groups, i.e., the interfering users (IUs) and non-interfering
users (NIUs). For the NIUs, beams with large power are select-
ed, while for IUs, the beams are selected by a low-complexity
incremental algorithm based on the sum-rate maximization
criterion. The beam selection process can be naturally divided
into two stages:

(1) First, we sort the elements (beams) of the beamspace
channel hj in a descending order of magnitude,
and denote the strongest beam index of user k as

2In the absence of a better alternative, it is readily seen that our proposed
PDD-based algorithm is currently the best choice for solving problem (7). Due
to the NP-hard nature of the problem, it does not seem possible to provide
a globally optimal solution based on the current optimization techniques. At
the present time, providing stationary point convergence for the extended,
continuous type problem (10) is the best we can do in terms of convergence
analysis for this kind of constrained optimization problem.

e {1,2,...,M,}. We identify user k as a NI-
U if its strongest beam by differs from the strongest
beams of any other users, ie. we have b ¢
{67, ... b5y bjyqs -, bk} The group of all NIUs is
denoted by Gyjy. For a NIU, we directly select the
strongest beam b}, since this beam not only contains most
of the power of the beamspace channel but also causes
little interference to others.

(2) Alternatively, we identify user k£ as an IU if its
strongest beam coincides with that of another user,
ie, by € {bf,...,05_1,05,,...,bk}, and denote by
Gru as the set of all IUs. For the IUs, we search a
number Card(Gry) of appropriate beams from the set
{1,2,..., M, }\{b;|k € Gnru} one by one. Specifically,
in each step, the beam making the greatest contribution to
the system sum-rate is selected. Additional details about
this stage can be found in [25].

B. Optimization of the Precoding Matrix

The TA-BS scheme considers the potential multiuser inter-
ferences in the mmWave massive MIMO system. However,
it suffers from performance degradation without the optimal
digital precoding matrix based on the selected beams. This
motivates us to optimize the precoding matrix P. Once the
K beams have been selected, we can form the beam selection
matrix F. Then the sum-rate maximization problem (7) can
be reformulated as

K

max » log(l+ k)
P ,; (34)

s.t. T(PPFTFP) < P..

We can solve this problem with the WMMSE approach.
Specifically, and similar to (9), problem (34) can be equiv-
alently recast as

K

min g wger — log wy,
Pwg,up £

st. Tt(PEFTFP) < P,,

where uy, wg, and ey are defined in the same way as before.
We can then use the BCD method to solve (35) where we
minimize the weighted sum-MSE cost function of (34) by
sequentially fixing two of the three variables uy, wy, P and
then updating the third. The updates of uj, and wy, are obtained
in closed forms which have been shown in Step 1 and Step 2
of the PDD-based algorithm in Section III-B. The subproblem
of optimizing P can be expressed as

(35)

mlin P;(P) (36a)
st. T(PEFTFP) < P,, (36b)
where we have
K
Py(P) & Z wy, (|uphfl F Pby|* — 2Re(uhf F Pby)
=1 (37)

K
+ 1+ 0% ug)® + ) |ughi FPb;[).
ik



TABLE IV: The WMMSE algorithm proposed for solving
problem (35)

1 Initialize P such that Tr((P¥ FT FP) = P,. Set ¢ >
0.
2 Repeat
2.1 Store wy, into wy, Vb =1,2,... K.
2.2 Update {u} by (13) with fixed {P wi}, Vk =
1,2,...,K.
23 Update {wk} by (14) with fixed {P, us}, Vk =
1,2,.
2.4 Update {P} by (39) with fixed {ux,wr}.

3 Until |Zk:1 log(wy) — Zk:l log(wy,)| < o.

This is a convex quadratic optimization subproblem. Similar
to Step 4 of the PDD-based algorithm, by introducing the
Lagrange multiplier § for constraint (36b), we define the
Lagrangian function associated with problem (36) as follows

L(P,5) £ Py(P) + 6(Te(PYFTFP) - P,). (38)

The first-order optimality condition of (38) with respect to P
when § > 0 yields:

K
O wiF"hyujurhi! F + sFTF) ™!
k=1

K
X (Z kaThkukka)
k=1

If the solution P with § = 0 satisfies the constraint (36b), the
optimal § (denoted by §°P?) is zero. Otherwise we can obtain
the solution of § through the slackness condition:

T(PY*FTFP) - P, =0.

