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Abstract— In this paper, we present a consensus-based de-
centralized multi-robot approach to reconstruct a discrete
distribution of features, modeled as an occupancy grid map,
that represent information contained in a bounded planar
2D environment, such as visual cues used for navigation or
semantic labels associated with object detection. The robots
explore the environment according to a random walk modeled
by a discrete-time discrete-state (DTDS) Markov chain and
estimate the feature distribution from their own measurements
and the estimates communicated by neighboring robots, using a
distributed Chernoff fusion protocol. We prove that under this
decentralized fusion protocol, each robot’s feature distribution
converges to the ground truth distribution in an almost sure
sense. We verify this result in numerical simulations that show
that the Hellinger distance between the estimated and ground
truth feature distributions converges to zero over time for
each robot. We also validate our strategy through Software-
In-The-Loop (SITL) simulations of quadrotors that search a
bounded square grid for a set of visual features distributed on
a discretized circle.

I. INTRODUCTION

Multi-robot systems (MRS) composed of multiple mobile
robots have been used for various collective exploration and
perception tasks, such as mapping unknown environments
[1], disaster response [2], and surveillance and monitoring
[3]. The performance of MRS in such applications is con-
strained by the capabilities of the payloads that the robots
can carry on-board, including the power source, sensor suite,
computational resources, and communication devices for
transmitting information to other robots and/or a central
node. These constraints are particularly restrictive in the
case of small aerial robots such as multi-rotors that perform
vision-guided tasks [4].

Centralized MRS strategies for exploration and mapping,
such as the next-best-view planning method in [5], rely
on constant communication between all the robots and a
central node. Scaling up such strategies with the number of
robots requires expanding the communication infrastructure
and preventing communication failures of the central node.
Frontier-based MRS exploration strategies such as [6] rely
on a dynamic communication topology in which leaders are
responsible for coordinating the team.
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Fig. 1: Software-In-The-Loop (SITL) setup in Gazebo using the
Rotors [7] package. Robots 1 and 2 are quadrotors, and the ArUco
markers represent a discrete approximation of a continuous circular
feature (the red dotted line).

Decentralized MRS exploration and mapping strategies
that employ only local communication alleviate these draw-
backs and are designed to work robustly under inter-robot
communication bandwidth constraints [8] and disruptions to
communication links by environmental effects [9]. Many
decentralized MRS estimation strategies are designed to
achieve consensus among the robots on a particular variable
or property of interest through local inter-robot communi-
cation. For example, distributed consensus-based approaches
have been designed for spacecraft attitude estimation [10]
and space debris tracking [11]. Consensus behaviors also
arise in social networks [12] when users reach an agreement
on a shared opinion in a distributed fashion. Consensus
strategies have been developed for MRS communication net-
works that are static or dynamic, and that can be represented
as directed or undirected graphs [13], as well as random
networks [14] and networks with communication delays [15].
However, few works address consensus problems for MRS
that follow random mobility models, often used in MRS
exploration strategies as in, e.g., [16], whose communication
networks exhibit Markovian switching dynamics as a result.
Random exploration strategies have certain advantages for
MRS: they do not require centralized motion planning,
localization, or communication, and they can be modified
to produce more focused or more dispersed coverage.

In our previous work [17], we developed a probabilistic
consensus-based strategy for target search by MRS with a
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discrete-time discrete-state (DTDS) Markov motion model
and local sensing and communication. Using this strategy,
the robots are guaranteed to achieve consensus almost surely
on the presence of a static feature of interest, without any
requirements on the connectivity of the robots’ communica-
tion network. We extended this approach in [18] to an MRS
strategy for tracking multiple static features by formulating
the tracking procedure as a renewal-reward process on the
underlying Markov chain. The robots reach a consensus on
the number of features and their locations in a decentralized
manner using a Gaussian Mixture approximation of the
Probability Hypothesis Density (PHD) filter.