Popt —
(39)

(40)

Then, we can find §°P* by solving the problem (40) with the
bisection method [29]. Finally, we can obtain the solution of
P by substituting 6°P¢ into (39). The WMMSE algorithm for
problem (35) is summarized in Table IV. It is shown in [26]
that the WMMSE algorithm is guaranteed to converge to a
stationary point of problem (34).

V. COMPUTATIONAL COMPLEXITY

In Sections III and IV, we proposed a PDD-based algorithm
and a simplified algorithm for solving problem (7), respective-
ly. In this section, we compare the computational complexity
of the proposed algorithms by evaluating the number of
required multiplications per symbol time instance.

Let us focus on the proposed PDD-based joint design
algorithm. The inner loop in Table III aims to solve the AL
subproblems. Specifically, in each inner iteration, we solve the
subproblems for the five blocks of variables in five respective
steps:

In Step 1, the calculation of u;” ' Vk in (13) and Ji,Vk
need O(M,K) and O(M,K?) multlplications, respectively;
thus the complexity of Step 1 is

C14 O(M,K?). 41)

In Step 2, we only needs C2 £ O(K ) multiplications to
solve wi™" in (14), since J; and v/ h;, have already been
calculated in Step 1.

In Step 3, the complexity for solving F' is O(M,Ngp),

and the complexity of solving P is

O(MSNIQ%F +MSNRFK+N13%F)7 (42)

since the complexity for the matrix pseudo-inversion of F” F
is O(N3p) [30].

In Step 4, when utilizing the bisection method to find the
Lagranglan parameter A in (26), the number of iterations is
logQ( 2:2), where (g s is the initial interval size and @, is
the tolersance, since we need to perform M multiplications in

each iteration, the complexity of solving V is

O(M? + MZK + M,NgpK + M;lo (QQ;S)). (43)
In Step 5, the complexity of solving all f; is
O(My(M;NprK + Npp + NipK)). (44)

Finally, the complexity of each inner iteration is the sum of
these five steps:

Cin £ O(M2ZNgpK + M,N}p + M N} K,
45

+M3+MK2+M10g(%“)) )

It is of interest to investigate the asymptotic complexity of

the proposed algorithms when M, Nrr and K are large, i.e.,

when we let My > Nrp > K — oo. Under this condition, we

can obtain the asymptotic complexity of each inner iteration as

Cain = O(M2NgrK). Based on the above analysis, we can

obtain the asymptotic complexity of the proposed PDD-based
algorithm as:

CaPDD = ImInCain = O(ImInMgNRFK)v (46)

where I,,, and [, are the numbers of iterations in the outer
and inner loops, respectively.

Similarly, as shown in Table IV, the complexity of the
simplified algorithm is dominated by solving problem (35)
I, times, where I, denotes the number of iterations. We note
that in each iteration the solution of u; and w;, are the same
as that of the PDD-based algorithm, and the complexity of
solving P is

Cp 2 O(M;Ngp + M NgrpK + Ny,

QO,S )) )

9 47)
+ NzpK + Nrr log( 0

S

In the beam selection stage, the complexity is Cys = O(K3).
Hence, the complexity of the simplified algorithm is

I,(C1+ C24 Cy) + Cos
= O[L,(MsN}p + MyNrpK + M,K? + N} o,

) + K3

(48)

-f—NRFK—I—NRplog((QZ2

Under same conditions My, > Nrp > K — 00, we
can obtain the asymptotic complexity of this algorithm as
Casiv = O(1,, MSNI% ). The proposed PDD-based algorithm



TABLE V: Computational complexities of the proposed algo-

rithms and other schemes

Algorithms Asymptotic complexity
PDD based algorithm O(ImInM2NgrK)
Simplified algorithm O(ILwMsN% L)
Fully digital precoding based on PDD O(ImInM3K)
IA-BS O(K?)
MM-BS O(K?)

provides a higher computational complexity than the simplified
algorithm, as a price for better performance.

Besides, in Table V, we summarize the asymptotic com-
plexities of the proposed PDD-based algorithm, the simplified
algorithm and other schemes used for mmWave MIMO sys-
tems design, namely: fully digital precoding (based on the
PDD algorithm), IA-BS and MM-BS (the complexities of
these schemes can be analyzed in a similar way). As seen
from Table V, the fully digital precoding based on the PDD
algorithm consumes more computational resources than other
schemes, since it needs the same number of RF chains as
antenna elements (which also leads to excessive hardware
costs). In contrasts, the proposed algorihms achieve lower
complexity but can still maintain performance levels that are
close to the fully digital precoding, as will be shown in the
next section. While the complexity of the IA-BS and MM-
BS scheme is generally lower than the proposed algorithms,
their performance is in general not as good. Consequently,
our proposed algorithms therefore offer a practical trade-off
between complexity and performance.