In this paper, we generalize the consensus objective of
our probabilistic multi-robot search strategy to agreement
on a discrete distribution of static features, modeled as an
occupancy grid map, using results on opinion pools [19].
We consider a group of robots that move according to a
DTDS Markov chain on a finite 2D spatial grid, as shown
in Figure 2, and that can detect features using their on-
board sensors. The proposed strategy is distributed and
asynchronous, and it preserves the required communication
bandwidth by relying only on local inter-robot communica-
tion. The main contributions of the paper are as follows:

1) We present a decentralized, stochastic multi-robot ex-
ploration and mapping strategy in which the robots use
a consensus protocol, without communication connec-
tivity requirements, to arrive at a common reconstruc-
tion of a feature distribution on a 2D grid. Specifically,
given a group of robots with a DTDS Markov motion
model and local sensing and communication, we prove
that if the robots update their estimates of the feature
distribution with those of other robots according to
a distributed Chernoff fusion protocol, then they will
reach consensus almost surely on the ground truth
distribution. This extends the result in [20] on opinion
consensus over fixed, strongly connected networks to
networks with Markovian switching dynamics.

2) We validate our theoretical results in numerical simu-
lations that illustrate the pathwise convergence to zero
of the Hellinger distance between each robot’s estimate
of the feature distribution and the ground truth distri-
bution. We also validate our approach in Software-In-
The-Loop (SITL) simulations of quadrotors, performed
in Gazebo using the Robot Operating System (ROS)
with the PX4 autopilot.

The remainder of the paper is organized as follows. We
present our probabilistic exploration strategy and information
fusion protocol in Section II. We describe some relevant
properties of DTDS Markov chains in Section III, and
we derive the main result that guarantees the convergence
of each robot’s feature distribution to the ground truth
distribution in Section IV. We present the results of our
numerical simulations in Section V and our SITL simulations
in Section VI. Section VII concludes the paper and suggests
directions for future work. A video overview of the paper is
provided at https://youtu.be/-Z4-DZrHwSM.

II. EXPLORATION AND INFORMATION FUSION STRATEGY

Consider a bounded square environment B ⊂ R2 with
sides of length B. We discretize B into a square grid of nodes
spaced at a distance δ apart. The set of nodes is denoted
by S ⊂ Z+, and we define S = |S|. A set of N robots,
A = {1, 2, . . . , N}, each modeled as a point mass, explore
the environment by performing a random walk on the grid.
We assume that there are no obstacles in the environment
that impede the robots’ motion. Let Gs = (Vs, Es) be an
undirected graph associated with this finite spatial grid,
where Vs = S is the set of nodes and Es is the set of
edges (i, j). The edges signify pairs of nodes i, j ∈ Vs,
called neighboring nodes, between which robots can travel.
We assume that the robots can localize on Gs.

Let Y a
k ∈ S be a random variable that defines the node

that robot a ∈ A occupies at discrete time k. Robot a
moves from its current node i to a neighboring node j at the
next time step with a transition probability pij ∈ [0, 1]. We
define P ∈ RS×S as the state transition matrix consisting of
elements pij at row i and column j. Let πk ∈ R1×S denote
the probability mass function (PMF) of Y a

k for each robot
a, or alternatively, the distribution of the robot population
over the grid at time k. This distribution evolves over time
according to a DTDS Markov chain model of order one:

πk+1 = πkP. (1)

We assume that each robot can exchange information with
other robots that are within a communication radius rcomm <
0.5δ. Let Gc[k] = (Vc, Ec[k]) be an undirected graph in which
Vc = A, the set of robots, and Ec[k] is the set of all pairs
of robots (a, b) ∈ A × A that can communicate with each
other at time k. Let M[k] ∈ RN×N be the adjacency matrix
with elements mab[k] = 1 if (a, b) ∈ Ec[k] and mab[k] =
0 otherwise. For each robot a ∈ A, we define the set of
neighbors of robot a at time k as N a

k , {b ∈ A : (a, b) ∈
Ec[k]}.

A set of discrete features is distributed over the grid at
nodes in the set Br ⊆ S. The robots know a priori that these
features are present in the environment, but do not know
their distribution. We assume that when a robot is located at a
node in Br, it can detect the presence of a feature at that node
using its on-board sensors. Each node in the grid is associated
with a binary occupancy value, defined as l̄ ∈ (0.5, 1) if
the robot detects a feature at that node and 1 − l̄ if it does
not. Setting l̄ ∈ (0.5, 1) helps produce sharp reconstructions
of the features: as the value of l̄ increases, the distinction
between occupied and unoccupied nodes becomes clearer.

We define the occupancy vector for robot a at time k as
θ̄ak = [θak(1) . . . θak(S)] ∈ R1×S , where

θak(s) =

{
l̄, s ∈ Br (occupied)

1− l̄, o.w (unoccupied)
(2)

The occupancy vector for each robot indicates its estimate of
the nodes that are occupied by features. The feature PMF, or
occupancy distribution, estimated by robot a at time k from
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its own sensor measurements is defined as:

fak (s) =
θak(s)∑
i∈S θ

a
k(i)

(3)

Here, fak (s) also represents the opinion [21] of robot a at
time k for the occupancy distribution. We denote θref ∈
R1×S as the reference occupancy vector that is being esti-
mated by all the robots, defined as follows:

θref (s) =

{
l̄, s ∈ Br

1− l̄, o.w
(4)

Since the robots do not know the occupancy distribution a
priori, we specify that they all initially consider the grid to
be unoccupied, i.e.,

fa0 (s) =
1− l̄

S(1− l̄)
, a ∈ A, ∀s ∈ S (5)

This is defined as the nominal distribution for all the robots,
denoted by fnom(s) = f

(·)
0 (s). We also denote a vector

θnom ∈ R1×S as the nominal occupancy vector for all robots,
which represents all nodes as unoccupied (i.e., θnom(s) =

θ
(·)
0 (s) = 1− l̄, ∀s ∈ S). We define fref (s) as the reference

PMF, the ground truth feature distribution, corresponding to
θref (s). We define a fusion weight ω(a,b)

k as the following
Metropolis weight [22]:

ω
(a,b)
k =


1

1+|N b
k |
, b ∈ N a

k \ {a}
1−

∑
b∈Na

k \{a}
ω
(a,b)
k , a = b, a ∈ A

0, o.w

(6)

Note that ω(a,b)
k ≥ 0 and

∑
b∈Na

k
ω
(a,b)
k = 1. We then define

the consensus or opinion weighting matrix Ωk ∈ RN×N

at time k, which consists of elements ω(a,b)
k at row a and

column b.
Given the robot exploration dynamics in Equation (1),

each robot a updates its opinion fak (s), computed from
Equation (3), to the following PMF f cherk+1 (s) at the next time
step, which it computes from the opinions of other robots
within its communication range according to the Chernoff
fusion rule [23]:

f cherk+1 (s) =

∏
b∈Na

k ∪{a}
[f bk(s)]ω

(a,b)
k∑

s∈S
∏

b∈Na
k ∪{a}

[f bk(s)]ω
(a,b)
k

, a ∈ A (7)

Applying Theorem 1 from [20], we can say that f cherk+1 (s) is
the local neighbor fused feature PMF at time k+1 of the all
robots a ∈ A that are in N a

k . When only two robots a, b ∈ A
are within communication range, this update rule becomes:

f cherk+1 (s) =
[fak (s)]ω[f bk(s)]1−ω∑
s∈S [fak (s)]ω[f bk(s)]1−ω

, (8)

where the Metropolis weight ω ≡ ω(a,b)
k is defined in Equa-

tion (6). Then each robot a compares f cherk+1 (s) with fnom(s)
to generate a new fused occupancy vector as follows:

θcherk+1 (s) =

{
l̄ f cherk+1 (s) > fnom(s), s ∈ S
1− l̄ o.w

(9)

Algorithm 1: Distributed Chernoff fusion protocol
for robots a, b ∈ A computed by robot a at time k

input : fak , f bk , Y a
k , Y

b
k , k, T, ε

output: fak+1

if 1 < k ≤ T then
if Y a

k = Y b
k then

ω = 0.5
else

ω = 1.0
end
c =

∑
s∈S [fak (s)]ω · [f bk(s)]1−ω

logfcher = ω log (fak ) + (1− ω) log (f bk)− log (c)
fak+1 = f cherk+1 = exp(logfcher)

end

Then, each robot a generates a new occupancy vector
θak+1(s) by comparing both its occupancy vector at the
previous time step, θak(s), and the fused occupancy vector
θcherk+1 (s), to θnom(s):