VI. SIMULATION RESULTS

In order to evaluate the performance of the proposed algo-
rithms, numerical results have been obtained by performing
computer simulations. In this section, we present the perfor-
mance of the PDD-based algorithm and the simplified algorith-
m, and compare them with other schemes from the literature.
The system configuration is defined by the following choice
of parameters: the BS is equipped with a DLA consisting
of My = 128 antennas and Ngrr = 16 RF chains to serve
K = 16 users. The channel model parameters of user k& are
set according to [21]: 1) one LoS link and L = 2 NLoS links;
2) QSECO) and gb,(fl) obey the uniform distribution within [—%, %],
3) B9 ~ CN(0,1), B ~ CN(0,1071) with [ = 1,2; 4) the
parameters qbg)), ,(Cl), ]go) and ﬁ,(cl) (I =1,2) are statistically
independent. For the PDD-based algorithm, we set the initial
penalty factor p° = 1072 and the control parameter ¢ = 0.1.
In addition, we set 79 = 1 and the maximum number of
inner iterations I,, = 100, which is large enough to observe
convergence. For the simplified algorithm, we set the threshold
of the WMMSE iteration o = 10~ to guarantee convergence.

We first present the convergence performance of the pro-
posed PDD-based algorithm and the simplified algorithm.
Without loss of generality, we choose SNR = 25dB to present
the convergence performance of the PDD-based algorithm in
Fig. 2 and Fig. 3. The achievable system sum-rate converges
rapidly in less than 5 outer iterations, and the constraint
violation h reduces to a threshold € = 10~7 in less than 200
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Fig. 2: Convergence performance of the PDD-based algorithm
(SNR = 25dB).
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Fig. 4: Convergence performance of the simplified algorithm
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outer iterations, which means that the solution has essentially
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Fig. 5: Achievable sum-rate comparison versus the SNR.

met the equality constraints for problem (10). Fig. 4 illustrates
the convergence performance of the simplified algorithm for
the case of SNR = 25dB, which shows that the simplified
algorithm converges monotonically in a few steps.

Fig. 5 compares the system sum-rate of the proposed PDD-
based and simplified algorithms with the IA-BS [25] and MM-
BS [19], [21], [24] schemes. The sum-rate is averaged over
100 channel realizations, while both the IA-BS and MM-BS
schemes employ a ZF precoding matrix. We also simulate the
fully digital ZF precoding scheme as a benchmark (labeled by
“FD-ZF” in Fig. 5). From the results, we can see that the best
performance is achieved by the fully digital precoding scheme,
followed by the proposed PDD-based algorithm, the simplified
algorithm, the conventional IA-BS scheme and the MM-BS
scheme. In particular, the PDD-based algorithm can lead to a
3.5dB gain in SNR in comparison with the conventional IA-
BS scheme at the system sum-rate level of 40bits/s/Hz. This
demonstrates the merits of the proposed joint design algorithm
for the beam selection and digital precoding matrices. We
conclude that the PDD-based algorithm offers an efficient
and attractive means of solution for problem (7). Besides, the
simplified algorithm can achieve a sub-optimal performance
between that of the PDD-based algorithm and other competing
schemes, since it selects the same beams as the IA-BS while
designing an optimal precoding matrix.

Fig. 6 compares the achievable system sum-rate when
using different numbers of RF chains in the aforementioned
schemes. In this experiment, we set My = 128, K = 8, SNR
= 30dB and the number of RF chains Ngrp increases from 8
to 24. Simulation results demonstrate that the PDD algorithm
can achieve performance close to fully digital precoding
with a small number of RF chains, while the performance
of the simplified algorithm and the IA-BS scheme increase
monotonically with the number of RF chains and converge to
a sub-optimal value. Based on these and other similar results,
we may conclude that the PDD-based algorithm can take full
advantage of available RF chains. Note that here we do not
consider the MM-BS scheme because it does not use a fixed
number of RF chains, which means that some RF chains may
be wasted since they do not contribute to the system sum-rate
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Fig. 6: Achievable system sum-rate comparison versus the
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Finally, in Fig. 7, we analyze the aforementioned schemes
for different numbers of users. In this scenario, we set M, =
128, Nrr = 24, SNR = 30dB and the number of users K
increases from 4 to 20. Simulation results demonstrate that the
performance of all these schemes increase monotonically with
the number of users. However, the PDD-based and simplified
algorithms deliver better performance than the IA-BS scheme,
pointing to their superior ability to mitigate the multi-user in-
terference. Besides, the performance gap between the proposed
algorithms and IA-BS escalates upon increasing number of
users, which demonstrates that our proposed algorithms have
more potential for applications with large number of users.