θak+1(s) =


l̄ θak(s) > θnom(s) or

θcherk+1 (s) > θnom(s), s ∈ S
θak(s) o.w

(10)

To quantify the convergence of each robot’s feature dis-
tribution to the reference distribution, we use the Hellinger
metric, which measures the similarity between two PMFs.
The Hellinger distance between the feature PMF fak (s) of
a robot a ∈ A at time k and the reference PMF fref (s) is
given by

DH(fak (s), fref (s)) =
√

1− ρ(fak (s), fref (s)) , (11)

where ρ(fak (s), fref (s)) is the Bhattacharya coefficient, de-
fined as:

ρ(fak (s), fref (s)) =
∑
s∈S

√
fak (s) · fref (s) . (12)

This distance takes values in [0, 1]. We define the vec-
tor DH ∈ RN×1

≥0 with each entry a ∈ A given by
DH(fak (s), fref (s)). The pseudo code in Algorithm 1 im-
plements this fusion strategy for two robots a and b. In this
algorithm, the normalizing constant c is the denominator of
Equation (8).

Figure 2 illustrates the proposed strategy for a scenario
with two quadrotors. The quadrotors start at the spatial grid
nodes indexed by i and j and move on the grid according to
the DTDS Markov chain dynamics in (1). The figure shows
sample paths of the quadrotors. The orange quadrotor detects
the feature, indicated by a magenta square, when it moves to
a node in the set Br (at these nodes, the feature is within the
quadrotor’s sensing range). The quadrotors meet at grid node
m after k = 9 time steps and fuse occupancy distributions
according to Equation (8). They continue to random-walk
on the grid and update fak (s) until a specified final time T .
We chose T empirically based on feature PMF convergence
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m = Y 1
k = Y 2

k

Y 1
0 = i

Y 2
0 = j

up

left

down

right

Fig. 2: Illustration of our multi-robot exploration strategy, showing
sample paths for two quadrotors (orange and blue) on a square
grid. The quadrotors search the environment for a set of static
features (the magenta squares representing a discretized circle) as
they perform a random walk on the grid.

times from numerical simulation studies, shown in Figure 8,
and on flight time constraints of off-the-shelf quadrotors.

III. PROPERTIES OF DTDS MARKOV CHAINS

The Markov chain in Equation (1) is characterized in
terms of the time-invariant state transition matrix P, which
is defined by the state space of the spatial grid representing
the discretized environment. Hence, the Markov chain is
time-homogeneous, which implies that Pr(Y a

k+1 = j | Y a
k =

i) is the same for all robots at all times k. The entries of P,
which are the state transition probabilities, can therefore be
defined as

pij = Pr(Y a
k+1 = j | Y a

k = i), ∀i, j ∈ S, k ∈ Z+, ∀a ∈ A.
(13)

Since each robot chooses its next node from a uniform
distribution, these entries can be computed as

pij =

{
1

di+1 , (i, j) ∈ Es,
0, o.w,

(14)

where di is the degree of the node i ∈ S, defined as di = 2
if i is a corner node of the spatial grid, di = 3 if it is on
an edge between two corner nodes, and di = 4 otherwise.
Since each entry pij ≥ 0, we use the notation P ≥ 0. We see
that Pm ≥ 0 for m ≥ 1, and therefore P is a non-negative
matrix. From Theorem 5 in [24], we can conclude that P is a
stochastic matrix. If π is a stationary distribution of Markov
chain (1), then ∀k ∈ Z+,

πPk = π. (15)

From the construction of the Markov chain, each robot has
a positive probability of moving from any node i ∈ S to
any other node j ∈ S of the spatial grid in a finite number
of time steps. As a result, the Markov chain is irreducible,
and therefore P is an irreducible matrix. By Lemma 8.4.4
(Perron-Frobenius) in [25], there exists a real unique positive

i j l
pij pjl

pii pjj pll

Fig. 3: A graph Gs = (Vs, Es) defined on the set of spatial nodes
Vs = {i, j, l}. The arrows signify undirected edges between pairs
of distinct nodes and self-edges. The edge set of the graph is Es =
{(i, i), (j, j), (l, l), (i, j), (j, l)}.

(i, i)

î

(i, j)

ĵ

(i, l)

l̂
qî,ĵ qĵ,l̂

qî,̂i qĵ,ĵ ql̂,l̂

Fig. 4: A subset of the composite graph Ĝ = (V̂, Ê) for 2 robots
that move on the graph Gs shown in Figure 3.

left eigenvector of P and since P is a stochastic matrix, its
spectral radius ρ(P) is 1. Therefore, this left eigenvector
is the stationary distribution of the corresponding Markov
chain. Since we have shown that the Markov chain is
irreducible and has a stationary distribution π, which satisfies
πP = π, we can conclude from Theorem 21.12 in [26] that
the Markov chain is positive recurrent. Thus, all states in the
Markov chain are positive recurrent, which implies that each
robot will keep visiting every state on the finite spatial grid
infinitely often.

IV. CONSENSUS ON THE FEATURE DISTRIBUTION

By Theorem 1 of [20], Equation (8) achieves opinion
consensus over a graph with a fixed and strongly connected
topology. We extend this result to graphs with topologies that
evolve according to the switching dynamics on the composite
Markov chain described in this section. We demonstrate that
under our opinion fusion scheme, all the robots will reach a
consensus on the feature distribution.

The dynamics of all robots’ movements on the spatial grid
can be modeled by a composite Markov chain with states
Yk = (Y 1

k , Y
2
k , . . . , Y

N
k ) ∈ M, where M = SA. Note

that S = |S| and |M| = SN . We define an undirected
graph Ĝ = (V̂, Ê) that is associated with the composite
Markov chain. The vertex set V̂ is the set of all possible
realizations ı̂ ∈ M of Yk. The notation ı̂(a) represents
the ath entry of ı̂, which is the node i ∈ S occupied by
robot a. We define the edge set Ê as follows: (̂ı, ̂) ∈ Ê
if and only if (̂ı(a), ̂(a)) ∈ Es for all robots a ∈ N . Let
Q ∈ R|M|×|M| be the state transition matrix associated with
the composite Markov chain. The elements of Q, denoted by
qı̂̂, are computed from the transition probabilities defined in
Equation (14) as follows:

qı̂̂ =

N∏
a=1

pı̂(a)̂(a), ∀ı̂, ̂ ∈M. (16)

Here, qı̂̂ is the probability that in the next time step, each
robot a will move from node ı̂(a) to node ̂(a).
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For example, consider a set of two robots, N = {1, 2},
that move on the graph Gs in Figure 3. In the next time step,
the robots can stay at their current node or travel between
nodes i and j and between nodes j and l, but they cannot
travel between nodes i and l. Figure 4 shows a subset of
the resulting composite graph Ĝ,whose entire set of nodes is
V̂ = {(i, i), (i, j), (i, l), (j, i), (j, j), (j, l), (l, i), (l, j), (l, l)}.
Each node in V̂ is labeled by an index ı̂, e.g., ı̂ = (i, j), with
ı̂(1) = i and ı̂(2) = j. Given the connectivity of the spatial
grid defined by Es, we can for example identify ((i, j), (i, l))
as an edge in Ê , but not ((i, j), (l, l)). Since N = 2 and S
= 3, we have that |M| = 32 = 9. For each ı̂, ̂ ∈ V̂ , we
can compute the transition probabilities in Q ∈ R9×9 from
Equation (16) as follows:

qı̂̂ = Pr (Yk+1 = ̂ | Yk = ı̂) = pı̂(1)̂(1)pı̂(2)̂(2),

k ∈ Z+. (17)

We now prove that all robots will reach consensus on
the feature distribution and it will converge to the reference
distribution.

Theorem IV-A. Consider a group of N robots, moving
on a finite spatial grid with DTDS Markov chain dynamics
Equation (1), that update their opinions fak (s) for the feature
distribution on the grid according to Equations (3), (7), (9)
and (10). Then for each robot a ∈ A, fak (s) will converge
to fref (s) as k →∞ almost surely.