VII. CONCLUSION

In this paper, we have considered the joint design of the
beam selection and precoding matrices in order to maximize
the sum-rate of a downlink single-sided lens mmWave MU-
MIMO system. We reformulated the sum-rate maximization



problem into a mathematically tractable form by using the
WMMSE approach. Then, we proposed an efficient joint beam
selection and precoding design algorithm based on the PDD
method. To reduce design complexity, we also proposed a
simplified algorithm based on the IA-BS scheme and the
WMMSE approach. Simulation results have demonstrated that
our proposed algorithms could converge in a few iterations
and approach the optimal performance of the fully digital
precoding scheme, thus enabling them to outperform the
competing methods. We also evaluated all the aforementioned
schemes for different numbers of RF chains and users, thereby
showing that our algorithms could take full advantage of
available RF chains and mitigate the multiuser interference
efficiently.

APPENDIX A
PROOF OF THEOREM 1

We first optimize {uy} by fixing the remaining variables of
problem (9). In this case, (9) simplifies to the unconstrained
problem:

(49)

which is a weighted sum-MSE minimization problem. By
examining the first-order optimality condition of (49), we can
obtain the closed-form solution of {ug}, which is the well-
known MMSE receiver:

Pt = upmee = J o pf PRy, VE, (50)

where J;, £ Zfil thsz-szFHh;€ +02 is the covariance of
the received signal at user k. Using the MMSE receiver uy,
the corresponding MSE ey, is given by:

6znmse — (1 _ pkHFHhkjk_lthFpk),Vk)- (51)

Furthermore, fixing the remaining variables, the objective
function in (9) is convex with respect to {wy}. Therefore,
by checking the first order optimality condition for {wy}, we
can obtain:

w? = (1 - pf FPhyJ, 'R Fpy) =t = (efr™®) =", Vk.
(52)
Substituting ;" t,wzp * VEk into (9), we have the following
equivalent optimization problem:

K
%3‘13( kz_l log ((eznmse)—l)

9

M

s.t. T(PYFTFP) < P, Zfij =1, (53)
i=1

Nrr

S fii <1.£i; € {0,11,9(i,5) € S.

j=1

Defining I';, £ Zf;k hH Fp;pf Fh, + o2, we can obtain
log ((e™*¢)~1) =log(1 + pfl F¥h,,T}, ' hi! Fpy,)
=log(1 + |hi! Fpi|’T, 1),
= log(1 + k).

(54)

Combining (54) with (53) we obtain
K
max kz_l log(1 + k)

M,
st. Te(PYFTFP) < P> fij =1,
i=1

(55)

NrF

3" i <1, 0 € {0,1},V(,9) € S.
j=1

This completes the proof. We note that the equivalence be-
tween problems (9) and (7) has nothing to do with their
constraints.

APPENDIX B
FRAMEWORK OF THE PDD METHOD

The PDD method can address nonconvex nonsmooth prob-
lems with coupling constraints. Consider the following prob-
lem

min f () 56)
s.t. h(x) =0,

where f(x) is a scalar continuously differentiable function,
the feasible set A" is the Cartesian product of n simple closed
convex sets, and h(x) € RP*! is a continuously differentiable
vector function. The PDD method’s framework for solving this
problem is summarized in Table VI, which reveals a double-
loop algorithm structure where the inner loop aims to solve the
AL subproblem while the outer loop serves to update the dual
variable or the penalty parameter in terms of the constraint
violation. The main effort of the PDD method lies in Step
2.2, which updates the primal variables by applying the BCD
algorithm [28] with initialization z° to solve the AL problem
P(p™, Ap) to some accuracy €™, where P(p™, A,,,) is defined
by

min(£7(z) £ f(@) + ALh(@) + o R@)). 6T

L™ () is the augmented Lagrange function with dual variable
A, and penalty parameter p™. In the simulation, we set
n™ = (7™)6 and ™ = 0.67™"! empirically, and the
termination criterion can be set as ||h(z)|| < 10~7 since the
penalty term disappears finally. Furthermore, it can be shown
that the limit point of the sequence generated by the PDD
framework is a stationary point of problem (56) under suitable
constraint qualification condition if P(p™, A,;,) can be solved
to the accuracy € in each inner iteration with €™ — 0. The
reader may consult [27] for further details.
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