Proof. Suppose at initial time k0, the locations of the robots
on the spatial grid are given by the node ı̂ ∈ V̂ . Consider
another set of robot locations at a future time k0 + k, given
by the node ̂ ∈ V̂ . The transition of the robots from
configuration ı̂ to configuration ̂ in k time steps corresponds
to a random walk of length k on the composite Markov chain
Yk from node ı̂ to node ̂. It also corresponds to a random
walk by each robot a on the spatial grid from node ı̂(a)
to node ̂(a) in k time steps. By construction, the graph
Gs is strongly connected and each of its nodes has a self-
edge. Thus, there exists a discrete time n > 0 such that, for
each robot a, there exists a random walk on the spatial grid
from node ı̂(a) to node ̂(a) in n time steps. Consequently,
there always exists a random walk of length n on the
composite Markov chain Yk from node ı̂ to node ̂, and
therefore Yk is an irreducible Markov chain. All states of an
irreducible Markov chain belong to a single communication
class. In this case, all states are positive recurrent; as a
result, each state of Yk is visited infinitely often by the
group of robots. Moreover, because the composite Markov
chain is irreducible, we can conclude that ∪k∈Z+Gc[k] =
G0, where G0 is the complete graph on the set of robots.
Therefore G0 is strongly connected. Hence, each robot will
meet every other robot at some node s ∈ S infinitely often.
Since Yk is irreducible and, from Equation (10), we have
that θak(s) ≤ θak+1(s) ≤ θref (s), ∀a ∈ A, ∀s ∈ S, it
follows from Equations (9) and (10) that θak(s) → θref (s)
as k → ∞. Consequently, fak (s) → fref (s) as k → ∞
almost surely.

V. NUMERICAL SIMULATION RESULTS

In the numerical simulations, we consider a set of robots
A = {1, 2, 3, 4} moving on a 5.6 m × 5.6 m domain that
is discretized into a square grid with c = 8 nodes on each
side, with a distance δ = 0.7 m between adjacent nodes.
The robots switch from one node to another at each time step
according to the Markov chain dynamics in Equation (1). The
state transition probabilities pij , i, j ∈ S = {1, 2, . . . , c2},
that are associated with the spatial graph Gs are computed
from Equation (14). We set the value of l̄ = 0.8 in Equa-
tion (2) in both the numerical and Software-In-The-Loop
simulations. We distribute the features on the set of nodes
Br = {19, 20, 21, 26, 30, 34, 38, 42, 46, 51, 52, 53}, which
represents a discrete approximation of a circular distribution
on the grid. The set of neighbors N a

k of robot a at time k
consists of all robots that are located at the same node as
robot a at that time.

All robots are initialized at uniformly random nodes in
S. Prior to exploration, the robots assume that all the grid
nodes are unoccupied by features, and hence the vector of
Hellinger distances is initially DH = 0 ∈ RN×1. During
their exploration of the grid, when robots encounter each
other at the same node, they exchange their current feature
PMFs and fuse them according to Equation (7). Figure 5 and
Figure 6 show the feature PMFs computed by each robot
at k = 240 s and k = 500 s, respectively. We observe
in Figure 5 that by k = 240 s, all robots have partially
reconstructed the feature PMF, with robot 4 having the clos-
est reconstruction as measured by DH(f4240(s), fref (s)) ≈
0.07 in Figure 7. In Figure 6, we see that all robots have
successfully reconstructed the feature PMF by k = 500 s.
The robots’ consensus on the reference PMF is also apparent
from Figure 7, which shows that all Hellinger distances
are zero at that time. Several distances DH(fak (s), fref (s))
increase at times k between 400 s and 500 s, due to the
numerical inaccuracies in the fusion.

We also ran Monte Carlo numerical simulations with dif-
ferent numbers of robots, N = {4, 8, 12, 16}, to investigate
the effect of N and the effect of consensus on the perfor-
mance of the strategy in terms of the time for all robots’
feature PMFs to converge to the reference PMF. Figure 8
plots the resulting time, averaged over 100 simulations (error
bars show standard deviations), until the feature PMFs of all
N robots converge to the reference PMF in the consensus and
no-consensus cases. The figure shows that for N = 4 robots,
the mean time until convergence for both the consensus
and no-consensus strategies are similar, with a significant
overlap in their standard deviations. This indicates that for
small numbers of robots, both strategies perform similarly.
However, as N increases, there is a widening gap between
the mean times until convergence of the consensus and no-
consensus strategies, with the times for the strategy with
consensus being consistently lower. For N = 16 robots,
the strategy with consensus is faster than the one without
consensus by a factor of ∼2 (830 s/438 s).
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Fig. 5: Feature PMF fa
k (s) of 4 robots at time k = 240 s in the

numerical simulation.
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Fig. 6: Feature PMF fa
k (s) of 4 robots at time k = 500 s in the

numerical simulation.

VI. SOFTWARE-IN-THE-LOOP RESULTS

We also validate our approach in Software-In-The-Loop
(SITL) simulations using Gazebo and ROS Melodic. We
simulate the same scenario as in the numerical simulations,
with the set of robotsA consisting of two quadrotors, Robot 1
and Robot 2. Figure 1 illustrates the simulation setup. Video
clips of the SITL simulations are included in the overview
video https://youtu.be/-Z4-DZrHwSM. The quadrotors are
simulated using the Rotors [7] package in Gazebo, and
the PX4 flight control stack is implemented in SITL to
execute all low-level control tasks for each quadrotor. The
discrete feature distribution that the quadrotors must recon-
struct is represented by the ArUco markers on the ground
plane, located at positions along the red dotted circle. The
quadrotors fly at different altitudes (1 m and 2 m) to avoid
collisions. This eliminates the need for obstacle detection
and avoidance strategies, which are beyond the scope of
this work. To detect the ArUco markers, each quadrotor is
equipped with a simulated VGA resolution RGB camera that
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Fig. 7: Time evolution of DH(fa
k (s), f

ref (s)) for each robot a ∈
{1, 2, 3, 4} in the numerical simulation.
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Fig. 8: Time until convergence of robots’ feature PMFs to the ref-
erence PMF in numerical simulations of the feature reconstruction
strategy with and without consensus, for N = {4, 8, 12, 16} robots.

takes images at 30 fps and is oriented to face the ground
plane. The image window size is heuristically adjusted to
account for the difference in perspective resulting from the
robots’ difference in altitude. The quadrotors are assigned
static IP addresses and exchange their feature distributions
over wireless communication when they meet at the x, y
position of the same node (at different altitudes). We chose
T = 550 s as the final time of the simulations.

A. System architecture

A diagram of our system architecture is shown in Figure 9.
We use a hierarchical control scheme composed of low-level
and high-level control blocks. The following is a description
of each block in Figure 9. The low-level controllers (Low
Level Unit) use the ROS package MAVROS to generate
the control commands for the simulated quadrotors from
the high-level controller (High Level Unit). Gazebo provides
global localization for the simulated quadrotors. It outputs
the 3D position of each robot a, [pax, p

a
y, p

a
z ], and its orien-
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Fig. 9: SITL simulation system architecture block diagram.

tation.The 3D quadrotor positions from Gazebo are used to
determine the quadrotors’ current nodes on the grid and the
nodes they should move to in the next time step, according
to the DTDS Markov chain in Equation (1). The new node
locations are mapped to the commanded quadrotor velocities
at time k + 1, V k+1

com , which are converted by MAVROS into
velocity set points V k+1

sp and sent to the Low Level Unit.
This block performs the corrections to the quadrotors’ poses,
which are rendered in Gazebo. An RGB image from the
quadrotor’s bottom-facing camera is used to detect an ArUco
marker at the quadrotor’s current node, and the feature PMF
fak (s) is computed according to Equation (3). When two
quadrotors are located at the same node, they exchange their
feature PMFs using ZeroMQ [27]. Chernoff Fusion block
executes the fusion protocol in Algorithm 1. It computes the
quadrotor’s feature PMF from its own measurements and
from the feature PMFs transmitted by other quadrotors at its
current node through the ADHOC block.

B. Simulation results

Figure 10-Figure 13 plot the feature PMFs computed by
both quadrotors during two SITL simulation runs. Figure 10
and Figure 11 show the feature PMFs at k = 240 s (4 min)
and k = 330 s (5.5 min), respectively, of the first simulation
run. The figures indicate that Robot 1 reconstructs most of
the feature distribution within 4 min, and both robots fully
reconstruct the distribution within 5.5 min.

Figure 12 and Figure 13 plot the feature PMFs at k = 240
s (4 min) and k = 530 s (∼ 8.8 min), respectively, of
the second simulation run. Figure 12 shows that in this
simulation run, the two robots do not meet and exchange
feature PMFs within the first 4 min, since their feature
PMFs are completely distinct at that time. By ∼ 8.8 min,
Figure 13 shows that both robots have fully reconstructed
the feature distribution, which matches the reconstructed
distribution in Figure 11. Thus, Figure 10 through Figure 13
demonstrate that our approach ultimately results in accurate
feature reconstruction, but that the convergence time to full
reconstruction can differ between runs due to the randomness
in the robot paths over the grid.

C. Considerations for real-world implementation

The performance of our approach in real-world environ-
ments will be affected by aerodynamic interactions between
quadrotors, uncertainty in positioning, and feature occlusion
by a quadrotor that enters another’s field of view. In the
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Fig. 10: Feature PMF fa
k (s) of 2 robots at time k = 240 s in the

first run of the SITL simulation.

2 4 6 8

1

2

3

4

5

6

7

8

0.01

0.015

0.02

0.025

0.03

0.035

2 4 6 8

1

2

3

4

5

6

7

8

0.01

0.015

0.02

0.025

0.03

0.035

Fig. 11: Feature PMF fa
k (s) of 2 robots at time k = 330 s in the

first run of the SITL simulation.

SITL simulations, it is difficult to accurately simulate the
aerodynamic disturbance on a quadrotor caused by the down-
wash of a quadrotor above it. These disturbances can be
rejected by incorporating a robust disturbance observer [28],
[29] into the quadrotor’s low-level flight control strategy.
Alternatively, the quadrotors could fly at the same altitude
and employ controllers for inter-robot collision avoidance,
e.g. using control barrier functions [30]. Quadrotors may
miss feature detections due to misalignment of their camera
image window with the ground or to occlusion of the feature
by another quadrotor flying below it. Such misalignments
and occlusions sometimes occurred in our SITL simulations;
however, the accuracy of the feature reconstruction despite
these occurrences demonstrates the robustness of our ap-
proach to the resulting missed feature detections.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a decentralized multi-robot
strategy for reconstructing a discrete feature distribution on
a finite spatial grid. Robots update their estimate of the
feature distribution using their own measurements during
random-walk exploration and estimates from nearby robots,
combined using a distributed Chernoff fusion protocol. Our
strategy extends established results on consensus of opinion
pools for fixed, strongly connected networks to networks
with Markovian switching dynamics. We provide theoretical
guarantees on convergence to the ground truth feature distri-
bution in an almost sure sense, and we validate the strategy
in both numerical simulations and SITL simulations with
quadrotors.

We note that our strategy is agnostic to the source of the
information used to reconstruct the feature distribution; it val-
ues the information gained from exploration and other robots
equally. This can result in suboptimal convergence rates
to consensus on the ground truth distribution, potentially
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Fig. 12: Feature PMF fa
k (s) of 2 robots at time k = 240 s in the

second run of the SITL simulation.
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Fig. 13: Feature PMF fa
k (s) of 2 robots at time k = 530 s in the

second run of the SITL simulation.

exceeding the operational flight times of small aerial robots
with limited battery life. To increase the convergence rate
to consensus, we propose to modify the robots’ exploration
strategy from unbiased random walks to random walks that
are biased in directions that increase information gain from
individual robots’ on-board sensor measurements and also
ensure frequent encounters between robots. Another possible
way to decrease the time to consensus is by relaxing the
constraint rcomm < 0.5δ, allowing robots to communicate
with robots at other nodes. This would require an analysis
of whether consensus is still ensured by reformulating the
composite Markov chain and determining whether it is
irreducible and positive recurrent. In addition, while Pólya’s
recurrence theorem [31] guarantees that our results on irre-
ducibility and positive recurrence do not extend to random
walks on infinite 3D lattices, it would be interesting to
investigate whether they are valid for finite 3D grids. Finally,
it would be useful to derive an analytical formulation of
the expected time until consensus, if possible, which would
provide a more rigorous basis for selecting the final time T .
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